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INVERSE LIMITS AND MAPPINGS OF MINIMAL
TOPOLOGICAL SPACES

Louis M. FRIEDLER AND DIX H. PETTEY

S. W. Willard has conjectured that every ϋ-closed space
is the continuous image of a minimal Hausdorff space. In
this paper we verify Willard's conjecture and show as well that
every iέ-closed space is the continuous image of a minimal
regular space. We also identify conditions sufficient to guar-
antee that an iT-closed space be the finite-to-one continuous
image of a minimal Hausdorff space. We give an example of
a nonvacuously R{iϊ) space whose product with itself is neither
R(i) nor R(ii), and we obtain a number of results concerning
inverse limits of if-closed spaces and inclosed spaces.

1. Introduction. Throughout this paper, the word map (or
mapping) will always mean a continuous function.

If P is a topological property, then a P-space is called P-closed if
it is closed in every P-space in which it is embedded and minimal
P if there is no strictly coarser P topology on the same underlying
set. For P = Hausdorff [P = regular ΓJ the P-closed and minimal
P properties will be denoted as iϊ-closed [jR-closed] and MH [MR].
In studying mapping properties of MH spaces, S. W. Willard [14]
showed that the Hausdorff spaces whose Hausdorff continuous images
are always MH are precisely the functionally compact spaces of
Dickman and Zame [4] and conjectured that the Hausdorff spaces
which are the continuous images of MH spaces are precisely the H-
closed spaces. An analogous conjecture can be posed for MR and
ϋJ-closed spaces. Here we shall prove that every iϊ-closed [iί-closed]
space is the image, under an open and perfect mapping, of an MH
[MR] space of the same weight. Since every Hausdorff [regular ΓJ
continuous image of an ϋ-closed [JS-closed] space is jff-closed [jR-closed]
(see [2]), we thereby establish both of the above mentioned conjec-
tures. We also obtain results concerning products of MR spaces
and products of R(ii) spaces (see §2 for definition) as well as a
number of theorems concerning inverse limits of if-closed spaces and
of .β-closed spaces. In §4 we determine conditions that guarantee
that an iϊ-closed space be the image of an MH space under an at-
most-two-to-one mapping.

A set F i n a topological space is regularly open if V = int V.
A space is semiregular at a point if that point has a neighborhood
base of regularly open sets. A point of a topological space at which
the space is semiregular will be called a semiregular point of the
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space. A space is said to be semiregular if it is semiregular at
each of its points. It is well-known [2, 3.9] that a Hausdorff space
is MH if and only if it is iϊ-closed and semiregular. The reader is
referred to the survey paper [2] by Berri, Porter and Stephenson
for the standard filterbase and covering characterizations of iϊ-closed,
MH, jB-closed and MR spaces and to [5] for information concerning
inverse limits. A point of an iϊ-closed [ϋί-closed] space will be called
a bad point if it is the only cluster point of some nonconvergent
open [regular] filterbase on the space. For an iϊ-closed space, the
bad points are precisely those points at which the space is not semi-
regular.

For an inverse system {Ya; fβ

a}, the following terminology and
notation will be used: the mappings /£: Yβ —> Ya will be called bonding
maps, the inverse limit space will be denoted as Y^, and the natural
projection from Y^ to the space Ya will be denoted as fa. It will
always be assumed that the system is indexed over a nonempty
directed set and that for each a in the index set fa

a is the identity
function on Ya.

We shall let N denote the set of natural numbers.
If a and β are ordinals then [a, β) will denote the set of all

ordinals greater than or equal to a and less than β, while [α, β] will
denote the set [a, β) U {/?}.

2* Open perfect mappings* In this section, no separation
axioms will be assumed except where explicitly indicated. Further-
more, "regular" will not imply 2\.

The terms H(ί), R(ί), H(ii) and R(ii) will be used as in [10];
i.e., a topological space is H(i) [R(i)\ if every open filterbase [regular
filterbase] has a cluster point and H{ii) [R{ii)\ if every open filter-
base [regular filterbase] having a unique cluster point is convergent.
For a Hausdorff space, the properties H(i) and H{ii) are equivalent,
respectively, to the iϊ-closed and MH properties (see [2, 3.2 and 3.9]).
Likewise, for a regular Tx space, properties R(i) and R(ii) are
equivalent, respectively, to the properties JK-closed and MR [2, 4.14
and 4.15]. A topological space is nonvacuously H(ii) [nonvacuously
R(ii)] if it is H(ii) [(R(iί)] and has at least one open filterbase
[regular filterbase] with a unique cluster point. As is observed in
[10], a space may be H(ii) [R{ii)\ without being H{i) [R(i)]. A non-
vacuously H(ii) [nonvacuously R(ii)] space is, however, necessarily
H(i) [R(i)]. Furthermore, every continuous image of an H(i) [R{i)\
space is H(i) [R(i)]

A topological space X will be called strongly H(ii) [strongly R(ii)]
if there is a base 3^ for X such that every member of Y* has an
H(i) [R(i)] complement in X. It is easily verified that every strongly
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H{ii) [strongly R(ii)\ space is both H(i) and H{ii) [R(i) and R{ii)\.
A topological space is said to be strongly minimal regular (ab-
breviated SMR) if it is a strongly R{ii), regular Tγ space.

REMARK. R. M. Stephenson, Jr., introduced SMR spaces to the
literature in [13], and it is known that not all MR spaces are SMR
(see [9]). This is in contrast to the situation for MH spaces, for it
is not difficult to show that every MH space is strongly H{ii).

For a topological space X we shall let w(X) denote the weight
of X (i.e., the smallest cardinal ic such that X has a base of
cardinality fc).

A number of preliminary lemmas will be used in the proof of
the main theorem (Theorem 2.8) of this section. Some of these are
well-known results or immediate corollaries to well-known results and
will therefore be given without detailed proofs.

LEMMA 2.1. Let z be an infinite initial ordinal. Then there
is a one-to-one function σ from [0, z) x [0, z) onto [1, z) such that for
each {a, 7) in [0, z) x [0, τ), σ(a, 7) > a.

Proof. Since [1, z) and [0, z) x [0, z) are of the same cardinality,
there is a one-to-one function φ from [1, z) onto [0, τ) x [0, z). For
each a in [1, τ), let φx{a) denote the first coordinate of φ(a). We
now define, inductively, a function g from [1, τ) into [1, τ) as follows.
Suppose that β e [1, z) and that for each a in [1, β), g(a) has been
defined. Since z is an initial ordinal, the set

lφί(β) + l,τ)-{g(a)\ae[l,β)}

is nonempty. Define g(β) to be the least member of this set. The
function g thus defined is clearly one-to-one. We assert that g takes
[1, τ) onto itself. For if λ e [1, z) then, since φ takes [1, z) onto
[0, τ) x [0, z) and since the cardinality of [1, λ) is less than that of
{{a, 7) G [0, z) x [0, z) I a < λ}, the set {β e [1, z) \ g(β) ^ λ, φ,{β) < λ}
must be nonempty. The least member of this set will necessarily
be taken onto λ by g. Now by defining σ to be the function gφ~\
we obtain the required function from [0, τ) x [0, τ) onto [1, τ).

LEMMA 2.2. Let K be a cardinal and 7 an ordinal of cardinality
less than or equal to /c. If an inverse system of topological spaces,
indexed over [0, 7), is such that every space in the system is of
weight less than or equal to tc, then the inverse limit space is of
weight less than or equal to /c. (This result follows easily from [5,
2.3(2), p. 428].)
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LEMMA 2.3. The inverse limit of Hausdorff [regular] spaces is
a Hausdorff [regular] space. (This is an immediate consequence of
the fact that the inverse limit is a subspace of the product of the
spaces in the system.)

LEMMA 2.4. Let {Ya

%, ft) be an inverse system of topological
spaces. If each bonding map is open and each projection fa: Y^—* Ya

is onto, then each projection is open. (This follows easily from [5,
2.3(2), p. 428].)

LEMMA 2.5. Let {Ya; f
β

a} be an inverse system of topological
spaces. If each bonding map is perfect and onto and has Hausdorff
point inverses, then each projection fa: Y^ —•* Ya is perfect and onto
and has Hausdorff point inverses.

Proof. Let & denote the directed set over which the system
is indexed. For each a in ϋ^ and each point s of Ya9 each of the
sets (/«)-1(s) (β ̂  a) is a nonempty compact Hausdorff space; there-
fore {fa)~ι{s), which is homeomorphic to lim {fί)'ι(s) (β ̂  a), is non-
empty, compact and Hausdorff [5, 2.4, p. 429]. It remains only to
be shown that each fa is closed. Assume that for some β in *%r and
some closed set K in Y^, fβ(K) is not closed in Yβ. Let 2 be a point
of Cl fβ(K) — fβ(K). Since (Λ)"1^) is compact and does not intersect
K, [5, 2.3(2), p. 428] implies that for some finite subset {a(ΐ), α(2),
• , φ ) } of 3f there are open sets V19 V2,--,Vn in Yaω, Yaii), , Ya[n),
respectively, such that (fβ)~\z) is contained in U?=i(/«(i))""1(l7i) a n ( i
U?=i(/α(i)Γ(^i) does not intersect K. Choose 7 in ^ such that
7 ^ max {β, α(l), α(2), , a{n)}. Let Wr denote the set \JU {fl^Y'i Vτ).
Then Wr is an open set in Yr such that Wr Π fr(K) — 0 a n ( i such
that (/^"X^) c ΫFV ^ u t since /J is closed and z is in the closure of
fr

βfr(K), this is impossible. Hence, we have a contradiction and our
proof is complete.

LEMMA 2.6. Suppose that Ί is an ordinal greater than 0 and
that {Ya'y fί) is an inverse system over [0, 7). Suppose, furthermore,
that for each a in [0, 7), Ka is a subspace of Ya, and that for each
β in [0, 7) and each a in [0, β], fί\Kβ is a homeomorphism from
Kβ onto Ka. If K denotes the subspace Π (fc)~ι(Ko)(p> < Ύ) of Y^,
then for each a in [0, 7), fn\K is a homeomorphism from K onto Ka.

Proof. Since K may be regarded as the inverse limit of the
system {Ka; fβ

a\Kβ}, the desired conclusion follows as a result of basic
properties of inverse systems. (See [5, p. 427].)

LEMMA 2.7. If X is a topological space and if there exists an
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open perfect mapping from X onto an H(i) [R(i)] space, then X is
an H{i) [R{i)\ space. (The proof is routine and thus omitted.)

THEOREM 2.8. Let Y be a topological space of infinite weight
and τ the least ordinal of cardinality w(Y). Then there exists an
inverse system {Ya; f

β

a} of topological spaces, indexed over [0, τ), such
that

( 1 ) Yo=Y;
(2) if Yo is Hausdorff [regular] the then inverse limit space

Yoo is Hausdorff [regular];
( 3 ) for each a in [0, τ); the projection fa is open, perfect and

onto;
(4) for each point x of Y^, there is a subspace K of Y^ such

that xeK and K is taken homeomorphically onto Y by fo;
(5) w(Yoo) = w(Y);
( 6) for each a in [0, τ) and each H(i) [R(i)] subspace S of Ya,

{fa)~\S) is a strongly H(ii) [strongly R{ii)} subspace of Y^.

Proof. By Lemma 2.1, there exists a one-to-one function σ from
[0, τ) x [0, τ) onto [1, τ) such that for each ordered pair (a, 7) in
[0, τ) x [0, τ), σ(a, 7) > a. Using this function, we shall define
inductively the inverse system {Ya\ fβ

a}. For each β in [0, τ) the
space Yβ will be chosen so that w(Yβ) <; w(Y), and at the /3th stage
of the induction we shall choose, in addition to the space Yβ and the
mappings fβ

a(o:<β), a base {Uβr |7 e [0, τ)} for Yβ. We proceed as
follows.

Let Yo= Y and let f°0 denote the identity mapping on Yo.
Choose a base {UOΐ 17 e [0, τ)} for Γo.

For each β in [1, τ), let Zβ denote the inverse limit of the system
{Ya'f fl)o<ίa£r<β> and for each a in [0, β) let φβ

a denote the projection
from Zβ into Ya. Now let (λ, η) = σ~ι(β). Then β > λ, so UXη has
already been chosen. Let Vβ — {φβχ)~ι{Uλη) and define Yβ to be the
space obtained from Zβ x {1, 2} by identifying (z, 1) with (z, 2) for
each z in Zβ — Vβ. Let fβ

β be the identity mapping on Zβ and pβ

the natural projection from Yβ onto Zβ. For each a in [0, β), define
fβ

a to be the function φβ

apβ. Then each fβ

a is continuous and, for
0 <̂  a ^ 7 ̂  β, we have fβ

a = fiff. Finally, it follows from Lemma
2.2 that w(Zβ) <; w(Y) and, consequently, that w(Yβ) <̂  w(Y). Choose
a base {Uβr 17 e [0, τ)} for Yβ.

By our construction, condition (1) of the conclusion of the theorem
is immediately satisfied. To establish condition (2) it is sufficient, in
light of Lemma 2.3, to show that if Yo is Hausdorff [regular] then
Ya is Hausdorff [regular] for each a in [0, r). This follows by
induction, for if 0 < β < τ and Ya is Hausdorff [regular] for each a
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in [0, β) then by Lemma 2.3, Zβ is Hausdorff [regular]. Since the
Hausdorίf [regular] property is certainly preserved by (Pβ)~\ Yβ is
also Hausdorίf [regular].

We prove condition (3) in a similar manner. It follows by induc-
tion and the use of Lemmas 2.4 and 2.5 that for each β in [0, τ)
and each a in [0, β], fβ

a is open, perfect and onto and has Hausdorίf
point inverses. So, again by Lemmas 2.4 and 2.5, each projection
fa is open, perfect and onto.

Condition (4) is established as follows. For each function g from
[1, τ) into {1, 2}, let K9 denote the set of all points x of YΌo such
that for each a in [1, r), fa(x) is in Za x {g(ά}}. Then for each x in
Y«, there is some g such that x e K9. We shall now show that each K9

is taken homeomorphically onto Y{— YQ) by /0. For each g (g: [1, τ)—>
{1, 2}), let K9

0 = Yo and, for each β in [1, τ), let K9

β denote the inter-
section of all sets ( / α ) " 1 ^ x {£(<*)}) such that 0 < a <> β. Then each
Kg

β is the intersection of all sets {faY
ι(Ka

a) (a ^ β), while K9 is the
intersection of all {f^)~%Kl) (β < τ). It follows by induction and the
use of Lemma 2.6 that for each β in [0, τ) and each a in [0, β],
fβa\Kg

β is a homeomorphism onto Ka. Hence, again by Lemma 2.6,
fo\Kg is a homeomorphism onto Y.

The proof of condition (5) is now immediate. For it follows
from our construction and Lemma 2.2 that w(Foo) ^ w{Y). Since f0

is onto, Yoo is nonempty; so by (4), Foo contains a copy of 7 as a
subspace. Therefore, w(Yoo) = w(Y).

Finally, to establish (6), let a e [0, τ) and suppose that S is an
H(ί) [R(i)] subspace of Ya. Let y be a point of (ΛΓXS) and let ΫF
be an open neighborhood of y in Y .̂ It follows from [4, 2.3(2), p.
428] and the way in which the system {Ya; fβ

a} was constructed that
for some β in [1, τ), yβeVβ x {1, 2} and {fβ)~\Vβ x {1, 2}) c W. Such
a /9 may be chosen so as to be greater than a. Let i be the member
of {1, 2} such that yβ e Vβ x {i} and let j denote the other member
of {1,2}. Then (f^Γι{Vβ x {%}) is an open set that contains y and
lies in W. To complete the proof it is sufficient to show that
(faΓ(S) - (fβ)~ι(Vβ x {i}) is ff(i) [B(i)]. By (3), Λ is open, perfect
and onto, which implies that φa is open, perfect and onto. Since the
restriction of pβ to Zβ x {j} is a homeomorphism onto Zβ, and since
/« = φίPβ, it follows that the restriction of fa to (^"'(S) x {i} is an
open perfect mapping onto S. So by Lemma 2.7, (^S)"1^) x {j} is
fl"(i) [i2(i)]. Therefore (/αΓ(S) - ( Λ Γ ' ί ^ x {i}), being the inverse
of ί^)"1^) x {i} with respect to fβ, is also ff(i) [R(i)] (Lemma
2.7).

COROLLARY 2.9. Every H(i) space is the image, under an open
perfect mappingt of a strongly H(ii) space of the same weight.
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COROLLARY 2.10. Every H-closed space is the image, under an
open perfect mapping, of a MH space of the same weight.

(In proving either Corollary 2.9 or Corollary 2.10 there are two
cases to consider. For the case where the given space is of finite
weight, and therefore compact, the proof is trivial. For the other
case, the proof follows immediately from Theorem 2.8.)

COROLLARY 2.11. Every nonempty H(i) space is the image,
under a perfect mapping, of a nonvacuously H(ii) space.

Proof. Let Y be a nonempty H(i) space. Then by Corollary 2.9,
there exist a strongly H(ii) space X and a perfect mapping / of X
onto Y. Let Xf be the space obtained by adding an extra isolated
point to the space X. Then Xf is a strongly H(ii) space with an
isolated point and is, therefore, nonvacuously H(ii). To obtain a
perfect mapping g from Xr onto Y, we simply choose g to be a
function from Xf onto Y such that g \ X = /.

COROLLARY 2.12. Every H(i) [if-closed] space Y can be expressed
as the intersection of the members of a decreasing chain of strongly
H(ii) [MH] spaces, each of the same weight as Y.

Proof. If w(Y) is finite then Y is compact and the conclusion
of the theorem is immediate. So suppose that w(Y) is infinite and
let τ be the least ordinal of cardinality w(Y). Let {Ya; f

β

a} be the
inverse system guaranteed by Theorem 2.8, with Y = Yo. By (3)
and (4) of 2.8, there is a subspace K of Y^ such that fo\K is a
homeomorphism of K onto Y. Now for each a in [0, τ), let
Xa = {fe)~ιfa(K). Then {Xa \ a e [0, τ)} is a decreasing chain and K is
the intersection all Xα's (a< τ). It follows from 2.8(6) that for each
a in [0, τ), Xa is strongly H(ii) [MH]. Finally, since each of K and
YTO is of weight w(Y) (2.8(5)) and since each Xa contains K and lies
in Yoo, we conclude that each Xa is of weight w{Y). So by identify-
ing Y with K, we obtain the desired conclusion.

For Corollaries 2.13 through 2.16, which follow, the proofs are
analogous to those of 2.9 through 2.12, respectively.

COROLLARY 2.13. Every R{i) [R(i) Hausdorff] space is the image,
under an open perfect mapping, of a strongly R(ii) [strongly R(ii)
Hausdorff] space of the same weight.

COROLLARY 2.14. Every R-closed space is the image, under an
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open perfect mapping, of a SMR space of the same weight.

COROLLARY 2.15. Every nonempty R(i) [R(i) Hausdorίf] space
is the image, under a perfect mapping, of a nonvacuously R(ii)
[nonvacuously R{ii) Hausdorff] space.

COROLLARY 2.16. Every R(i) [R(i) Hausdorίf; JS-closed] space Y
can be expressed as the intersection of the members of a decreasing
chain of strongly R(ii) [strongly R(ii) Hausdorίf; SMR] spaces, each
of the same weight as Y.

It is not known if a product of .R-closed spaces is always in-
closed or if a product of MR spaces is always MR. The following
theorem shows that an affirmative answer to the second question
would imply an affirmative answer to the first.

THEOREM 2.17. Let ,Ssf be a set. If every collection of SMR
spaces indexed over J^f yields an R-closed product, then every collec-
tion of R-closed spaces indexed over j y yields an R-closed product.

Proof. Let {Ya \ a e *Szf) be a collection of inclosed spaces. By
Corollary 2.14, there exists a collection {(Xa, fa) | a e J^/} such that
for each a in s$f, Xa is an SMR space and fa is a continuous function
from Xa onto Ya. Then ΠXa (a e j y ) is inclosed. Since the collec-
tion {fa\ae J^f) induces a continuous function from ΠXa onto ΠYa,
this implies that ΠYa is iϋ-closed.

In [12] Stephenson gave an example of an R(i) Hausdorff space
whose product with itself is not R(ϊ). Using Stephenson's example,
Corollary 2.15, and the method used in the proof of Theorem 2.17,
we obtain an example which answers a question of Scarborough and
Stone [10, p. 138] concerning R(ii) spaces.

EXAMPLE 2.18. A nonvacuously R{ii) Hausdorίf space whose
product with itself is neither R(i) nor R{ii).

Let Y be the space described by Stephenson in [12]. By
Corollary 2.15, there exists a nonvacuously R(ii) Hausdorff space X
and a continuous function / from X onto Y. Since / induces a
continuous function from X x X onto Y x Y, we conclude that X x X
is not R{i). But because X is nonvacuously R(ii), X x X will
necessarily have a point which is the unique cluster point of a regular
filterbase on X x X. Since a nonvacuously R(ii) space is always
R(i), this implies that X x X is not R(ii).
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A topological space is said to be e-compact with respect to a
dense subset D if every ultrafilter on D converges to a point of X.
A space which is e-compact with respect to some dense subset is called
an e-compact space. (There definitions are due to S. Hechler [7].)

In [7] Hechler described a non-β-compact iϊ-closed space.
Stephenson has recently produced an example of a non-β-compact
MH space (see [11]). Corollary 2.9 provides us with another method
of obtaining such an example.

EXAMPLE 2.19. A non-β-compact MH space.

Let 7 be a non-β-compact iϊ-closed space. (See, for example
[7, Corollary 3.2, p. 223].) By Corollary 2.9, there is an MH space
X which can be mapped continuously onto Y. Since the continuous
image of an β-compact space is β-compact [7, Theorem 2.3, p. 220],
the space X is not β-compact.

3* Inverse limits* Since inverse limits were shown in §2 to be
useful in constructing pre-images of iϊ-closed and 2?-closed spaces,
it seems natural to ask about the preservation of minimal properties
by inverse limits. As Example 3.1 below shows, the inverse limit
of iJ-closed spaces need not be iϊ-closed even if each bonding map
is an open embedding and the system is indexed over the natural
numbers. We can, however, obtain some partial results.

EXAMPLE 3.1. An inverse system of MH spaces such that the
bounding maps are open embeddings but the inverse limit is not
ϋΓ-closed.

We shall construct a nested sequence of MH spaces such that
each inclusion map is open and the intersection of the spaces is not
iϊ-closed. Let Y1 denote the noncompact MH space described in [2]
as Example 3.14. Let

Y* = Yl ~ fall, &il}, Ys = Y2 ~ fal2, &12, »21, &2lh

Y«+i = Yn- {aii9 btί\i + j = n + 1}, .

For each n in N, Yn+1 is an open MH subspace of Yn. But Γϊn=i Yn

is the infinite subspace {a} U {b} U {cι}7=1 of Ylf and since this subspace
has the discrete topology it is not iϊ-closed.

REMARK. In a similar manner it is possible to construct an
example of a nested sequence of ϋί-closed spaces with a non-ϋJ-closed
intersection, showing that the inverse limit of ϋί-closed spaces need
not be ϋJ-closed. The noncompact i2-closed space of [2, Example
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4.19] can be used as the first space of the sequence.

DEFINITION 3.2. A continuous function /: X —> Y is said to have
the inverse property if Cl f~\ U) = f~ι{ Ό) for every open set U in Y.

THEOREM 3.3. If {Xa; f
β

a} is an inverse system of H-closed spaces
such that each projection fa has the inverse property, then Xo is
H-closed.

Proof. Since by Zorn's lemma every open filterbase is contained
in a maximal open filter (i.e., an open filterbase which is not properly
contained in an open filterbase), it is sufficient to show that every
maximal open filter on X, converges. So let ^ be a maximal open
filter on X*. Let 7 be an element of the index set for the system
and let (Λ)*(^) = {V open in Xr\ior some U in <&, fr(U)Q V}.
Then (Λ)*(^O is an open filterbase in Xr and, since Xr is ίf-closed,
has a cluster point xr in Xr. Let W be an open neighborhood of xr

in Xr. We assert that for each U in ^ , {f7)~\W) Π U is nonempty.
For assume that £ 7 0 e ^ and (fr)~1(W)Π Uo = 0 . Since UQ is open,
this implies that Cl (fr)~\W) Π Uo — 0 and therefore, since fγ has
the inverse property, that (fr)~ι{W) Π Uo = 0 . Then

c/0 c (ΛΓ(Xr - w),

from which it follows that (Xr - W)e (fr)\^). Since xr e W and xr

is a cluster point of (/r)*(^O, this is impossible. Hence, {fγY^W)
intersects each member of ^ . But this implies, since ^ is a maximal
open filter on X^ that (fr)-\W) e ̂ , and that TΓ e (Λ)'(^). Therefore
Λ(^) converges to a;r. For each α, then, we can find an #α in Xa

such that fa(^) converges to xa. We now claim that {xa} is in Xo.
Suppose y and /5 are members of the index set and that v < β.
Then fβ{^) converges to xβ and fΐfβ(^) converges to fl(xβ). But
flfβ = Λ and Λ(^O converges to x̂ ; hence, jfUί̂ ) = a?v. So we
conclude that {xa} is in Xo. It now follows from [5, 3.2(2), p. 428]
that ^/ converges to {xa}. This completes the proof.

THEOREM 3.4. // {Xa; f
β

a} is an inverse system of MH spaces
such that each projection fa has the inverse property, then Xo is
MH.

Proof. Let ^ be an open filterbase on Xo such that ^ has a
unique cluster point x. For each a, let (/«)#(^O = {Fopen in XJfor
some U in ^ , fa(U) £ V). Then for each a we have (Λ)*(^) an
open filterbase, fj&) a filterbase subordinate to (/a)*(^O> and xa a
cluster point of /α(^O; hence α;α is a cluster point of (/α)#(^). Now
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suppose that 7 is an element of the index set and that p is a cluster
point of (Λ)#(^O. For every open neighborhood W of p and every
U in <%S we have, as in the proof of 3.3, (fr)~ι{W) Π U Φ 0 . Since
Xr is iϊ-closed (Theorem 3.3) the open filterbase {(frY\W) f) U\W
an open neighborhood of p, Ue^} must have a cluster point y in
Xoo. Clearly, yr = p. But j/ is also a cluster point of ^ , implying
that y — x and 2? = xr. So for each a, xa is the only cluster point
of (/α)*(^O and, therefore, (Λ)*(^0 converges to a?α. From this it
follows that fa(j^) converges to xa for each a and, consequently,
that ^ converges to x. Hence, X» is MH.

THEOREM 3.5. If {Xa; f
β

a} is an inverse system of nonempty H-
closed spaces, indexed over a directed set having a cofinal simple
chain, then X^ is nonempty.

Proof. Since the directed set over which {Xa; f
β

a} is indexed has
a cofinal simple chain and since every simply ordered set has a
cofinal well-ordered chain, we may assume that for some nonzero
ordinal τ, {Xa; /£} is indexed over [0, τ) (see [5, 2.7, p. 431]). For
each β in [0, τ), let Hβ = lim Xa(a ^ β) and let Hβ = H'β x ΠXa

(a > β). Then for each β, H'β is homeomorphic to Xβ and, conse-
quently, Hβ is Jϊ-closed and nonempty [2, 3.3(c)]. It is easily verified
that {Hβ I β < τ) is a nonempty decreasing chain of subsets of ΠXa.
Hence, f\Hβ{β < τ) is nonempty [2, 3.3(e)]. Since a point of Π-B^
will necessarily be in Xco, this completes the proof.

THEOREM 3.6. Let {Xa; f
β

a} be an inverse system of H-closed
[JS-closed] spaces indexed over a directed set having a cofinal simple
chain. If each bonding map fβ

a is onto then each projection fa is
onto.

Proof. As in the proof of 3.5, we may assume that for some
nonzero ordinal τ the system is indexed over [0, τ). Let β be an
ordinal in [0, τ) and let p be a point of Xβ. We shall identify a
point {ya} of Xo such that yβ = p. For a in [0, /3], let ya = fί(p).
The remaining coordinates of {ya} are chosen inductively as follows.
Suppose that for each a in [0,7), ya has already been chosen.
For each a in [0, 7), choose a neighborhood base &a at ya and let
jra = {{f^~\V)\ Ve^a). Let &~ = ( J ^ ( α < 7). Then, since each
bonding map is onto, J?~ is an open [regular] filterbase on Xr and must
have a cluster point in Xr. Now, for each a in [0, 7), we have
&a £ {/ί(W)| TFe,^}, which implies that ya is the only cluster point
of {frJW)\ We^} in Xa. Hence, if we choose y7 to be a cluster
point of \j?~ in Xr, then for each a in [0, 7) we have fr

a(yr) = τ/α.
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LEMMA 3.7. // {Xa; fβ

a} is an inverse system such that each
projection fa: Xo —+ Xa is onto and each bonding map fβ

a: Xβ —* Xa

has the inverse property, then each projection has the inverse
property.

Proof. Let Ube open in Xa. Let y be a point of (/«)"" ̂ ΪT) and
W an open neighborhood of y in Xo. Then there is a β greater
than or equal to a and an open set V in Xβ such that yβeV and
(ΛΓ( V) £ IF. Since (/£Γ( Ϊ7) - Cl (/£Γ( C7) we have ^ e Cl (/£r( 17)
and, therefore, F n ( / i ) " W ) ^ 0 Hence,

TFΓKΛΓW)* 0 >

and we conclude that yeCl (/α)-1( 17). Since the continuity of /α

implies that Cl (/«)"'(17) £ (/ j 'W), this establishes the equality of
and

THEOREM 3.8. Let {Xa; fβ

a) be an inverse system of H-closed
[MH] spaces indexed over a directed set having a cofinal simple
chain. If each bonding map fβ

a is onto and has the inverse property
then Xo is H-closed [MH].

Theorem 3.8 follows immediately from 3.6, 3.7, 3.3 and 3.4.
Since every open mapping has the inverse property, we also have
the following corollary.

COROLLARY 3.9. Let {Xa; /£} be an inverse system of H-closed
[MH] spaces indexed over a directed set having a cofinal simple
chain. If each bonding map ft is onto and open then X^ is H-
closed [MH].

REMARK. Example 3.1 shows that the requirement that each
bonding map be onto cannot be deleted from the hypothesis of
Theorem 3.8 (or of Corollary 3.9).

QUESTIONS 3.10.

(1) Is there a theorem analogous to 3.5 for iϋ-closed spaces?
( 2) Can the requirement that the index set have a cofinal simple

chain be removed from 3.5, 3.6, 3.8 or 3.9?

REMARKS. A mapping / from a space X to a space Y is called
a p-map if for each open cover Γ of 7 containing a finite proxi-
mate subcover of Y", f~\T^) contains a finite proximate subcover of
X (Clearly, every mapping with the inverse property is a p-map.)
It follows from [6, Theorem B] and [8, Theorem 3.7] that the
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inverse limit of a system of iϊ-closed spaces is H-closed if all
bonding maps and projections are p-maps. This result, in combi-
nation with 3.6 and 3.7, yields an alternate proof of the iί-closed
case of Theorem 3.8.

The authors are grateful to Professor George Strecker for
bringing paper [6] to their attention.

4* Finite-toone mappings* Although Corollary 2.10 more than
answers the original question raised by Willard, the method used in
obtaining 2.10 yields pre-images and mappings which are quite com-
plicated. In general, point inverses are very large, even when the
given iZ-closed space has only finitely many bad points. Since many
of the standard examples on noncompact ϋ-closed spaces (such as [2,
Example 3.13]) are finite-to-one continuous images of MH spaces, it
would seem desirable to have a general method which, for certain
classes of iϊ-closed spaces, would give simpler pre-images and
mappings than those obtained in §2. In this section we show
(Theorem 4.2) that if the given iϊ-closed space has only finitely many
bad points and if each bad point has a countable neighborhood base,
then there is an MH space that is taken onto the given space by an
at-most-two-to-one mapping having the inverse property defined in § 3.

Example 4.5 shows that Theorem 4.2 cannot be strengthened so
as to guarantee that the mapping will be open (or even a quotient
mapping), while Example 4.3 shows that the countable neighborhood
base requirement cannot be removed from the hypothesis. Example
4.6 shows that we cannot hope for a result analogous to 4.2 for in-
closed and MR spaces.

LEMMA 4.1. Let Y be an H-closed space, y* a bad point of Y
having a countable neighborhood base, and V a neighborhood of y*.
Then there exists an H-closed space X and an at-most-two-to-one
mapping f of X onto Y such that (1) / has the inverse property,
(2) the restriction of f to f~ι(Y— V) is a homeomorphism, and
(3) X is semiregular at each point x for which either f(x) is semi-
regular in Y or f{x) = y*.

Proof. We may assume that V contains no regularly open
neighborhood of y* and that V is the first member of a countable
nested neighborhood base {ί7J~=1 at y*. Let F = UΞU(Clr Un - Un).
It is easily verified that for each n in N, F U C1F Un is closed. Since
Y is Hausdorff we have F U {y*} = fl»=i (F U C1F Un), and therefore
F U f f } is closed in Y. Let ^ be the topology of Y, and for each
U in ^~ let Uf = U — F. Let Y' denote the space whose points are
the points of Y and whose topology is generated by
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The topology of Yf will be denoted as J7~*. It readily follows that
{Uή}n=ι is a neighborhood base for y* in Y\

We assert that if Ue j ^ then C1F, U' = C1F, U = C1Γ Ϊ7. Since we
clearly have C1F, U

r C C1F. Z7 £ C1F U, we have only to show that
C1F U £ C1F, U'. Let ?/ be a point of C1F U and W a _^open neigh-
borhood of y. It is sufficient to show that Wf Π U' Φ 0 . Since
2/ e C1F Z7, there is a point p of U in T7. If p g .F7 then p e TΓ' Π Ϊ7'
and we are finished. So suppose that peF. Since #* is not in F
(and therefore not equal to p), there exists a & in N such that
p 6 C1F Uk — Uk and p ί C1F ί7fc+i — Z7fc+1. Because Z7Λ+1 £ ?7&, this
means that p$G\γ Uk+ι. Therefore, {W n U) - C1F Ϊ7fc+i is a . ^ o p e n
neighborhood of p and must contain a point z oί Uk. But then
zeUk — C1F ί/fc+1, and since ί7fc — C1F Z7Λ+1 is a subset of £/£ this
implies that zίF. Hence, we have W Π Uf Φ 0, and our assertion
is proved.

We next assert that Y' is iZ-closed. For let ^ be a J^"'-open
cover of Y\ We may assume that each member of & is in
^~\J{U'\Ue^~}. Let <Sf denote the collection { C / e ^ " | ? 7 6 ^ or
Uf e ^ } . Then ^ is a ^^open cover of Y" and has a finite sub-
collection which (with respect to ^) is a proximate cover of Y. Since
for each C7 in <iT, C1F C7 = C1F, U = C1F, C7', it follows that gf has a
finite subcollection which (with respect to J7~') is a proximate cover

of Y'. Hence, by [2, 3.2], the assertion is verified.
Now let X be the quotient space obtained from Yr x {1, 2} by

identifying (y, 1) with (y, 2) for each y in Y' — V. Since X is the
union of two iί-closed subsets of itself (Y' x {1} and Y' x {2}), X is
also iϊ-closed. Let / be the natural projection from X onto Y(i.e.,
for each (y, i) in Y' x {1, 2}, f(y, i) = y). Then / is a continuous
function from X onto Y. Since for each U in ίT, C1F C7 = C1F/ Ϊ7,
it follows that / has the inverse property.

We wish to show that X is semiregular at each point of f~\y*).
For each (n, i) in N x {1, 2}, let £7^ = U» x {i}. Clearly { ί /IJ^ is
a neighborhood base for (y*f 1) in X Let k e N and let q e Clx J7^ -
UU. Then /(g) e C1F, U'k - Ul, and since

ciF, K-ί/ gfsr-r,

this implies that q e Cl x ί7fc2. But since Uί £ V , we have Z7̂ i and
Z7Λ'2 disjoint open sets in X; therefore, q £ int x G\x Ukl. We conclude,
then, that for each n, int x Glx U

r

nι = CT"̂ ; i.e., the members of {Z7ήi}»=i
are regularly open in X. Hence, (]/*, 1) is a semiregular point of x.
By analogous argument, 0/*, 2) is also a semiregular point of X.

To complete the proof of the lemma, let x be a point of X such
that Y is semiregular at /(#). Since F U {?/*} is closed in F, each
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member of J7"' which misses y* is also a member of ^". Hence, the
subspace Y — {y*} of Y has the same topology as the subspace
T - {y*} of T. Since f(x) is in Y - {y*}, this implies that Y' is
semiregular at f(x). But / is an open mapping from X onto Yr, so
it now follows that X is semiregular at x.

THEOREM 4.2. If Y is an H-closed space having only finitely
many bad points, and if at each of these bad points there is a
countable neighborhood base, then Y is the at-most-two-to-one image
of an MH space under a mapping having the inverse property.

Proof. Since Y is Hausdorff, we may separate the finitely many
bad points by disjoint open sets. The desired result is then obtained
by applying Lemma 4.1 finitely many times.

EXAMPLE 4.3. An ff-closed space that has only one bad point
but is not the finite-to-one continuous image of an MH space.

Let / denote the closed real-line interval from 0 to 1 and *%S the
usual topology on /. Let Sίf be the collection of all countable
infinite subsets H of I — {0} such that, with respect to ^ , 0 is the
only limit point of H. Now {U - H\ Ue <%/, HzSί?) is a base for a
topology _̂ ~ on /. We shall let Y denote the space (/, ^). Since
^ Q ^", Y is Hausdorff. Since every member of Jf that lies in
I — {0} is also a member of ^/, Y is semiregular at every point of
I - {0}. And for each V in J^~ there is a U in ^ such that VQ U
and Gl̂ - V = Cl^ U. Hence, it follows from the compactness of (I, ^O
that every open cover of Y has a finite subcollection which is a
proximate cover of Y; i.e., Y is iϊ-closed.

Assume that for some MH space X there is a finite-to-one
mapping / from X onto Y. For each n in N, let Bn denote the
inverse (with respect to /) of the open interval (0, 1/ri) in I. Then
{Bn\neN} is an open filterbase on X and must have a cluster point
p in X. Since /-1(0) is finite and X is Hausdorff, we can choose an
open neighborhood W of p such that /"'(O) — {p} C X — W. Clearly,
every cluster point of {Bn \ n e N) is in /"^(O), so p is the only cluster
point of {Bn I n e N) in W. Then {Bn Π W\ n e N} is an open filterbase
with unique cluster point p and must therefore converge to p. For
each n in N, choose a point xn of Bn Π W. Then {f(xn)\neN} is a
member of <%?, which implies that W — JJ*=i f^fixJ is a n °P e n

neighborhood of p. But since no member of {Bn Π ΫFIweiNΓ} is i n

W — U£=i f~ιf(%n)> we have a contradiction. Hence, we conclude that
Y is not the finite-to-one continuous image of an MH space.
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QUESTION 4.4. Is every first countable iϊ-closed space the finite-
to-one continuous image of an MH space?

CONJECTURE. Let P denote the unit square in the plane, bd P
the boundary of P in the plane, and T the usual relative topology
on P. Let Y be the first countable iί-closed space obtained by
giving to P the topology {V - F\ Vξ % FQbdP). Then Y is not
the image, under a finite-to-one mapping, of an MH space.

The following example shows that Theorem 4.2 cannot be
strengthened so as to guarantee that the given iϊ-closed space be
the finite-to-one image of an MH space under a quotient mapping.

EXAMPLE 4.5. A first countable iϊ-closed space that has only
one bad point but is not the finite-to-one image of an MH space
under a quotient mapping.

Let I denote the closed real-line interval from 0 to 1 and ^ the
usual topology on /. For each m in N, let Am = {(l/2)n(n+ l) + i\neNf

ieNΌ {0}, 0 ̂  i ^ m) and let Cm = {l/a\ae AJ. Then for every m
in N, Cm+ι — Cm is the range of an infinite sequence in / — {0} which
(with respect to ̂ ) converges to 0. The collection

^ Ό{U- Cm

is a base for a topology ^" on /. The topological space (I,
which we shall denote as Y, is first countable and iϊ-closed and has
only 0 as a bad point.

Assume that for some MH space X there is a finite-to-one
quotient mapping / of X onto Y. Let ̂ 0 = {Ue^|0e U}. Since
/^(O) is finite and X is Hausdorff, we can choose for each p in /"̂ (O)
an open set Wp in X such that peWP and Wp Π /"'(O) = {p}. Let
W denote the union of these Wp's. Now because / is a quotient
mapping and Y is first countable, it follows that / is pseudo-open;
i.e., for each y in Y, every neighborhood of f~~\y) in X is taken by
/ onto a neighborhood of y in Y (see [1, Theorem 4]). Thus, for
some V in ̂ 0 and some j in N, V - Cd £ f(W). Since Cj+ί - Cό is
infinite and /-1(0) is finite, there is some q in /^(O) such that WqΠ
f~\Cj+1) is infinite; and since every member of ^ 0 contains all but
finitely many members of Cj+1 we have, for each U in ^Ό,

wq n f~ι(U) n r\cj+1) Φ 0 .

Now let & - {Wq n f-WWe ^ J . Clearly, Wq-f-\Cj+ι) is an open
neighborhood of q and contains no member of the open filterbase
&. Since X is MH, & must have a cluster point distinct from q.
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But such a cluster point must lie in /-1(0) and also in Wq. This
contradicts the fact that Wq Π /"'(O) = {q}.

EXAMPLE 4.6. An iϋ-closed space that has a countable neigh-
borhood base at its only bad point but is not the finite-to-one
continuous image of an MR space.

Let S be an jβ-closed non-Mβ space which has only one bad
point and which has a countable neighborhood base at that bad point
(such as the space of [2, 4.19]). Let Sί9 S2, S3f be disjoint copies
of S with p19 pi9 p3, the respective bad points. Now for each n
in N identify pn with p19 and let p* denote this point. Define a
topological space Y as follows. The points of Y will be the points
of Uϊ=i Sn (with the pn's identified). A set V in the space will be
open if and only if (1) for each n in N9 V Π Sn is open in Sn9 and
(2) if p* e V then V contains Sn for all but finitely many n. It is
not difficult to show that Y is i?-closed, that p* is the only bad
point of Y9 and that Y has a countable neighborhood base at p*.

Assume that for some MR space X there is a finite-to-one
mapping / from X onto Y.

We first claim that for each n in N9 f~ι(Sn) is an MR subspace
of X. For suppose that meN and that & is a regular filterbase
on /-1(Sm) having a unique cluster point x. If x g f~\p*) then, since
f~\p*) is finite, there is some B' in & such that Br Π f~\p*) = 0 ;
since /" ' (SJ — /-1(p*) is open in X and closed in X — /"'(p*), it follows
that {B G & IB Q B'} is a regular filterbase in X which must con-
verge to x both in X and in /-1(iSm). If x e f~ι(p*) then there is
some B" in & such that B" Π (/"'(p*) - {x}) = 0 ; therefore,

{ΰU C/]£e^, 5 £ β", U is an open neighborhood of x in X}

is a regular filterbase on X which must converge to x both in X
and in f~\Sm). Hence, each f"\Sn) is an MR subspace of X.

Now for each n in N9 let ^ % be a nonconvergent regular filter-
base on Sn having p* as its only cluster point, and let &~x denote
the collection {f~1(G)\G e^n}. Then for each n, ^~γ is a regular
filterbase on f~\S^) with each of its cluster points in /-1(p*) and
such that for some neighborhood Wn (in /"'(SJ) of /"'(p*) no
member of &~ι is contained in Wn. Let qί9 , qk denote the points
of /"'(P*) and choose open neighborhoods V19 •••, Vk of q19 — ,qk,
respectively, such that the closures of the F/s are disjoint.

We assert that for each n9 /-1(S%) — Ut=i Vt Φ 0 . For assume
the contrary, i.e., that for some m in N9 /

-1(Sm) £ (J^i ΐ^ Since
the F/s are disjoint, it follows that each set Vt Π f'^SJ is both
open and closed in f~ι(Sm). For each i (1 ^ ί ^ k) there are two
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possibilities. If i is such that each member of &^ intersects Vt

then {ΰfl VilBe^?-1} is a regular filterbase on /" '(SJ and must
converge to qiΛ In this case choose Bt to be a member of ^ F " 1 such
that Bif] Vi^ Wm. If i is such that some member of &~£ misses
Vif choose Bt to be such a member of &^. Then for each i,
BiΠViQ Wm. Now let £ be a member of ^ ~ L which lies in Π*=i Bf
We have U t i Φ Π Vt) Q Wm; i.e., B c Wm. But since no member
of &"£ is contained in Wm this gives us a contradiction.

So for each n we can choose zn to be a point of f~\S%) — UΪU Vt.
Now, for each w, let &n denote the collection of all open neighbor-
hoods in X of the set {zn, zn+1J zn+2, •}. Let & = U~=i ^ * . It is
not difficult to verify that & is a regular filterbase on X and that
& can have no cluster point in X — f"\p*). But the open set
X — U?=i î i is a member of & and misses the neighborhood U*=i Vi
of f~ι{p*). Hence, we are forced to the contradictory conclusion
that & has no cluster point.

5* Continuous MR images* In this section we shall make use
of the following definition.

DEFINITION 5.1. A regular T1 space X is said to be R-func-
tionally compact if for each regular 2\ space Y and each mapping
/ from X onto Y, f is closed.

The theorem below characterizes i2-functionally compact spaces
and shows their relationship to spaces whose regular 2\ continuous
images are always MR. Since (a) => (c) (below), every R-tunctionally
compact space is MR. However, M. P. Berriozabal and C. F.
Blakemore [3] have recently described an example of a nonclosed
mapping of an MR space onto a regular 2\ space, so not every MR
space is ^-functionally compact.

THEOREM 5.2. Let X be a regular ϊ\ space. Then conditions (a)
and (b), below, are equivalent and either of these implies condition
(c).

(a) The space X is R-functionally compact.
(b) For each closed set F in X and each regular filterbase ifc

for which F — Π ̂ ( = Π ̂ ) , ^ is a neighborhood filterbase for F.
(c) Every regular Tx continuous image of X is MR.

Proof. The results (a) ==> (c) and (b) ==> (a) can be obtained by
arguments essentially the same as those given in the proofs of [4,
Theorem 3] and [14, Theorem 2.1], respectively. The proof of
(a) => (b), which follows, is a modification of the second half of the
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proof of [4, Theorem 3]. Suppose that ^ is a regular filterbase
on X and that F = Π %f. Let W be an open neighborhood of F.
We shall show that some member of ^ is contained in W. Define
Y to be the decomposition of X whose only nondegenerate element
is F, and let / be the natural projection of X onto Y. We choose
a base 7r for a topology on Y as follows: a subset V of Y is in
T if and only if (1) f~\V) is an open subset of X - F, or (2)
f~ι{ V) e <&. It is easily seen that Y is Hausdorff. Since the restric-
tion of / to X — F is a homeomorphism onto Y — f(F), it is clear
that Y is regular at each point of Y — f(F). For each V in T* con-
taining /(JF7), /-'(Clr V) = Clr/^ίF), and since ^ is regular this
implies that Y is regular at f(F). Thus, Γ is a regular Γt space.
It now follows from the iϋ-functional compactness of X that /(X — W)
is closed in Y and, therefore, that Γ — f(X — W) is an open neigh-
borhood of f(F). So for some V in Y* we have /(F) e F and
F £ Y - f(X - W). Consequently, f~\V) e <2S and f~\V) £ W.

QUESTIONS 5.3.

(1) Does condition (c) of Theorem 5.2 imply condition (a)?
( 2 ) Is every R-ίunctionally compact space necessarily compact?

An affirmative answer to 5.3(2) would imply that every regular
T1 space having each of its closed sets i?-closed is compact, thus
answering a question of B. Banaschewski (see [2, Problem 14]).
However, we conjecture that the answer to 5.3(2) is no.

Addendum* It has come to our attention that at about the same
time that our research for this paper was being completed, R. F.
Dickman, Jr., and T. 0. Vinson, Jr., obtained results very similar
to our Corollaries 2.10 and 3.9. Specifically, they proved (1) that
every iϊ-closed space is the image, under an open mapping, of an
MH space, and (2) that the inverse limit of a system of iJ-closed
spaces is H-closed if all bonding maps are open and onto.
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