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A NOTE ON THE GROUP STRUCTURE OF
UNIT REGULAR RING ELEMENTS

ROBERT E. HART WIG AND JIANG LUH

Local properties of unit regular ring elements are inves-
tigated. It is shown that an element of a ring R with unity
is regular if and only if there exists a unit u e R and a group
G such that a e uG.

1* Introduction* It is well-known that [15, 7] a ring R is
strongly regular if and only if every aeR is a group member. In
this note we shall use the basic theorem for group members in a
ring to show locally that a ring element a e R (with unity) is unit
regular exactly when there is a unit ue R and a group G in R such
that a e uG. Hence unit regular rings are, as it were locally a
"rotated" version of strongly regular rings.

We remind the reader that a ring R is called regular if for
every aeR, aeaRa; strongly regular if for every aeR, aea2R, and
unit regular if for every aeR, there is a unit u e R such that ana =
a [3]. Similar definitions hold locally. A ring with unity is called
finite if ah = 1 implies ha — 1. Any solution a~ to axa = a is called
an inner or 1-inverse of [1], while any solution a+ to axa = a and
xax = x is called a reflexive or 1-2 inverse of a.

For idempotents e and / in R, e ~ / denotes the equivalence in

the sense of Kaplansky [13] as contrasted with a ~ b which denotes
that a = pbq with p and q invertible.

As usual, similarity will be denoted by &, the right and left
annihilators of aeR will be denoted by a0 = {xeR: ax = 0}, °a =
{a; 6 R: xa = 0} respectively, while interior direct sums and isomorphisms
are denoted by + and = respectively. A ring R is called faithful if
aR = (0) implies a = 0.

We shall make use of the following fundamental theorem for
group members.

THEOREM 1. Let S be a semigroup and aeS. The following
are equivalent.

1. a is a group member.
2. a has a group inverse a% in S which satisfies axa = a9 xax =

x and ax = xa.
3. a has a commutative inner inverse a~ which satisfies αα α =

a, and ax = xa.
4. aS = eS, Sa = Se and a e eSe for some idempotent eeS.
5. a e a2S f] Sa2.

449
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6. ae a~aSaa= for some inner inverses a~, or in S.
7. aS = a+S for some reflexive inverse a+ in S.
7a. Sa = Sa+ for some reflexive inverse a+ in S.
8. aS = a~aS for some inner inverse a~ in S.
8a. Sa — Saa~ for some inner inverse a" in S.
If in addition S = R is a faithful ring, these are equivalent to
9. R = aR + a\
9a. R - Ra + °a.
In any of the above cases a* and e = αα# are unique and the

maximal subgroup containing a is given by

Ha = {x e S: x* exists, xx* = aa% — e}
(1.1)

= {x e S: xS = aS, Sx = Sa, x e aSa} .

Proof For a proof of the equivalence of (1)—(5); we refer to

[14, 7, 8].
(1) => (6): Clearly, a = α W .
(6) => (7): Let a — a~azaa= for some z e S and set a+ = a~aa^.

Then a = a~aa=azaa= = a+azaa= e a+S.
On the other hand, since a3 = a(a~azaa=)a = aza, we have a =

a~a*a=, and α3α= = a2 — a~a\ Hence a+ = a~aa= — a~(a~a*az=)a= —
a~a2a=az=: = a~a3(a=)3 = a(a=)2 e aS, and so a+S = aS.

(7) => (8): Obvious, since a+S = a+aS.
(8) ==> (1): If aS = a~aS, then a2 = a~ax for some x. Hence

a~aa2 — a2 or αΓα3 = α2.
Similarly, a~a = α̂ / for some 2/, and s o α = α2?/. By a result of

Drazin [2] the index of & equals one and α* exists.

The results 7a and 8a follow by symmetry.
We remark that an element a e R for which aR = a+R or Ra =

Ra+ for some a+, generalizes so called EP elements [16, 7, 1] for
which aR = a~R = a^R, R ^-regular, where a1 is the Moore-Penrose
inverse of a. Thus in a ^-regular ring, an EP element belongs to
some group G.

For a proof of (9) =» (1) for the case where R has a unity 1 or
is regular, we refer to [7]. When R is faithful we have to proceed
as follows. R = aR + a0 => a = ar + n, an = 0 => a = a(as + m) + n,
for some s e R, m e α°. Hence α2 = &4ί>, for some 6 6 aR. Also α(αa?) =
0 => ax e aR f] a0 = (0), so that (a2)0 = α°. Hence 22 = α2.B + (α2)0. It
then follows that b = {a2)*, since

α2(α2 - a2ba2) = a\a2b - ba2) = a\ba2b - b) = 0 .

Because a2 commutes with α, it follows by a result of Drazin [2]
that (a2fa = α(α2)*. Now (α - a\a2fa)R = (α - a\a2fa)aR = (0) and
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hence if R is faithful, a = a2(a2)*a = a2(a(a?Y). One may now repeat
the above argument to show that α* = α(α2)* = a*aa*.

That (1) => (9) is clear.
Before giving our main result several remarks should be made

here.

REMARK 1. The condition "faithful" may be replaced by the
weaker condition

(1.2) for every reR r° Π °R = (0) .

This may not be dropped entirely as seen from the example

(Γ0 a] ) Γ0 1Ί
R = U : a is a real number k a = \ , aR = (0), a0 = R

and °R — R. Here R = aR + a0, yet α# clearly does not exist since
CL2 = 0 .

REMARK 2. For a regular ring iϋ with unity, (1.1) may be
written as [10]

(1.3) Ha = {x e R: x = pa — aq for some units p and #} .

REMARK 3. If a has a unique reflexive inverse a+ then α# exists,
and if a has a unique idempotent of the form aa+ then a e α2i2.
Hence if either of them hold globally, then R is stronly regular. These
results are easy consequences of the fact that the class {a+} of all
reflexive inverses of a is given by [9],

[a+ + (1 - a+a)R]a[a+ + R(l - aa+)] .

2* Main results* We begin with several preliminary results
which will be used in our main theorem.

LEMMA 1. If R is a ring with unity 1, and if φ: aR —> bR is
a module isomorphism, where a and p = φ(a) are regular elements,
then Ra = Rp and pR = bR.

Proof. φ(a) = φ{aa~a) = φ(aa~)a and 0(α) = pp~p =>a = φ~\pp~)p =
φ~\pp~)φ(a). The following is given in [10].

LEMMA 2. If a and b are regular elements in a ring R with
unity 1, then

aR = bR and Ra = iϋ& *=> b — ua •= av
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for some units u, v in R.

LEMMA 3. Let R be a ring with unity 1 and a and 6 be regular
elements in R. Then the following are equivalent:

( l ) b ~ a;
(ii) aa~ & bb~ and a~a ρ& 6~6, for some, and hence all a~, 6";
(iii) aa~ ~ bb~, 1 — aa~ ~ 1 — bb~, and 1 — a~a — 1 — b~b, for

some and hence all a~, b~;
(iv) aR = bR and R/aR = R/bR, R/Ra = R/Rb.

Proof, (i) => (ii): If b = paq, for some units p and g, then for
any particular α~, q~xa~p~ι e {δ~}, and hence paa~p~] e {bb~}, q~ιa~aq e
{b~b}. Now for any α= 6 {α~}, b= e {b~}, αα= — aa~, bb= — bb~ and thus
αα= ^ αα~ p& paa~ιp~ι p& bb=.

(ii) => (i): Let aa~ = ubb~u~\ a~a = v~ιb~bv. Then aR = ubvR,
Ra = Rubv. Lemma 2 now ensures that a = ubvp = qubv for some

lib

units p, q and thus a ~ b.
The equivalence of (ii) and (iii) is well-known since ααΓ ̂  66" <==>

aa~ ~ 66" and 1 — aa~ ~ 1 — 66", while aa~ ~ 66" <=> α~α ̂  6~6, [11].
(i) ==> (iv): If 6 = paq where p and q are units, then aR = bR

and 1 - 66" - p(l - aa~)p~ι =* (1 - bb~)R = p(l - αα")J? = (1 - αα")Λ.
Lastly, since 6i? + (1 - bb~)R = R = aR + (1 - αα")i2 => R/aR =
(1 - αα")iϊ and R/bR = (1 - 66~)i?, the results follows.

(iv) => (ii): If αi2 = 6J? and i?/αi? = i?/6i?, then (1 - aa~)R =
R/aR = R/bR = (1 — 6δ")i? and so aa~ ~ 66", 1 - aa~ ~ 1 - 66". It
follows that aa" ^ 66". Similarly, a~a & δ"6.

We note in passing that the statement R/aR = R/bR is clearly
equivalent to the statement "aR and bR have all direct summands
isomorphic."

LEMMA 4. If aeR is a regular element of R and leR, then
for all units u, v e R, {(uav)~) = v'^a^u'1.

Proof. This is an easy consequence of the fact that the class
of all inner inverses of 6 is given by {6"} = 6~ + (l — 6"6)J? + J?(l — 66").

We now come to the main theorem of this paper, which gives
numerous conditions for a ring element to be unit regular.

THEOREM 2A. Let R be a ring with unity 1 and let aeR. Then
the following are equivalent:

1. aua = a for some unit u in R.
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2. (auY exists for some unit u in R.
2a. (ua)* exists for some unit u in R.
3. au has a commutative inner inverse for some unit u in R.
3a. ua has a commutative inner inverse for some unit u in R.
4. auR — eR and Rau = Re for some unit u and idempotent

e in R.
4a. uaR = eR and Rua = Re for some unit u and idempotent

e in R.
5. ae auaR Π Raua for some unit u in R.
6. R = aR + u(a°) for some unit u in R.
6a. R = Ra + (°a)u for some unit u in R.

Proof (1) => (2): Clearly, aua = a ==> (au)2 = au => (au)* exists.
(2) => (1): Observe that au[(auf + (1 — (au)*au)]au = au==>auva —

a, where v = (au)* + (1 — (au)*au) and v~ι = au + 1 — (au)*au.
(2) <=> (2a): ua = u(au)u~λ and so (ua)* exists exactly when {auY

exists.
Since idempotents clearly are group members, it is obvious that

a is unit regular precisely when a e uG for some group G and unit
u in R. The equivalence of (2) through (6a) follows immediately
from Theorem 1, applied to the group members au, and ua. For
example, au e (au)2R Π R(au)2*=>a e auaR Π Raua and (uaY exists « R =
uaR + (ua)° ^ R = aR + u~\a°). If we are given in addition that
a 6 R is a regular element, then several important additional conditions
may be given for a to be unit regular.

THEOREM 2B. IfRisa ring with unity 1 and aeR is a regular
element, then the following are equivalent to a being unit regular.

( 7 ) a e u~ιa~aRaa=u~~1 for some unit u and some inner inverses
a~, αr in R.

(8 ) a~xa — y, aya= = x, where a~, a= are inner inverses of a ==>
x e& y.

( 9 ) ca = ac, c e R ==> caa^ ρ& a~ac for some and hence all inner
inverses a~, ar in R.

(10) αα~ f*& a~a for some and hence all inner inverses a~ in R.
(11) aR = ua~aR for some unit u and some inner inverse a~

in R.
(12) aR = ua+R for some unit u and some reflexive inverse a+

in R.
(13) aR = eR, with e2 = e => au = e for some unit u in R.
(14) aR = bR with b unit regular =>ag = b for some unit g in R.

Φ ΊJL

(15) aR = bR, with φ(a), b unit regular => a ~ b.
Φ

(16) aR = bR, with φ(a), bunit regular => R/aR = R/bR,
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together with their left analogues.

Proof. (2) =̂> (7): By Theorem 1(6), (au)*

exists <==> au e {au)~auRau{au)= <=> aneu~γa~aRaa^

^==> a e u~1a~aRaa=u~ι,

for some inner inverses a~, a= of a. It should be noted that Lemma
4 was also used.

(I) => (8): Let ana = a, where n is a unit. Then y = a~~xa =
a~aya=a => y — ya=a = a~ay = ya~a, and x = aya= — aaΓxaar => aa=x =
x = αα~# = #αα=. Also, clearly, αy = xa and j/wα = ya^aua — ya=a =
?/, (m# = a?. Now note that y — a~ay ?& nay since uayil — a~a+ua) —
nay — (1 — a~a + na)a~ay and so, y = α"α^/ <â  ̂ α?/ = wα α = u(xau)vΓι.
Next, again m α ^ a;αα= = x, for

(1 — αα= + an)xan = xan = &aa=(l — αα= + α^) .

And so, y = q~ιxq, where q = (1 — αα= + αw)^"^! — α"α + %α).
(8) => (9): Since a~(caa=)a = a~ac and a(a~ac)a= = caa^, the result

follows at once from (9).
(9) => (10): Because αα~ ̂  αα= for any a~, a=, we simply set

c = 1 in (9).
(10) => (11): αα~ ̂  αΓα ==> αα~ = 6̂(x"α̂ 6~1 for some unit n=^ aR =

ua~aR as desired.
(II) => (12): αi? = ua~aa~aR = ua+aR = ua+Rf where α+ = a~aa~.
(12)=>(2a): Let αi? = ^α+J?. Then ^"'αi? = a+R = α

(W^GO+U?, and hence by Theorem 1(7), {n~ιaY exists.
(1) => (13): If aR = ei2 and ana = a, u unit, β2 = e, then

eR=^ane = β. Hence α^v = e, where v — 1 — au + e, v~ι — 1 + an — e.
Thus a and β are right associates.

(13) => (14): If aR — 6i2, 6^6 = b and v is a unit, then αi2 = eR,
where e = δv. By (13), an — e — bv for some unit e. Hence α^v"1 = b
as desired.

(14) => (1): Since aR = aa~R9 and αα~ is unit regular, (14) implies
that ag = αα~ for some unit βr. Hence aga = α a s requested. It is
now clear by symmetry, that the left analogues of the above results
also are equivalent to element a being unit regular.

(14) => (15): Suppose that (14) and hence its left analogue (14a)
both hold.

Now let aR = φ(a)R = bR and p = φ(a). Then by Lemma 1,
Ra = Rp and pR — bR, so that by (14) and (14a), pv = b and
na = p for some units n and v. These are in fact given by
u = (p=) - 1(l + p ' p — a=a)a=, v = p = ( l — pί?= + 66=)(δ=)~1, in which α=,
ίr , and >̂= are unit inner inverses. Hence b = wαv, as desired.
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(15) ==> (16): This follows immediately from Lemma 3.
φ

(16) => (1): Since aR = a~aR, where φ(a) — a~a — 6, it follows
that αα~ ~ 6, 1 — aa~ ~ 1 — δ, so that aa~ ̂  6.

Hence, by Lemma 3, uav = b = α~α for some units %, v, which
implies that uavuav = uav or a{vn)a = a, as desired. Alternatively,
(10) could be used.

The remaining results follow again by symmetry.

REMARK 1. In (8), we proved the conjecture made in [12] that
pseudosimilarity implies similarity in a unit regular ring. Pseudo-
similarity, 7Z, is defined by

DEFINITION 1. x TZ y if a~xa = y, aya= = x for some a and its
inner inverses α~, α=.

REMARK 2. The equivalence of (1) and (6) was also proved by
Ehrlich [4] who used endomorphism rings. As shown above it is
actually a simple consequence of the fundamental Theorem 1.

REMARK 3. Part (10) should be compared with the global result
of Vidav [17] and Fuchs [5], which state that a regular ring R is
unit regular exactly when e2 — e ~ f = f2 => e ^ f [17] or when aR =
bR => R/aR = R/bR [5].

REMARK 4. The global analogue of (16) is that a regular ring
R is unit regular exactly when aR = bR implies that aR and bR
have a common direct summand [6].

One final remark is here needed, namely, if R is a unit regular
ring and if φ: aR —> bR is any isomorphism, then, by Lemma 1, Ra =
Rφ(a) and hence by (14a) φ{a) — ua for some unit u.

We have thus shown:

COROLLARY 1. In a unit regular ring R, all right module
isomorphisms φ: aR —> bR, are of the form φ(ar) = uary where u is
a unit. Similarly, all left module isomorphisms φ: Ra —> Rb are
of the form φ{ra) = rav, for some unit v e R.

The converse of these statements always hold.

3* The unit inner inverses* We shall now examine more closely
the class %fa of unit inner inverses of a given element a of a unit
regular ring.



456 ROBERT E. HARTWIG AND JIANG LUH

We begin by noting that if aua = a, with u invertible then ^ a

can be represented as

(3.1) ^ = u^au = %Suau .

Indeed, if w e ^auf then auwau = an which implies that auwa =
a and hence uw e %fa, while conversely, if awa = α, w a unit, then
au(u~ιw)au = an which implies that u~ιw e ^au and hence wew%Sau.
The second identity follows similarly.

Since w%Sau is independent of the choice of the unit inner inverse
u of a, we have, for any unit inner inverses u and v of a,

(3.2)

so that in particular,
Consequently, the set <%fa is determined by the set of unit inner

inverses ^/e of the idempotent element e = au. When e2 = e, there
are several representations for ^e. In fact, ^ e is the set of all
units of the form:

( i ) 1 + (1 — e)x + 2/(1 — e) for some x, y;
(ii) e + (1 — e)v + s(l — e) for fome v, s;
(iii) 1 + h — ehe for some h;
(iv) β + k — β&e for some k.

In general, the set ^ or even ^ e will not be a union of semi-

groups. For example, if e = N Q e JB2X2, where /?2X2 denotes the two

by two matrix ring over the real field, then it is easy to see that

[ []] []
In fact, it is only for idempotent elements possible to possess

union of semigroups of unit inner inverses.

PROPOSITION 3. Let a be a unit regular element of a ring R
with unity 1.

(i ) If the set <&a of unit inner inverses of a is a union of
semigroups then a2 = a.

(ii) If R is a prime ring and if %fa forms a semigroup, then
a — 0 or a = 1.

Proof, (i) Let ana = a with u a unit. Then u2 6 ̂ /a and au2a = a.
Now consider: au(l + au(l — au))a = aua + au(l — au)a = a + a —
a — a, which implies t h a t u(l + α( l — au)) e ^ a . Thus (u(l — α(l —

au)))2 6 ^ β . That is, a = α(w(l — α( l — au))fa = (αw — α( l — α^))%(l —

α ( l — α^))α = {au2 — au + a2u2)(a — a2 + a2) = <w2α — αuα + Λ 2 α =

α — α + a2 — a2.
(ii) Now suppose that a — e = e2. Then clearly 1 + eR(l — e)

and 1 + (1 — e)Re are contained in ^ e . Hence by the semigroup
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assumption, e(l + eR(l — β))(l + (1 — e)Re)e — e which implies that

(3.4) eR(l - e)Re = 0 .

Since R is prime, it follows that either e = 0 or e = 1 as desired.

REMARK 1. In (ii), the primeness cannot be dropped as seen
from the example of semiprime ring R = Z2 0 Z2, where Z2 denotes
the Galois field of order 2. Here ^ ( 1 ) 0 ) = ^«u> = {(h 1)} is a semigroup,
yet (1, 0) and (0, 1) are neither zero element nor unity element.

REMARK 2. The same conclusions may be drawn if the element
is just regular and the set {a~} of inner inverses forms a semigroup.
In fact, if aba = a then ab2a = α and also a(b — ba + δα2δ)α = α =>
α(δ — ba + ba2b)ba = α => α = α — α6α + α2δ2α = α2.

The rest follows as in part (ii).

REMARK 3. For an invertible element 1 + h — ehe in a unit

regular ring,

iϊ 2 x 2 and λ =

o oj

ARK 3. For an invertible element 1 + h — ehe in a unit

ing, ehe need not lie in He. For example, if e = -, π e
Γ0 0Ί Γl 0Ί *-

λ = N Λ , then 1 + h — ehe = L 1 is invertible but ehe —
L 1 0 J LIU

There are five sets of units that appear naturally in the study
of ^ e . These are:

1. P. = 1 + (1 - e)#β -{%e ??.: β(l - u)(l - e) = 0},
2. Qe = 1 + βΛ(l - e) = {u 6 ^ e : (1 - β)(l - w)β = 0},
3. Ve = {ve^e:ev = β},
4. We = {we ^e: we = β}, and
5. Ce = {a; 6 R: ez = «β, ^ is a unit}.

For example, 1 — aa= + ααΞ 6 TFαα- for any inner inverses a~, α=, α s

of α.
It is easily seen that

( i ) all these sets are semigroups (in fact monoids).
(ii) Pe £ Ve S ^ β , Q. Q We £ ^ , F e n TFe - {1 + (1 - e)x(l - e) e

In addition it is known that [14]
(iv) eCe = Jϊe is the maximal subgroup containing e.

Moreover, it is easily shown that
(v) V&.W. = &. = P&9Qβ9 for let ue%Se, ve Ve, we We,

then evuwe = eue = e, while conversely u = l u l ensures the first
equality. The second equality follows similarly.
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It should be remarked here that in general Pe Φ Ve, Qe Φ We, for

again let β = [Q i ] a n d x = Γ^1 #3] i n R*** with xx Φ 0 and 1 + x,

invertible. Then 1 + (1 - e)x = Γ1 J Xί ^3Ί e Ve, while ΓjJ1 ^3Ί Φ ye

for any y e R2X2.

Before examining the subgroup He, let us first prove a global
conjecture made in [11]. We start with

LEMMA 4. Let R be a ring with unity 1. Then the following
two conditions are equivalent.

( i ) R is unit regular such that every nonzero element in R
has a unique inner inverse;

(ii) R contains only idempotent elements and invertible ele-
ments.

Proof, (i) => (ii): Suppose a2 Φ a e R and aua — a, u a unit u Φ 1.
Then

au(l — a(l — au))a = a = α( l — (1 — ua)a)ua

where (1 — α(l — αw))"1 = 1 + α(l — au) and

(1 - (1 - ua)a)~ι = 1 + (1 - wα)α .

Hence by uniqueness, %(1 — α(l — <m)) == % = (1 — (1 — ua)a)u or
α(l — au) = 0 = (1 — M ) Λ . NOW Λ = a = ua2 implies by Theorem
1, that a has a group inverse α# = uau. Consequently, au = αα* =
α#α = ^α. Since α(α# + 1 — αα#)α = α and (α* + 1 — αα*)"1 = α + 1 — aa*,
it follows by uniqueness that u = uau + 1 — au or %(1 — <m) = 1 —
au. Multiplying this by 1 — au, we obtain

(3.7) (1 — au)u(l — au) = 1 — au .

Now either 1 — au — 0 or 1 — au Φ 0. Since 1 — au Φ 0 is idempotent
and (1 — au)l(l — au) = 1 — au, uniqueness implies that u = 1, which
is impossible. Hence au = 1 = ua and a is a unit.

(ii) => (i): It is clear that R is a regular ring. Now let aeR
and α ^ O . First suppose a = 1. Then αwα = & implies that t& = 1
and so is unique. Next, suppose a Φ 1. If a2 = a and aua = α,
where w is a unit Φ 1, then 1 — u is also a unit. For otherwise
(1 — u)2 = 1 — u would imply that u2 = u which forces u to equal 1.
Now, since a is not a unit, α(l — w) is not a unit. Hence [α(l — w)]2 =
α(l — u). This implies that a = α(l — %)α = α2 — α^α = α2 — α = 0,
a contradiction. Hence u = 1 and the unit inner inverse of a is
unique. If α is a not idempotent then a is a unit and clearly cΓ1 is
the only unit inner inverse of α, completing the proof.
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We may now sharpen this to the following.

THEOREM 4. Let R be a unit regular ring. If every nonzero
element of R has a unique unit inner inverse then either R is a
Boolean ring or R is a division ring.

Proof. Suppose R is neither Boolean nor a division ring. Then
there exists a e R such that a2 Φ a and there are x Φ 0, y Φ 0 in R
such that xy = 0, (since it is well-known that a regular integral
domain must be a field). By Lemma 4, a is a unit and x and y are
idempotents. Now, consider element ax. If (ax)2 = ax then

a(xa — l)x — 0 ==> (xa — l)x = 0 ==> # = a αα; = > a = 1 ,

by the uniqueness of unit inner inverses of a?. This yields a con-
tradiction. On the other hand, if (ax)2 Φ ax then ax must be a unit
which implies that x is a unit and thus that y = 0, which again is
a contradiction. Thus i2 must be either a division ring or a Boolean
ring.

Let us now consider briefly the maximal subgroup

He = {xe R: xR = eR, Rx = Re}

which contains the idempotent element eeR. We begin with a global
result.

PROPOSITION 5. If R is a regular ring with unity 1 and e is
an idempotent element in R, then

(3.8) He = {eue: eueve — e — eveue, u, v units in R) .

This says that the e-units in eRe are all of the form eue for some
1-unit ueR.

Proof. It is well-known that

He = {ere: erese = e = esere; r, s eR}

~ {ere: ereR = eR, Rere — Re} .

By Lemma 3, for ere e He there are units u, v in R such that
ereu = β = vere, which implies that (ere)(eue) = e — (eve)(ere). The
uniqueness of e-inverses ensures that eue = eve.

Now again by Lemma 3, since eueR — eR and Reue = Re, there
are units w, z in R, such that euew = e = zewe. Consequently, euewe —
e = ezeue. And so, by uniqueness, ewe = e#e = ere. Hence we may
replace in each element ere the element r by a 1-unit w eR.
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Conversely, it is easily seen that this set is contained in He.
We remark that when R is a finite regular ring [11] we may

shorten this to

(3.9) He = {eue: eueve = e; u, v units in R] .

Suppose now again that ana = a = ewα, with u, v units in R.
Then if we set e = an, f = av, we have a e H^uΓ1, and more gener-
ally, a 6 Γl {Hauu~u. u e %Sa}. Since eR = fR = aR, it follows that
ef = f,fe = e and that e**f. In fact, if w = l - e + / = (l + β-/)" 1 =
1 — α(w — v), then ew — wf — f and thus

(3.10) wHfw~x = ife ,

that is, the subgroups Hau and iJαv are isomorphic. It follows similarly
that

(3.11) Hua = uH^u-1 ,

because xeH^^uΓ^xueH^. And so, the subgroups Hau, Hua, Haυ,
Hva are all isomorphic.

4* Conclusions* We have seen that an element a 6 R is unit
regular exactly when a e uG for some unit u and group G in 5 . In
the same way that the concept of a Drazin inverse αd(see [1, 2])
generalizes that of a group inverse α# to the case that (aky exists
for some k Ξ> 1, we may generalize the concept of a unit regular
element.

DEFINITION 2. (i) An element a e R is ά-unit regular if ak is unit
regular for some k ^ 1.

(ii) An element a e R is unit-Drazin invertible if there is a unit
u e R such that (wα)fc is a group member for some k ^ 1.

By Theorem 2, the former is equivalent to R = α&iϋ + u(ak)°,
while the latter reduces to the existence of (wα)d.

In closing we mention of few open problems relating to ^/a in
a unit regular ring. Let e be an idempotent element.

1. For what h is 1 + h — βfce invertible?
2. For what x is 1 + (1 — e)x invertible?
3. How are ^ e and He related?
4. What sort of subgroup is Π {Hau: u e %Sa}Ί
5. For what type of regular semigroups does Theorem 2, 1-2

remain valid?



THE GROUP STRUCTURE OF UNIT REGULAR RING ELEMENTS 461

REFERENCES

1. A. Ben Israel and T. N. E. Greville, Generalized Inverse Theory and Applications,
Wiley, New York, 1974.
2. M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math.
Monthly, 65 (1958), 506-514.
3. G. Ehrlieh, Unit regular rings, Portugal Math., 27 (1969), 209-212.
4. , Units and one-sided units in regular rings, Trans. Amer. Math. Soc,
216 (1976), 81-90.
5. L. Fuchs, On the substitution property for modules, Monatsh. Math., (1971), 198-204.
6. D. Handelman, Perspectivity and cancellation in regular rings, to appear.
7. R. E. Hartwig, Block generalized [inverses, Arch. Rath. Mech. Anal., 61 (1976),
187-251.
8. , More on the Souriau-frame Algorithm and the Drazin inverse, SIAM J.
Appl. Math., 31 (1976), 42-46.
9. , 1-2 Inverses and the invariance of BA+C, Linear Algebra Appl., 11 (1975),
271-275.
10. , Generalized inverses, Ep Elements and Associates, to appear, in Revue
Roumaine.
11. R. E. Hartwig and Jiang Luh, On finite regular rings, Pacific J. Math., 69 (1977),
73-95.
12. R. E. Hartwig and F. Hall, Pseudo-similarity for matrices over fields, submitted
for publication.
13. I. Kaplansky, Rings of Operators, W. A. Benjamin Inc., New York, 1968.
14. G. L. Losey and H. Schneider, Group membership in rings and semigroups, Pacific
J. Math., 11 (1961), 1089-1098.,
15. Jiang Luh, A note on strongly regular rings, Proc, Japan Acad., 40 (1964), 74-75.
16. H. Schwerdtfeger, Introduction to Linear Algebra and the Theory of Matrices,
2nd Ed., P. Noordhoff, Grominger, 1962.
17. I. Vidav, Modules over regular rings, Mathematica Balkamica, 1 (1971), 287-292.

Received August 17, 1976 and in revised form March 3, 1977.

UNIVERSITY OF GRAZ

GRAZ, AUSTRIA 8010

AND

NORTH CAROLINA STATE UNIVERSITY

RALEIGH, NC 27607






