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MAXIMAL SUBGROUPS AND AUTOMORPHISMS OF
CHEVALLEY GROUPS

N. BURGOYNE, R. GRIESS AND R. LYONS

We study outer automorphisms a of a finite Chevalley
type group K and show that under certain conditions Cκ(a)
is a maximal subgroup of K.

1Φ Introduction*

(1.1) In classification problems for finite simple groups there is
often the need for detailed information about known families of groups.
A particular question, that can arise in proving generation lemmas,
is this:

If if is a known finite simple group, and a is an automorphism
of K of prime order, is Cκ{a) a maximal subgroup of KΊ

The results in this article were motivated mainly by this question.
We consider the case when K is a Chevalley type group. Simple

examples show that if a is inner or diagonal, then, in general, Cκ{a)
is not maximal. However, we find that if a is a field or graph
type automorphism then, in general, Cκ{a) is maximal. There are
exceptions, and we also emphasize that our results are not complete
for the graph type automorphisms for the families of types A, D, Eβ.

In § 2 we give a general result about finite subgroups of simple
algebraic groups over fields of finite characteristic: let L be a finite
Chevalley type group, let G D L be a corresponding algebraic group;
then, in Theorem 1, we describe all finite groups M such that L £
MczG. This allows us to answer the above question in a large
number of cases. See 1.3 for details.

In §3, Theorem 2 gives an explicit description of all subgroups
lying between Cκ{a) and K when K is a twisted Chevalley group
and a the automorphism induced by the usual field automorphism
of the corresponding algebraic group.

In the remainder of §1 we give notation, some lemmas, and a
discussion of automorphisms of Chevalley type groups.

(1.2) Notation. We use the approach of Steinberg [23] to
describe the finite Chevalley type groups. We let G be a simple
algebraic group over the algebraically closed field k of characteristic
p Φ 0. In particular we suppose G is connected and its centre Z(G) = 1.
Let σ be an endomorphism of G onto itself: thus σ is an automorphism
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of G as an abstract group and a morphism of G as an algebraic
group but, in general, σ"1 need not be a morphism. We will be
concerned almost exclusively with the case where the group

Gσ = {geG\σg = g)

is finite. In this case the possibilities for σ can be explicitly des-
cribed, see §11 of [23]. Before summarizing these results we need
some notation.

Let B be a Borel subgroup of G and H a maximal torus contained
in B. Let Σ, Σ+ and 77 = {au •••, at} denote the corresponding sets
of roots, positive roots, and fundamental (or simple) roots. Here
1 = rank of G. We use lower case Greek letters for roots (and also
for endomorphisms) and reserve θ for the unique highest root in Σ+

and θs for the unique highest short root in Σ+ (in case there are
short roots). We let Σ* denote the dual root system to Σ. Let V
be the real vector space spanned by 77 and {a, β) the usual Euclidean
inner product on V and put (a, β) = 2(α, β)/(β, β).

As usual, for each aeΣ, let xa denote a fixed homomorphisms
of k+ into G satisfying hxa{t)h~ι — xa{ta(h)) for heH. For convenience
we often identify H with Homz(Γ, fc*) via h(a) = a(h) where Γ
denotes the lattice spanned by Σ in V. Let Xa == (xa(t)\t e k); then
U = (Xa\aeΠ) is the unipotent radical of B and G = (Xa\ ± a e 77>.

If N = NG(H) then W = N/H is the Weyl group. W acts nat-
urally on V and if nwH= w e W for some nw e N we have {njιn~ι){a) =
h{w~ιa). For aeΣ and O ^ έ e f c let wα(ί) = Xa(t)x_a{ — t~ι)xa{t) and
wα = nJX). Then wα(£) e ΛΓ and ha(t) = na{t)n~ι e H and ha(t)(β) =
t<β>a\

The above facts are all well known and can be found, for example,
in [5] and [17].

Now let σ be an endomorphism of G such that Gσ is finite. By
results in [23] we may suppose that σ normalizes B and H. Hence
σ induces a permutation on Π which (by slight abuse of notation)
we also denote by σ. From the explicit calculation in §11 of [23]
we may suppose that σ is in "standard form," i.e.,

σ{xa{t)) = xσ{a)(tq«) for ±a e Π

where qa is a power of p. The above formula uniquely determines
the action of σ on G. We list the distinct possibilities for the standard
form σ in Table 1. In column 1 we give the type of Σ; in column
2 the Dynkin diagram for 77, here "L" denotes a long root; in column
3 a standard notation for σ, q is always a positive power of p; in
column 4 the permutation action of σ on 77; in column 5 the values
of qi = qa:, and in column 6 any restrictions on I, p or q.
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TABLE 1

At

Bt

Ct

A

Eβ

E7

E8

F±

G2

O-O O
1 2 I

L L

0=0-0—
1 2 I

I O O O
1 2 I

1
o

\ o o

o / 3 ι

2
O6

o-o-o-o-o
1 2 3 4 5

O7

o-o-o-o-o-o
1 2 3 4 5 6

O8

o-o-o-o-o-o-o
1 2 3 4 5 6 7

L L
0-0=0-0
1 2 3 4

L
O-O
1 2

σq

σq

σq

2oq

σq

2σq

σq

***

σq

σq

σq

*σq

σq

1

(1,0(2,1-1)...

1

1

(1,2)

1

(1,2)

(1, 2, 4)

1

(1, 5)(2, 4)

1

1

1

(1, 4)(2, 3)

1

(1,2)

q

Q

2tfl = ί?2

Q

Q

Q

Q

Q

Q

Q

Q

Ql = #2 =

2qΆ = 2q,

q

<7i = 3 g 2

i ^ 1

I ^ 2

ί ^ 3

I ^ 2

ί = 2, p = 2, g = qrf2

I ^ 4

Z = 4

V = 2, g = ?ig4

ί? = 3, g = qrf2

With ex as above, if r is a positive integer then σr is also in
standard form (except for (Vg)

2 in the D4 case, where the roots must
be renumbered). If σ — σq then σr — σqr. Table 2 gives the con-
nections between σ and σr in the twisted cases.

TABLE 2

Type of G

Au Ώu EG

C2, Ft Cr2

σ

^q

σr

σqr if r = e v e n
2σqr if r = o d d

σqr if r Ξ 0(3)
zσqr if r ^ OίS)^5

<72r/2 if γ = even
2σ9ί if r = odd

but if r Ξ -1(3), σr acts as (1, 4, 2) on Π.
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We put Op'(Gσ) — G8

a and use the usual notation to denote these
groups. With 8 exceptions, namely Λ(2), Atf), 2A2(2), C2(2), 2C2(2),
2JP4(2), G2(2), 2G2(3), these groups are simple. Also Gσ is the product
of Gs

n and all its diagonal automorphisms. Note that if r ^ 2 then
\Gσr:Gσ\p = \Gs

ar\ Gs

σ\v Φ 1.

Keeping the above notation we give two elementary lemmas.

LEMMA 1.1. NG(Uσ) £ B.

Proof. If g e NG( Uσ) then using the Bruhat normal form g —
bnwu. Now U!*« = UΓι £ Σ7and also Uϊ £ U. For each i = 1, , I
an xai{t) with t Φ 0 occurs in some element of Uσ. Now xai(t)b =
xai(t')v where tf Φ 0 and only xβ with β of height ^ 2 occur in v.
Hence w{at) e Σ+ all i. Hence w — 1 and so gr e B.

LEMMA 1.2. Lei K be a group, Gs

σ Q K QGσ. Then CG(K) = 1
= Gσ.

Proof. Let gr e CG(K). By the above lemma, # e 5 . Now [g, Nσ] =
1 implies # 6 i ϊ and identifying H with Horn (Γ, &*) gives g{at) = 1
for i = 1, , i and so βr = 1.

Next let geNG(K); then for all keK, g~ιkg = σ{g-ιkg). Thus
gσig'1) e CG(K) — 1 and so g e Gσ. Since Gσ/G« is abelian we have
NG(K) = Gσ.

Finally we mention that our notation from finite group theory
is standard, see for example [13]. In particular we use gx = x~ιgx.

(1.3) Automorphisms of Gσ. Let G and σ be as in (1.2). In

TABLE 3

G

Aι 1^2

E6

C2 p = 2

F4 p-2

G2 p = S

All others

σ(q = pf)

σq

V,

σq

^ β

V,

σρ

Coset representatives

σy, Vp* 1 ̂  i ^ /

^p*? ^p** 3 ^ 1 = * = /

σ̂ ί 1 ̂  i ^ /

Aut(Gα)/Inn (Gir)

Z2 X Z/

& X Zf

Z?>f

Ztt

Z2f

Zf

z,
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particular we suppose σ is in the standard form given in Table 1
for a fixed choice of B, H and xa's in G. Hence Go is finite.

Let X be any endomorphism of G satisfying Xσ = σX, then λ
induces an element λ e Aut (Gσ). The structure of Aut (Gσ)/ϊnn (Gσ)
is described in [5]. Using these results it is straightforward to
check that the endomorphisms X listed in Table 3 give, via λ, a
complete set of coset representatives for Inn (Gσ) in Aut (Gσ). Note
that Gσ is not, in general, simple.

Now suppose λ is one of the "coset representatives" given above
and let a be any element in the coset Inn (Gσ)X. Thus a = igx where
ig{x) = gxg~ι for g, x e Gσ.

LEMMA 1.3. Let λ, a — igx be as above. Suppose X and a both
have order r and Xr = σ. Then X and a are conjugate under Inn (Gσ).

Proof. Using Xig = iλ{g)\f and Z(Gσ) = 1, ar = λ r = 1 gives gX(g)
^""Ήί/) — l By Lang ' s theorem [20] t h e r e exists keG such t h a t
g = Ar^(fc). Hence k = λr(fc) = σ(fc) and so fc e Gσ and a — i^Xik.

LEMMA 1.4. Let λ, a = igX be as above. Suppose λ, a both have
order r. Suppose Xr Φ σ but that X{ = σ for some Xι such that
(K) — <^> Then X and a are conjugate under Inn(Gσ).

Proof. Suppose \ = λm for some integer m. Let β = am then
β = ί ^ for some k 6 Gσ. Since ^ and β both have order r, Lemma
1.3 implies that \ and β are conjugate under Inn (Gσ). Suppose
λ = λf for some integer d then, since λ and a have the same order,
we have a = /3d. Hence λ and a are conjugate under Inn (Gσ).

Using these two results an inspection of Table 3 immediately
yields

PROPOSITION 1.1. Let X be as above and suppose Xr — 1, where
r is a prime number. Then, apart from the possible exceptions (i),
(ii) given below, the coset Inn (Gσ)X contains a unique class of elements
of order r, under conjugation by Inn(Gσ), and furthermore there
exists an endomorphism X% such that XI = σ and (X^) = <λ>. The
possible exceptions are:

[σ = σq with X = 2σq
( i ) G = At{l ^ 2), DAI ̂  4), EQ with 2

 9 . _
[a = ^σg (̂;̂ ί/̂ f X = σq .

( i i ) G A i λ 1 .
[a = 30 σ 'M;̂ ί/̂ , λ = σQ
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Note that r = 2 in (i) and r = 3 in (ii). These exceptions do occur;
in fact only for G = Aι with I = even is there a single class for
the given λ. For G = Dt the number of classes increases as 1/2.

We now consider when C = CG*o{a) is a maximal sugroup of Gs

σ.
Apart from the exceptions (i), (ii) Proposition 1.1 implies first that
we may suppose a = λ, and next, since CG*(X) = CG*(\), we may
suppose that λr = σ. Now an immediate consequence of Theorem 1
is that, if C is nonsolvable, then it is always maximal in G*.

In the exceptions (i), (ii) we have a more complicated problem,
especially when r = p. Theorem 2 is one step towards a solution.

2* Theorem 1*

(2.1) Statement of results. Let G be a simple algebraic group
over an algebraically closed field k of characteristic p Φ 0. Let λ
be an endomorphism of G onto itself such that the subgroup Gλ of
fixed points is finite. As discussed in (1.2) we may suppose λ is in
standard form. If r is any positive integer the endomorphism λr

is also in standard form. The possibilities for λ and the corresponding
λr are listed in the tables in §1.

Recall that G\ = Op'(Gλ) and, with eight exceptions, is a simple
group. Gλ is the product of Gs

λ and all its diagonal-type outer auto-
morphisms.

If G, λ are such that G\ is one of the three groups ^(2), ^(3),
2C2(2) we call this an exceptional case.

THEOREM 1. Let G, λ be as above and not an exceptional case.
Let M be a finite subgroups of G containing Gs

λ. Then there exists
a positive integer r such that (with μ = λr)

Tμ ^= J.YJL ±=

An immediate consequence is that if G, λ are as in the statement
of the theorem and μ — V where r is a prime number then Gλ Π Gs

μ

is a proper maximal subgroup of G'μ.
The proof of the theorem is given in (2.3)-(2.5). It was necessary

to handle the case Gλ =
 2G2(q) separately and this occupies (2.5). In the

general case the proof falls into two parts. In (2.3) we first describe
NG(UX) (see Lemma 2.3) then use this to show there exists a (unique)
integer r such that, if μ — λr, Uμ e Sγ\p(M). In (2.4) we combine this
result with induction on the rank of G and show that either (a) the
theorem holds, or (b) M contains a proper strongly 2-embedded sub-
group. Using results of H. Bender [2] we easily rule out (b).
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(2.2) The exceptional cases. If G, λ are an exceptional case
there do exist finite subgroups M such that Gs

xaM(zG and which
do not satisfy the conclusion of the theorem. We now describe all
these 'exceptional' M.

If G\ = A,(2) or Λ(3) we use results of Dickson, see [6]. If
G\ = 2C2(2) we use Suzuki [25] and the recent work of Flesner [11].

^(2): M is a subgroup of a dihedral group of order 2{q ± 1)
in Gλr == A^q) where q — 2r and q ±1 = 0 (mod 3).

Ai(3): M is a subgroup of G\t = AL(9) and is isomorphic to the
alternating group on 5 letters.

2C2(2): If is either a subgroup of a group of order 4(?±τ/25 + l)
in Gλr — 2C2(q) where q = 2r and r is odd, or else M i s a subgroup
of GX2r = C2(2

r) and is isomorphic to a subgroup of the four dimensional
orthogonal group of index one over F2r.

(2.3) Proof. First part. We assume throughout this subsection
that G, λ satisfy the hypothesis of the theorem and also that Gλ Φ
2G2(q). The main technique in proving the following lemmas is the
Ghevalley commutator relations together with the known embedding
of Uλ in U.

The subgroups B, U, H and sets of roots Σ, Π, etc. are as des-
cribed in (1.2).

LEMMA 2.1. Cπ{Uύ = Z(U).

Proof. We call two roots p, σ e Σ fundamentally independent
if p + σ e Σ and {p, σ) is a fundamental system in the rank 2 system
(Zp + Zσ) Γ)Σ. Up and σ are fundamentally independent, then in G
we have a commutator relation [xP(t), xσ(u)] = xP+σ(±tu) . Note
that p, a 6 Σ and {p, σ) < 0, then p and σ are fundamentally indepen-
dent unless Σ = G2 and |0 and σ are short roots inclined at 120°.

Recall that θ is the highest root in Σ+, and θs is the highest
short root (in the case of two root lengths). Let D = {x e RΣ \ (x, σ) ̂  0
for all σ e Σ+} be the usual fundamental domain for the action of
W on RΣ. Since W is transitive on roots of a given length, D
contains exactly one root of each length. Clearly θ e D; otherwise
for some σ e Σ+, we would have {θ, σ) < 0 and so θ + a 6 Σ. Since
D is also a fundamental domain for the dual root system 21*, Z>
contains the highest root of Σ*, whose dual—which is ^-therefore
lies in D. Thus, for any p e Σ — {θ9 θs}, there is σeΣ+ such that
(ft o) < 0.
Hence:

(*) If p 6 Σ+ — {#, #s}, then there exist σ e ^ such that ^ and
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σ are fundamentally independent, unless Σ = G2 and p is the sum
of the fundamental roots.

We also need:
(**) Suppose Σ has two root lengths, ρeΣ+, and θ8 < p < θ.

Then θ8 + p & Σ, and there exists σ eΣ+ such that p and σ are funda-
mentally independent and θ8 + σ g Σ*

To prove this, note that if σ is any long root in Σ+, then θ8 +
σ ί Σ, since otherwise θ8 + σ would be a short root. In particular,
θ8 + p$Σ since p(>θ8) is long. Now, using (*), choose σeΣ+ such
that p and σ are fundamentally independent. Since p + σ(>θs) is
long, σ is long, so θ8 + σ£Σ, as required.

For any ue U, we have u = Πί>er+ av»(<Λ £? € k. We take all pro-
ducts over Σ+ to be in increasing order with respect to Σ+. We set
supp(u) = {peΣ+\tP Φ 0} for ueU.

Now consider the case λ = σq, where q is some power of p, so
tfit = {TIP %p(tP) I *P e GFίg)}. Let % e C (̂ Z7λ). We shall show supp (u) S
{̂ s, ^}. Let pQ be the least element of supp (u), so

U = ^ 0 ( ^ 0 ) Π »/»(*/>)ι ^o ^ ° '
/°>!°0

If there exists σ e Σ+ such that p0 and σ are fundamentally indepen-
dent, then we get 1 = [u, xσ(l)] = xPo+σ(±tPo) , contradiction. Thus
no such σ is available. By (*), either p0 e {θs, θ}, or Σ = G2 and |O0 =
α + iS, where 77 = {α, /9}, with, say, a long and /3 short. In this last
case, 1 = [u, xa+2β(l)] = αWtf(±3ί,0) and 1 = [u, ^(1)] = α?α+2i9(±2ί/9o), so
3ί̂ 0 = 2tpQ = 0, contradiction. Hence, ρ0 e {θs, θ}. Suppose p0 = ^s and
let pγ be the least element of supp(w) greater than p0 (if supp(w) Φ
{p0}). If pλ Φ θ, choose σ so that pλ and σ are fundamentally inde-
pendent and ρo + σ£Σ (by (**)). Then 1 = [u, xσ(l)] = xPl+σ(±tPi)
contradicting tPί Φ 0. Therefore ρι = θ, so supp (u) £ {0β, ^}. If
actually supp(w)£{ί} for all ueCσ(Uλ)f then CviUx) Q Xθ Q Z(U),
as required. So we may assume θ8 e supp (u), i.e., w = a?̂ (t)a?̂ (t') with
t Φ 0. There exist a (short) σ6 J + such that θ8 + σeΣ. We get
1 = [u, xσ(l)] = Xθs(±mt) , where m = 2 if G is of type 5, C or
JP4 and m = 3 if of type G2. Hence m = p and in precisely these
case Z(U) = XΘ8XΘ 2 Cu(Uλ), as required.

Next, suppose Σ has one root length, λ = 2σq or 3σq, and J ^ A2n.
Let ueCviUz), let /)0 be the least element of supp(w), so

u = ^ 0 ( ^ 0 ) Π »/>(«/»)

with ί̂ 0 Φ 0. Suppose ^0 ^ θ, and choose σ e Σ+ such that σ and p0

are fundamentally independent. Let xσ be the product of the dis-
tinct images of xσ(ΐ) under the powers of λ, so that xσ e Uλ and
xσ = xσ(l)xλ{σ)(l) . The roots s, λ(s), have the same height, so 1 =
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[u, xσ] = xPo+σ(±tPo) , contradiction. Thus p0 = θ, so u e XΘQZ(U).
If J£ =F A2% and λ = 2<7g, essentially the same argument works,

except that if σ + X(σ)eΣ, we define &, = α l̂)a?jκσ)(l)&«+*(*>(δ), with
δ e GF(q2) chosen to satsfy 6 + δff = 1; if σ == x(σ), we define #σ = α?σ(δ)
with δ chosen to satisfy δ + bq = 0. Then 1 = [w, &J = 3, 0 + σ(±ί, 0) # * *
or xPo+σ(±btPo) •••, contradiction, unless pQ = 0.

Suppose J = C2 and λ = 2σq. Then g = 2n\ n = 2 / > 1, by as-
sumption. Let 77 = {α, /S}, with a long. For every £ 6 GF(q), let
ά(ί) = x«(t)xβ(tn)xa+β(t1+n) e Uλ. Suppose u = UP XPΨP)

 e Cu{Uλ). Then
1 = [u, x(t)] = xa+β(ttβ + tnta)xa+2β(tfβ + t2nta) for all t e GF(q). Hence
ttβ + ί ίβ - tt\ + έ2wία = 0. With t = 1, we conclude ta = tβ = t2

β. Now
if ta = tβ = 1, we get Γ = t2 n for all t e GF{q), so # = 2, contradiction.
Hence ta = tβ = 0, so w e Xα+jSXα+2/3 e ^(C/).

Suppose Σ = F4 and λ == 2σ9. We need:
(***) if ρoeΣ+ - {θs, θ), then there exist σ, σ ' e l + and an ele-

ment xσ = xa(l)x0,(l) Yip xP(tp) of Uλ such that (i) ht(σ) = ht(σ'), and
tp = 0 unless Aέ(|θ) > Zιί(σ), (ii) ^ and σ are fundamentally independent,
and ρ0 + σ — σ' &Σ.

Assuming this, let ueCu(Uλ) and let ρ0 be the least element of
supp (u), u = xPo(tpo) -". If p0 Φ θ8 or θ, choose σ, σr, and xσ as in
(***). Then 1 = [u, xσ] = xPo+σ(tPo) because the condition ρ0 + σ —
σf ί Σ guarantees that the only way to express p0 + o as the sum
of an element of supp (u) and an element of supp (xσ) is as pQ + σ.
But tPo Φ 0, so ρ0 e {θsf θ). Hence θs is the only possible short root
in supp(w). Since λ(w) 6 Cn( Uλ), and λ(0.) = θ, the same argument
applied to X(u) implies that the only possible long root in supp (u)
is θ. Hence ueXθgXθ = Z{U), and we are done.

To prove (***) we examine Σ in detail. Let Π = {ctlt a2, a3, α j ,
read from one end of the Dynkin diagram to the other, with ax short.
We write the root Σ U i ntat as nxn2nzn,. Thus θ, = 2321 and ^ = 2432. If
p0 6 {0100, 0110, 0221, 1221, 1321}, take σ = 1000, eτ' = 0001, xa=xJX)xσ,(l).
If ô 6 {0010, 0210, 2431}, take σ = 0001, σ' = 1000, xσ = α?σ(l)^(l). In
the remaining cases, take xσ = xσ(l)xσt(l)xσ+σ,(l). If /00 6 {1000, 0011,
1110, 1111, 2221}, take σ = 0100, σ' = 0010. If ρ0 e {0001, 1100, 0211,
1211, 2211}, take σ - 0010, σ' = 0100. If p0 e {1210, 2210, 2421}, take
σ = 0011, σr = 1100. If ρ0 = 0111, take σ = 1100, </ = 0011. Then
(***) is easily verified.

LEMMA 2.2. CG(Uλ) = Z(U).

Proof. By Lemma 1.1, CG(Uλ)^Bf so by Lemma 2.1, it suffices
to show CB( Uλ) S U. Let IT = (XP \ p e Σ+ - i7>, define 5 = JS/ CΓf and
for any A £ JS write A for AU'/U'. It suffices to show_C5(C^) C ^
Now U is the direct product of Xp over all p eΠ, and Z^ = X^ for
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pell. In particular Ό is abelian, so CB(UX) =UCH(UX), &sB=US.
Thus it suffices to show Cs(Uλ) = 1. Suppose heH and heCπφx).
For any pe77, there exists ue Uλ such that p esupp (w), say u =
sΛO * * f tp ^ 0 Then, identifying H with Horn (Γ, &*), ϊ = [Λ, u] =
xP(tp(h(p) - 1)) , so Λ(p) = 1. Thus Λ = 1, as required.

LEMMA 2.3. 2Vσ(t7j) = (Bh Z(U)).

Proof. Let # e NG( Uλ). Then fΓ^fa) 6 CG( Uλ). By Lemma 2.2,
g'1X{g)eZ{U). Since Z(TJ)( — XΘ or XΘSXΘ) is connected, an elementary
version of Lang's theorem [20] implies the existence of zeZ(U)
such that g-'Xig) = z^Mz). Then gz"1 = λ^z-1)* so gz~ιeGx. By
Lemma 1.1, geB, so gz~ι eGλΓ\B - Bλ. Hence # = gr̂ -1^ e <JB̂ , Z(U)),
so NG(Uλ) £ <-B;, Z(U)). The other inclusion is obvious.

LEMMA 2.4 Lei zeZ(U) and suppose (Gs

λ, z) is a finite group.
Then there exists a positive integer r such that (G8

λ, z) Q Gχr.

Proof. First suppose Z(U) is one-dimensional. Thus Z{U) =
(xθ(t)\tek) where θ is the root of maximal height in Σ+. Choose
neNf] {Xd, X-Θ) so that nxΘ{t)n~ι = x_θ{ — t). Suppose z = xθ{t) for
some fixed, nonzero, tek and put g = wis. On the 3-dimensional
adjoint module for (Xθ, X_θ) g is represented by a matrix whose
trace is t2 — 1. Since g has finite order this implies that t is algebraic
over GF{p). Suppose teGF(pr) then, since we may suppose that
χ(xθ(t)) = xθ(tg), we have <Gj, z> £ G r̂.

Now suppose Z(i7) is two-dimensional. First suppose G is of
type Gι or F 4 . Hence A; has characteristic 2 and there exist roots
t«w ««, δx + δ2, δ, + 2δ2} £ ^ + such that Z(U) = <a?,1+ί2(t), a>,1+Ml(i)11 efc>
(in fact δx + d2 = θ8 and δj + 2δ2 = 61). We suppose 2 = α?δl+δ2(ί1)α;δl+232(ί2)
for some fixed ^, < 2ek. Put GL = <a?r(ί)| ±7e{δ l f δ2), tek) thus Gι is
of type C2 and λ fixes Glβ Choose n e (GJχ such that nxtffln'1 =
a;_δί(έ) and put ^ = n^j. There is a natural 4-dimensional module for
G1 on which

χ i 1 ) and

This gives ίj and t2 as coefficients in the characteristic polynomial of
g. Since g has finite order tl9 t2 are algebraic over GF(Z) and we
are done.

If G is of type G2J z = ^2«1+α2(ί1)^3«1+2α2(^2) and choosing n 6 iSΓ; such
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that nxUi{t)n~ι = #_«.( — £) put g = nz. Compute the characteristic
polynomial for g as represented in the 7-dimensional module for G.
Its coefficients are (t\ — 1) and {t\ — t{ + 1). Hence, as before, we
are done.

LEMMA 2.5. There exists a positive integer r such that, with
μ = v , we have Gs

μ £ M and Uμ e Sγ\p (M).

Proof. Choose the positive integer r to be maximal subject to
G\τ £ M. Without loss, we may assume r = 1, and shall show that
UλeSylp (M). Suppose Uλ<£Sylp (M). By Lemma 2.3 and Sylow's
theorem, there exists z e Z(U) — Uλ such that <G*, z) £ M. By Lemma
2.4, <G*, z) £ Gλn for some n. Hence the lemma follows from the
following statement, which contradicts the maximality of r:

( t ) If z 6 Z(U)λnλn — Uλ for some n, then <Gj, z) 2 G\m for some
m > 1.

We now establish (T). Let K = <GJ, z>.

Our method is to first study the case Aι and use this result
along with the action of Nx on the root subgroups of Gλ.

Case 0. Σ = Ax: If ί) is odd, (t) is an immediate consequence
of a result of Dickson [7]. Suppose p = 2. Then G[8) = <α?,(ί),
α ; ^ ) 11 e GF(q)) and z = XpiQ for some ^eGFiq") - GF(q), where
j+ = {̂ J. Define m by GFiq)^) = GF{qm), so that ϋΓ £ Ĝ m and
m > 1. Now distinct Sylow 2-subgroups in Gλm intersect trivially,
so distinct Sylow 2-subgroups in K intersect trivially. Since GλQ K
and Gλ has more than one Sylow 2-subgroup, so does K. It follows
that any two involutions in K are conjugate in K, [13]. In particular,
xp(tj and 0̂ (1) are conjugate in K, hence conjugate in Nκ(Uf]K).
Hence there are ue U, hxeH such that uhxeK and xP(l)uhl = xP{t^).
Identifying H with Horn (Γ, fc*), we see that hλ(p) = ίί/2. Hence for
any positive integer I, and any t e GF{q), we may choose heK such
that xP(ΐ)h = xP(t), and conclude that xP(tt[) = ^ ( l ) ^ ^ * e J£. Thus
»P(/(*I))

 e κ for all /[Z] e GF(q)[X]. Hence ^(ί) 6 i ί for all t e GF(qm),
i.e., Uλm £ iΓ. Then K 2 <£7?m, JVi> 2 Gj« as required.

1. ^ arbitrary, λ = α1,, and Z(U) = Xθ: Let Gθ =
and ϋΓfl = iΓ Π G .̂ Then λ is an endomorphism of Gθ9 and ((Gθ)x, z) £
i ^ £ (G^)^ since zeZ(U) = Xθ. By Case 0, {Gθ)χm £ ^ for some
m > 1, so (X^m £ i£. Conjugating by elements of Nλ, we get
(X̂ ^m £ K for all ^ e Σ of the same length as θ. If there is one
root length, this gives immediately Gs

λm £ K. If there are two root
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lengths, let peΣ be short and choose σ eΣ long such that p + σeΣ.
For any t e GF(qm), t Φ 0, hσ(t) e K, so xp(fι) = a?,(l)* <f) e K. Thus
(Xp)λm Q K, so K 2 ((XP)λm I p e Σ) = G;>.

Case 2. λ = σ?, Z(C7) =£ X*: We have two root length, Z(U) =
<JL^, ϋ > , and the characteristic of A; is the strength of the multiple
bond in the Dynkin diagram of Σ. Let Σ° = (Zθ8 + Z0) n ί , ( ? 0 =
(XP\ρeΣ°), K° = G°nK. Then λ is an endomorphism of G°, <((?% z> C
IT. If (t) holds for G°, then <(G% z> 2 (G°)J» for some m > 1. In
particular, (X^m Q K tor p = θs and 0, and then for all p e Σ, by
conjugation by elements of Nλ. Hence in proving (t) we may assume
Σ = Σ\ Thus Σ = C2 or G2, with p = 2 or 3 respectively.

We take 77 = {α, /3}, with α long and β short. Suppose Σ = C2,
so p = 2. For every y =± xa+β(k)xa+2β{t2) eZ{U), set πa+β(y) = tlf

πa+2β(y) = t2. Let &, = ττα+/3(iΓ n Z(E0), Λ2 = πa+2β(K n ^ ( ί θ ) - Thus ^
is an additive group, GF{q) Qk,Q GF{q% i = 1, 2, and k.UhΦ GF(q)
as 2 g i7> Let *L 6 &x, ί8 e fc2, and choose u, = a;α+^(t1)α;α+2^(έ0 e Z and
w2 = α;α+/3(έ2)α;α+2/9(t2) 6 K. Now w«(l), ^^(1) 6 G\ £ ίΓ, so

Thus y 2 e fci, έiί2 G &2, so {ί2|έ e fcj £ fc2 £ ^ , from the special cases
t2 = 1 and ίx = 1. But the map t —> έ2 is injective on GF(qn), so fci =
fe2. From (1), k^k2^ kίy so &! is a field. Thus for some m >!.,&! =
fe2 = GF(qm). For any ί eGF(qm), we take ^ = t and ί2 = i"1 and ^~2

in (1) and conclude ((Xa+β)λm-, (Xa+2β)λm) £ iΓ. As usual this gives
G!*> S K.

Suppose Σ = G2 so ί) = 3. Write 2; = ^Lu2, with ^ e Xα+2i3 and
u2eX2a+3β. Then u2 = [«w«(1), ίCβίl^^eJSΓ, so ML = zu^eK. Since « i
G;, either ^ or %2 $ Gλ, so without loss we may assume z = ux or
2; = u 2 .

Since G has a graph automorphism commuting with λ and inter-
changing θ8 and 0 we may assume that z e X2a+5β. By Case 0 applied
to <X2«+3^ X-2*-zβ), there is m > 1 such that (XP)χm Q K for p =
2a + 3/3, and then for all long p e Σ. For any t e GF{qm), K contains
[xM Ml), ^(1)1 = %«+2β(±t)Xa+sβ(t')xZ(X+3β(n with t f, ί" 6 GF(qm), so
α;α+2i5(έ) 6 K as α + 3/S and 2α + 3/3 are long. Thus (XP)Xm Q K for
^ = a + 2/3, hence for all short p, whence G\m £ K.

Case 3. λ = 2σq or 3<τg, with Gλ a Steinberg variation, but Σ Φ
A2n (the cases of twisted Fif G2, C2 are not being considered here):
In this case Z{U) = Xθ, so by Case 0, KΏ, (Xθ)χ™ for some m > 1.
Conjugating by Nλ, We get K 2 {XP)χm for all peΣ fixed by the
twist defining G. Choose such a |O and a σ not fixed by the twist,
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such that (p, σ) < 0 (these can be found in 77, for example, joined
by the multiple bond in the twisted Dynkin diagram). Denote the
images of σ under the twist by σλ (and also σ2 if Gλ = 3Z>4). Then
xσ(t)xσί(t«)(.χσ2(P2))eK for all teGF(q2)(GF(q*)). Since K^((Xfi)λm,
(X-,W, hp(t)eK for all teGF(qm), t Φ 0.

If Gλ = 3D4 and m = 1 (mod 3), then for all t e GF{qz) and all 0 Φ
u 6 GF(qm), we have (xσ(t)xσι(P)xσ2(Pι))hp^-^ = xσ{tu)xOλ{tqu)xH{tq2u) =

φ ) φ ) ^ f f 2 ( W 2 f f i ) e £ Hence ^ ^ ( O ^ ί ^ 2 * ) e iΓ for all v
of the form Σ , t.u, with t, 6 GF(ί8), ut e GF(q% that is, for all v e
GF(q*m). Thus (X,X01X,f)2« £ if, SO Gj» £ K. The case m s - 1
(mod 3) is similar, as is the case λ = 2σq and m odd.

If Gλ = ID4 and m = 0 (mod 3), we may assume m = 3, and must
prove xσ(t) e K for all t e GF(qs). Now

x(t, u) = x0ιi{u* - u)P)xσ2((u«2 - u)t«2)

6 ί

for all t,ueGF(q*), so for all t,u,veGF(q3) with u,v<tGF{q),K
contains x(t, u)hp«vg~v)~1{uQ-u)) x(t, v)~ι = ^ 2 ( ^ , v)ig 2), where τ/(u, v) =

(uq2 - u)(vq - ^)(u 9 - u)-1 - (vq2 - v).

Clearly there exist u, v e GF(q3) — GF(q) such that y(u, v) Φ 0;
fixing these and letting t vary, we get xσjt) e K for all t e GF(qz),
as desired. The case λ = 2σqy m even, is similar but simpler:

uW) e -SΓ for £, ̂  e GF(q2)9 and w may be chosen so uq — u Φ 0.

Case 4. J = Ai, λ = 2σq: For each pel, let ^ be the image
of p under the twist. If pel and p + pλeΣ, then Gλ has a nonabelian
tfίroot subgrαup" {^(ίjaj^ί^^+^w) | ί, ueGFfa2), t1+q + u + uq = 0}. If
lOeJ and p + pι$Σ, then Ĝ  has an abelian root subgroup

{xP(t)xPι(t<)\teGF(q*)}.

There exists τeΣ+ such that r + τ1 = ^. Thus (X^ = {^(u) | ̂  e
GF(q2), u + uq = 0}. Choose 0 ^ u0 6 GFfe2) such that u0 + w? = 0.
Then for any ueGF(q2), u + uq = 0 if and only if uu^ιeGF(q), so
•(Xfl);. = {MtMOIi^e GF(g)}. Let ^ = K f] {X, X-.θ}λ, so that Kθ

contains '(Xi)λf {X-Θ)X, and z. Let /& = hθ(u0) e H. Then iΓJ contains
{x±θ(u1)\uίeGF(q)}, canonical generators of A^q), and also contains
zh — xθ{t) for some ί g GF(q). By Case 0, there exists m > 1 such
that iΓ£ contains {α?±̂ (Wi)|Wi e GF(qm)}. In particular, ίΓ̂  contains
»±<?(Wi)*"1 = X±Θ(UOU1) for all ^ e GF{qm)-hθ{uύ e Kh

θ for all u^GFiq™),

so /^(tO = hθMh~ι e JKΓ̂  for all ^ e GF(qm), u, Φ 0. For any ί, % e
GF(q2) satisfying t1+q + u + uq = 0 and any uγ e GF(qm)x, we conjugate

X G G;) by fe^wj and get

x(t, u, ttj •=
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Suppose m is odd. Then tqu, = (tu1)
q1Λ and tu^tu^9™ + nut +

(uu$qm = tu^u, + uul + nqu\ = (£1+« + n + nq)n\ = 0, so a?(ί, u, *O 6
ft*. Now every element of GF(q2m) is a sum of elements of the
form tu, with t e (?F(g2), u, e GF(qm)x, so for every t e GF(q2m), K
contains an element of the form xτ(t)xτι{tqm)xθ{u) with tι+qm + u + uqm =
0. Since K contains xθ{nQu^ for all uλ e GF(qm), it contains xθ(v) for all
v 6 GF(g2w) satisfying v + vq7n = 0. Hence if contains { ^ ( ^ ( O ^ M | ί,
u e GF(q2m), t1+qm + u + uqm = 0}, a nonabelian root subgroup of ftm.
Conjugating by Nίf we see that if contains all nonabelian root sub-
groups of ft«. If n = 1, we are therefore done. If n > 1, there
exists 7 e J such that 7 + 7X g2" while Ύ + θ,Ύt + θeΣ (for example,
—7e77, with —7 at an end of the Dynkin diagram). Then for all
teGF(q2), u^GFiq™)*, we have Xritujxr&tup*) = xr(tuJxriQ

quJ =
(xr(t)xri(tg))he{Uί) e K. It follows that xr(v)xri(vq)m e K for all v e GF{q2m),
so i£ contains an abelian root subgroup of Gj». Hence K 2 Ĝ m,
as required.

Suppose m is even. We may assume m = 2, and shall prove
GχzΏK. Let r, 7 be as in the previous paragraph. For any te
GF(q2) and ^ e GF(q2)% we have a?x = Xritu^ψu,) = (a?r(ί)a?ri(ί9))^(ttl) e
ϋΓ, and also #2 = xr{tn^xTl(tu^q) eGλQ K. Hence #ri(£g(wί - nj) =
α?2a;r1 e iΓ. Fix ̂  such that w? Φ nx and let έ vary; we get {Xr)X2 £
K. Similarly, (Xr)X2QK, so conjugating by Nλf we get ( Z ^ C U L

for all pel such that p + pt$Σ. Also, we have ^(woiO e K for all
Mi 6 GF{q2). Since w0 was chosen in GF{q2) and w0 =̂  0, (X*)^ S if.
Hence (X9)λ2 £ if for all peΣ with ^ = pιm For any ί e GF(q2) there
is ueGF(q2) such that α;3 = α?r(ί)a?Γl(ίff)^(w) e f t . Let u.eGFiqψ.
Let #4 = xl°{%ι) = a ̂ ^ J a ^ ^ X ) ^ ) e ^ and choose u'eGF(q?) such
that α;5 = ̂ ( ^ ^ ^ ^ ( ( ^ J 9 ) ^ ^ ' ) e ft. Then xVi(t9(u9 - uj) = xΛxr%( ) e
if. As above, we get (XTl)^2 £ ^ . Conjugating by Nλ, (XP)χ* £ if
for all peΣ such that p + ρ,eΣ. Thus (X )̂A2 £ if for all peΣ, as
required.

Case 5. 21 = C2, λ = 2σ,, g > 2: Thus g = 2g0

2, q0 = 2y > 1. We
take 77 = {a, β], with /3 short. Let Sf be the additive group kζ&k.
For (ti, tg) e Sf, set »(*„ ί2) = xa+β{t^xa+2β{t^. For any subgroup J of
G set ^ = {(tίf t2) I »(*„ t2) € J}, an additive subgroup of St Thus
^ = {(t, t o) 11 e GF(g)}. Since ^ e Z(C7,) - ft, S^x c ^ £ ^ , Λ .
Also, let ^o = (na(i)nβ(ί))2 e ft, so that xP(t)n° = ̂ ^(ί) for all /? e J ,
t G k, and also ^o = 1. Finally, for any tlf t2 e kx, let h(tlf t2) be the
element of H which takes a to tit,1 and /3 to ίf1^. Thus x{t19 t2)

h{u^U2) =

Suppose (t lf ί2) e Sfκ and ί^ ^ 0. We show that h(tιt t2) e K. First
Cσ(fic(ίlf ίj) £ B, for if # e Cσ(x(tl9 ί2)), we write # = δ ^ ^ in canonical
form and get x(t19 t2)

neXa+βXa+2β, so neH and geB. On the other
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hand, Cu(n0) = 1 as 17 n Un° = 1. Hence x(t19 ί2) and n0 do not centralize
any involution of G in common. If follows that x(tlf t2) and n0 are
conjugate in the (dihedral) group (x(t19 ί2), n0), hence also in K.
Similarly, x(l, 1) and n0 are conjugate in K. Thus x(tlt t2) = a?(l, l ) g

for some # € K. Writing g in canonical form, we see g = uh(tlf t2)
for some u e U. However, Bf]K = (Un K){H n ΛΓ). To see this,
choose t e GjP(g), ί Φ 0 or 1, and let h = h(t, t2q°) eGxQK. Then
Cu(h) — 1, so CB(fe) = if. By the Schur-Zassenhaus theorem, B Π if
has a subgroup # 0 such that BnK = (UΠ K)H0, Uf) KΠ Ho = 1,
and A e ϋΓ0 Then iϊ 0 is abelian, so £Γ0 £ CS(Λ) = H, so Ho = H Γ) K.
Since # e 5 Π iί, h(tί9 t2)eHf)K Q K, as claimed.

Thus, if (t1912) e ^ , (u19 u2) e S*κ, and uγu2 Φ 0, then (ί l f u19 t2u2) e

Si.
Suppose now that no element of Sfκ has the form (0, t) or (£, 0)

with t Φ 0. Let ^ ? = {£ I (ί, u)e£sκ for some w}, and define the
function ^ on ^ by the condition (£, <p(t)) e ^ J . Since Sζ is an
additive subgroup of GF(qn), and GF(q)aS^, the last paragraph
implies that Sfx is a field, so *$? = GF{qm) for some m > 1; also, 93
preserves multiplication, so is an automorphism of GF(qm). Thus for
some d = 2\ d£qm

9&ί = {(ί, ίd) | ί € GF(qm)}. Since ^ £ ^ 1 , td = £2ί<>
for all £ 6 GF{q). Let α;0 = α;α(l)α;i8(l)α;α+j8(l)( e GJ. For each t9ue
GF(qm)x, K contains [4(M<*>, xh

Q^%d)] = α?(wlf w2) where wt = ί2"^11"1 +
u2-Hd~\ w2 = t2-du2d~2 + u2-H2d-2. By the above ^ 2 = wf. In the special
case % = 1 this yields ( r d + t'd2+2d'2)(td2 + έ2) = 0. Fix t. We wish
to show td2 + t2 = 0. Suppose td2 + tZd~2 = 0. For any w 6 GjP(g), ud =
^29°; with the equation wa = wf, this gives (t2'd + ί 2 ^ 2 )^ 1 " 5 0 + ^Q" 1) 2 =
0 for all u e GF(q)x. Since q > 2, also g — 1 > Zq0 — 2, so for suitable
u, the right hand factor does not vanish. Thus £2~~d = t2d~2. Hence
t* + td2 = έ2 + έ3*"2 = 0 anyway. So £2 = έd2 for all t e GF(qm). Let
d0 = l/2d; then t2do = t9 which implies that m is odd and H Π K 2
{Λ(ί, ί2d0) 11 6 G.F(cT)} = Hλm. Conjugating elements of Ux by those of
Hλm9 we find Uλm Q K9 so KΏ (Uλm9 n0) = G\m.

Finally, suppose S?κ contains an element of the form (ί, 0) or
(0, t) for some t Φ 0. We show that K a Gλ2. This is equivalent
to Kλ 2 GX2, so without loss we may assume (0, t)e^κ, i.e., xa+^{t) 6
K. Then K 2 (xa+2β(t), n0) so g = no(l)xa+2β(t) = n α (l)^ α + 2 i S (l)^ α + 2 i 3 (ί) ε
ίΓ. A 2 x 2 matrix calculation shows that ^α+2i3(l)α;α+2^(ί) has odd
order e. Since it commutes with na(l), njl) = na(l)e = ge eK. For
a n y u9 v e GF(q)f x(u9 u2qo) ε K and a?0(i;) = xa(v)Xβ(vgo)xa+β(v1+90) e iί", so
a?(wv, u2v) = [x{u, u2go)naa\ xo(v)] e K. Replacing u by uv and t; by 1,
we get x(uv9 Λ 2 ) GiΓ, so xa+2β(u2(v2 + v)) eίΓ. Since q > 2, v exists
with v2 + v Φ 0; this gives (Xa+iβ)λi S Jί. I t follows easily that
( X + ^ 2 £ iΓ. Hence wβ+/ϊ(l) e ((Xa+β)λ29 n0) Q K9 so J ί 2 ((Xa+β)χ*,
na(l), na+β(l)9 n0) = Gλ2.
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Case 6. Σ = F49 λ = 2σq: Here q = 2#o, tfo = 2J'. We notate ele-
ments of Σ as in Lemma 2.1. Then J?+ is partitioned into 4 subsets
giving root subgroups of Uλ of type ZC2 ({0100, 0010, 0110, 0210}, {0011,
1100,1111, 2211}, {0211, 1110, 1321, 2431}, and {0111, 2210, 2321, 2432})
and 4 subsets giving root subgroups of type At ({1000, 0001}, {1210,
0221}, {1211, 2221}, and {1221,2421}). Z(U) = X2321X2432. Let ^ =
k 0 ft, for each (ίw ίa) e ^ set x(t1912) = a w & K ^ f e ) , and for each
subgroup / of G set «P5 - {(tw t2) e&>\x(t19 t2) e J}. Thus ^ =
{(*, £2?0)|£ e GFfo)}, where 9 - 2g0

2, and £%λ c ^ C ^ . .
We show that if (ίx, £2), (wx, w2) 6 ^ , then (t2ulf t\u2) e ^ 1 . Namely,

conjugating x(tlf t2) and x(ulf u2) by appropriate elements of Nx (QK),
we get 30uό(*i)»o2io(*ί), 1̂111(̂ 1)̂ 2211(̂ 2) e JBΓ, SO ^(έ^,, ijw2) = [a? 0 1 1 0(td^Mf
1̂111(̂ 1)̂ 2211(̂ 2), »iooo(l)»oooi(l)] € iΓ. In part icular, since (1, 1) e S/ί, the

map φ: (tlf t2)—>(t211\) is a p e r m u t a t i o n of Sfκ. For (ί l t t2), (ul9 u2) e S^,
let (z19 z2) = φ~ι(tί912). Then (tjU19 t2u2) = (z2ulf z\u2) 6 £fK9 so ^ is closed
under multiplication. Since φ maps Sfκ to itself, ^κQGF(qm)@GF(qm)
for some m, and ^ projects onto both summands.

If £fκ contains no element of the form (0, t) or (t, 0) for t Φ 0,
then the map ψ: GF(qm) -> GF(qm) defined by (ί, ψ{t)) e S?κ is an auto-
morphism of <?F(<Γ), so <9*κ=; {(t, td)\teGF(qm)} for some d = 2\
Since ^ S ; c y f ί ί » > 1. Since <p(t9 td) = (ίd, ί2) € ,5^ , we get td2 = ί2

for all teGF(qm). Hence m is odd and iΓ contains (Z(I7))λm. Con-
jugating by Nλ9 we see that K contains(Z (UP))λm for any nonabelian
root subgroup UP of U. Hence for all t e GF{qm), K contains

which, modulo terms in (Z(UP))λm for various nonabelian UP9 equals
XίΆiίfyXudJt*). Thus K contains (Up)λm for all abelian root subgroups
UP. Hence K 2 <(X1000X0001)^, Nλ) 2 {Λιooo(ί)Λoooi(ίd) I ί e GFfe )}. Con-
jugating #01oo(lKoio(lKiio(l)( e (?;) by these element yields

Hence K^Uχm, so K Ώ G\m.
If ^ contains an element of the form (t, 0) or (0, t) with t Φ 0,

then since φ maps ^ to ^ , Sfκ 2 GFto) φ GF(q). Hence J£ contains
(^(ί/^))^ for all nonabelian root subgroups UP of U. From the com-
mutator [#oiio(0, ^im(l)] we see that K contains (UP)λ2 for all abelian
root subgroups UP of U. lΐ q > 2, we apply the argument of case
5 to the group generated by a nonabelian root group and its negative,
and conclude that (Up)λ2QK for all nonabelian root groups UP9

whence G8

λz Q K. If q — 2, a direct examination of C2(2)(=S6, the
symmetric group) shows that 2C2(2) and a Sylow 2-center generate
C2(2), whence (UP)λ2 £ K for all nonabelian root groups UP9 so again
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Gμ £ K. This completes the proof of Lemma 2.5.

(2.4) Proof. Second part. We continue with the assumptions
given in (2.3). As a consequence of Lemma 2.5 we have a unique
μ = λr such that G8

μ Q M and Uμ e Syl,, (M). Put K = G> Π M. In
this sub-section we will show that K — M. Apart from the 2Cr2-case
this will complete the proof of the theorem.

We use induction on the rank of G. The first step is when G
is of type AL. Since μ Φ σ2, σ3 we see from [6] that in this case
K = M.

The induction will be applied to the components of semi-simple
groups which occur in parabolic subgroups of G and, when p Φ 2,
in centralizers of involutions in G. Since such components may have
the same rank as G we perform the same rank as G we perform
the induction among groups of the same rank in the following order,

A < (C, D, G) <(B,E)<F.

This partial ordering insures that the induction procedure is valid
when the above described subgroups hare the same rank as G.

To begin, we review some elementary facts. Let S be a con-
nected, semi-simple, algebraic group and μ an endomorphism of S
onto itself with Sμ finite. Since μ must permute the components of
S we have a unique decomposition S = F^ where Pi Π Pj Q
Z{S) for i Φ j and each Pt has the form

S ^ Άμ(Ά) μn-\A)

with μn{Ά) == Ά and Ά a component of S.
For X one of Sf F, Ά put X = X/Z(X) and note that μ is naturally

defined on S and F and μn on A. It is easily seen that Fs

μ = A*μ«
and that the images of §s

μ and Ns(Sμ) in S are, using an obvious
extension of Lemma 1.2, respectively Ss

μ and Sμ.
The purpose of the next lemma is to extend the conclusion of

Theorem 1 to the case where G is replaced by a semi-simple group
S. This lemma is used in the proofs of Lemmas 2.8 and 2.9. In
the situations there the assumption (i) below will hold because of
our induction hypothesis.

LEMMA 2.6. Let S be a connected, semi-simple, algebraic group
and μ an endomorphism of S onto itself with Sμ finite. For a
component A of S put A = Ά/Z(Ά). Assume that

( i ) For each component A of S the conclusion of Theorem 1
holds with G replaced by A and λ replaced by μn, where n is the
length of the μ-orbit containing A.
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(ii) L is a finite subgroup ofS satisfying SμζZL and \L: Sμ\p = l.

Then L normalizes Ss

μ.

Proof. Put S = S/Z(S) and L = LZ(S)/Z(S) then since
Ns(S8

μ)Z(S)/Z(S) = Sμ it suffices to show that L Q Sμ.
Suppose first that the components of S form a single μ-orbit.

Thus S = A x B where A is a component and B — μ (A) x x
μn-\A) and μn(A) = A. If n = 1 then £ = 1. Now £ L Π A is finite
and BSμ Π A = A ^ and hence |JRL Π A: A*μ*\p = 1. By assumption
(i) we have BL Π A £ A^. Hence L normalizes Sj and so L £ S^.

We now use induction on the number of μ-orbits of components
in S. Suppose S = E x F where E, F are nontrivial products of
μ-orbits. Then Sμ = Eμ x Fμ and Sμ — Es

μ x Fμ. Again we have
ELOF finite and ES8

μ f] F = Fs

μ and hence \ELΓ\F: F8

μ\p = 1. By
induction ELftFQFμ. Similarly FLf]EQEμ. Hence LQ(ELf]F)x
(FL f]E)QFμx Fμ = Sμ.

NOTE. In the two situations where the above lemma is used
assumption (i) fails to hold only if A, μn are one of the 3 exceptional
cases described in (2.1). Furthermore n = 1 except in one special
occurrence in Lemma 2.8 with Gμ = 2F4(2) and S of type A^ x Ax.
If S has an orbit E containing a component A such that A, μn do
not satisfy assumption (i) we call this an exceptional orbit (and E =
A except for one case). From the last step of the above proof we
see that if E is an exceptional orbit the conclusion of the lemma
still holds provided FL Π E normalizes Eμ. Now LΠE^FLΠE
and by inspection of the cases in (2.2) we conclude that if L Π E
normalizes Eμ then FL Π E must also normalize Eμ. We may conclude
that if E is an exceptional orbit of S then the conclusion of the
lemma still holds provided L Π E normalizes Eμ.

LEMMA 2.7. M n B = K n B.

Proof. Since ^ 6 Sylp (ikf) we have Mf]U=KΓϊ U and hence
ilfΠΰ = NM(Uμ), using Lemma 2.3. Let geMΓ\B, since J5̂  = HμUμ

we may suppose that g = hz where heHμ and zeZ(U). If heM
then zeZ(U) f] MQUμ and so # e 1£.

If h £ M we argue as follows. First suppose Z( U) is 2-dimensional.
In such a case it is is always true that Gμ = Gs

μ and hence JEΓ̂  £ M.
Thus we may suppose that Z(U) is one-dimensional. Thus Z(U) =
<a?^(ί)|ίefc> where ^ is the root of maximal height in J?+. If G is
not of type A1 or Cl9 1^2, then ^ is either a fundamental weight
or for Alf I ̂  2, the sum of two distinct fundamental weights. This
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implies that there exists h^H Π G'μ such that hγ{Θ) = h{θ) and hence
[hτ% z] = l (here we identify H with Horn (Γ, &*)). Since H n G> £
ίZ^ Π Λf, Λf1/^ G l n δ and since fer1^ and z have coprime orders z e
Λί Π JB. Hence ze Uμ and again # e if.

If G is of type AL we quote L. Dickson [6].
If G is of type Cz let z = xθ{t) for some fixed t e k, where θ =

^! + 2α2 + + 2αz. We may choose h.eHf] Gμ such that if ft2 =
hji then, for some sek*f

h^a,) = s h2(a2) = . . . = A2(αz) = 1 .

Let WiGW denote the reflection corresponding to at e 77. Put nt =
wWi e i\Γ and w = w2 nt. It is easily checked that nh%zn~ι —
h2xai(±t) e M f] B. Now h2xai(±t)h2xθ(t) = h\xai{±s~ιt)xθ{t) and since
h\ 6 M therefore xaι{±s~ιt)xθ{t) eM. Since MπU = Uμ we have 2 =
xθ{t) e Uμ and so geK.

Let X be a subgroup of the finite group Y. Recall that X is
said to be strongly p-embedded inY iί \X Γ\ Xy\p = 1 for all y e Y — X.
Using Sylow's theorems we see that X is strongly p-embedded in Y
if and only if NY(T) Q X for all 1 Φ T Q S where S e Syl, (X). The
'only if' part is clear. Conversely, take y eY — X and assume
p l l X Π ^ I . Let PeSylp(XnXy). Then NY(P) S X, so that Pe
Sylp (Xy). Therefore P, P*"1 e Sylp (X) Q Sylp(Γ) as well. Choose a? e
X with P = Py*. Thus yx e NY(P) £ X, so that y e X, as required.

LEMMA 2.8. K is strongly p-embedded in M.

Proof. Let 1 Φ Tμ then a theorem of A. Borel and J. Tits
[4] implies the existence of a parabolic subgroup PcG such that
P is fixed by μ and NG(T) £ P. Without restriction we may suppose
B g P . If P Q B by Lemma 2.7 we have Nμ(T) C If. lί P Φ B let
iϋ = radical of P and put S = PjR. S is a connected, semi-simple,
algebraic group and μ acts naturally on it. Put M = (Λf Π P)R/R,
K = (Kf]P)R/R then SμQKQNs(S8

μ). If S has no exceptional
orbits Lemma 2.6 says that iίί normalizes IT. By Lemma 2.7, since
R Q B, we have Jkf Π iϊ = if Π P. Hence Jlf Π P normalizes if n P
and so, again using Lemma 2.7, MΠ P = (if ΠP)NMnP(Uμ) = if Π P.
Hence if is strongly p-embedded in M.

Suppose next that A is an exceptional orbit in S. By the note
following Lemma 2.6 we must show that M Π A normalizes K Π A.

Let F be the unipotent radical of P and put W = V/V. Let Wμ

be the image Vμ in TF. Since V is closed and connected an argument
similar to that in Lemma 2.3 shows that Wμ is just the fixed points
of the endomorphism v F - > μ(v) V, v e V, of W.
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Now Vμ =? K Γ)V = Mf)V so M f] A normalizes Wμ. Hence for
all k e Mf] A, k~^(k) centralizes Wμ. Our aim is to show that CjiWμ) Q
Z(A). This will immediately give M Π Ά £ N^(AP) and since $ίi(Άμ) =
Nι{K Π A) we are done.

To compute C^{Wμ) we may suppose P is maximal, subject to
μ(P) = P. Let A be a proper subset of Π such that Π — A contains
no proper ^-invariant subset (note that μ permutes Π) then

P = (xr(t)\ΎeΣ+ or -τezί , ίek)

and the choice of A is further restricted by requiring A to be a
component of § = P/R. The possible cases are easily listed: except
when G8

μ is
 2At(l = odd), BD4,

2F4. Π — A is a single root, say a, and
.A is the image modulo R of (Xβ(t), X-β(t)\tek) some βeA. In this
case an A-invariant, μ-invariant submodule Trx of W has basis

{a?r(l) |7 = a, a + /9, a + 2/9, •} modV .

It is easily seen that CidWJμ) £ Z{Ά).
When 177 — A \ ̂  2, A is again of type Aγ except for the 2F4 case

when A is either of types Ax x Ax or C2. Again a suitable A- and
^-invariant sub-module Wx S=W is easily found such that CjdW^μ) £
J£(A). For example in the 2F4 case with A the image modulo J2 of
(xβ(t)\β = ±alf ±aif tek) let Wx have basis

17 = α2, α:3, ^ + α2> ^3 + ^4}

then {Wx)μ has basis {a?β2(l)a?α3(l), α;αi+α2(l)α;α3+α4(l)}.

LEMMA 2.9. iΓ ΐs strongly 2-embedded in M.

Proof. By Lemma 2.8 we may suppose p Φ 2. If the lemma
is false then there exists a ί e Inv (K Π Km) for some meM — K.
Now CG(ί) contains a unique, maximal, semi-simple, connected algebraic
Sf [18]. Since we may suppose G is not of type Alf S Φ 1. Since
μ(t) = t,μ normalizes S and hence S8

μ G S Π K Q S Π M.
Since all p-elements of CG{t) lie in S we have \S f)Km\pΦl. By

Lemma 2.8 \Kf]Km\p = l and hence Op/(S 0 M) £ S f) K. However
if S contains no exceptional orbits Lemma 2.6 implies OP'(S Π l ) S
S Π K, contradiction.

If A is an exceptional orbit of S then AL is of type A1 and ί? =
3. If An M does not normalize An K then from the list of excep-
tional cases in (2.2) we see that A Π K is not strongly 3-embedded
in A Π M. But then K is not strongly 3-embedded in M, contradicting
Lemma 2.8.
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LEMMA 2.10. K = M.

Proof. Suppose K Φ M, by Lemma 2.9 and a theorem of H.
Bender [2] either the Sylow 2-subgroup of K is cyclic or quaternion
or K is solvable. Using ref. [8], [12] and a theorem of Burnside
we see that K has no non-abelian simple subgroups. Since K con-
tains [G'μ, G

s

μ] it follows that Gμ is 2A2(2).
Let t e Inv K then K = 02,{K)CK{t) and 02,{CK(t)) = 1. By Lemma

2.9 Cκ{t) = CM{t) and so by [12], M = 02,{M)CK{t). Then 0%.{K) C
O2,(M) and Cθ2,(Jf)(ί) £ 02,{CK{t)) = 1 so O2,(ikf) is abelian. Hence MQ
NG{02,(K)) and now a direct calculation yields NG(02,(K)) = G>. So
ϋΓ = M, a contradiction.

(2.5) Proof. 2Gz-case. In this subsection G is of type G2 and
λ = 2σg where q = 3^, tf0 = 3Λ For this case we give a direct proof
of the theorem by analyzing the structure of CM(j) where j is an
involution in Gλ.

Proof. We let μ be the highest power of λ such that Gμ £ M,
and show that M = G .̂ Without loss, we may assume μ = λ, since
the various powers of λ are 2σqm and σgw, and the σgw-case has
already been done.

We take Π = {a, β), with a long and choose notation so the
commutator formulas are as in [15]. Let j be the element of H
such that j(a) = j(β) - - 1 and let C = CG(j). Thus ker j Π Σ+ =
{a + β,a + W), so C = L,L29 where Lγ = <Xα+^, X_α_^>, L2 = <Xα+3^,
X_α_3^>, [L19 L2] = 1, LiΠ Lt = Z(C) = (j), and each L{ is isomorphic
to SL2(k). Clearly j eGλ. For any subgroup J of G let Cj = Cj(j).

Put 05+(ί) = ajα+ ί̂tjα β+ŝ ίί8*0) and define xl{t) similarly, and let L =
<x#t), xl(t)\teGF(q)}. Then L s PSL2(?) and CGλ = L x (j).

Suppose C,, £ NC(CG?). Let Γβjl, T^, and T^ be Sylow 2-subgroups
of CGλ, CM, and NC{CG), respectively, such that TGλ £ TMQ TN. An
easy computation shows Nc(CGλ) = TNCGvTN is nonabelian of order 16,
TGλ is elementary abelian of order 8, and | NGλ(TGχ)/CGχ(TGλ) | = 21. If
TM = TN, then \NM(TGλ)/CM(TG})\ = 42, which is absurd since GL(3, 2)
has no subgroups of order 42. Thus TM c TN, so C^ = TMCGχ = CGχ.
By a theorem of Walter [28], \M\ = | G J , so Jkf= G ,̂ as required.
Thus, we may assume CM £ Nc{CGχ).

Let C = C/O'>, and for any A £ C write A for A(j)/(j). Then
C = L1 x L2, Li isomorphic to PSL2(k). Let TΓ,, i = 1, 2, be the pro-
jection C on Li.

Suppose πx{L) £ CM. Since L £ C^, also π2(L) £ C^. Since i 6
CMf we get ^( ί ) 6 M for <o = ±(a + β), ±(a + 3/9), and all ί 6 GF(q).
In particular, wβ+iί(l) 6 M. Now Z7"Λ contains an element
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x = xa(ΐ)xβ(l)

so M contains [x, xa+3β(t)] — x2a+zβ(±t) for all teGF(q). Conjugating
by Nλ, we find X-2a-zβ(t) e M for all t e GF(q). Hence M contains
n2Mβ(ϊ). Since W = (wa+β, w2a+3β), M covers N/H. As ((Xa+β)λ2,
(Xa+3β)λ2) Q Mt it follows that Gλ% Q M. Thus, we may assume
πx{L) ξ£ CM, and similarly, π2(L) <g CM.

Suppose next that TΓ^C*) is not solvable. Now πSL) = {Lyλ2,
so either TΓ^C^)8 = (LJ^m for some m, or else q — 3 and ^(CM) ~
Aΰf the alternating group. To see this observe that since rc^C*) is
finite its inverse image in Lγ is a finite subgroup of SL2(k) and so
is conjugate in GL2(k) to a subgroup of SL2(3f) for some /. Hence
for purposes of identifying πx{CM) up to isomorphism, we may assume
it lies in SL2{Zf). If 32 \ \ TC^CM) \, the argument of Lemma 2.4 shows
that K^CM) Q {L^xin for some n and Dickson's results [6] may be
used. While if 3 2 | ITΓ^C*) |, these results imply πSCM) = A5.

If πSCM) ~ Aδ, then CMf]Lι <| πSJCM) and ^(L) g CM imply C^Π
Lx = 1. Hence π2 (CM)/CM ΠL 2 = A5f so π2(CM) is nonsolvable. Applying
the above argument to π2(CM) yields π2(CM) = A5, hence C^ = A5, so
CM ~ Z2 x A5. Since M" contains Ĝ  = 2G2(Z), all involutions in C^
are M-conjugate in this case, so by a theorem of Janko [19], 3 2 | \M\,
which is absurd as Gλ £ M.

Hence, TΓ^C^)8 = (LJ^m. Since we are assuming that ^(CM) is
not solvable this group is simple, so as in the A5 case we get π2(CM)s =
(L2)

8

λ2mf CM Π L, = C8

M Π L2 = 1. If m = 1, then L QCM implies L =
C5f, so C^ £ NG(L)y contrary to what was shown above. Hence m >
1. Now Cu is defined by an isomorphism between the TZ^CM)8, which
restricts on πjjj) to a?±(α+iJ)(ί) -̂> α?±(α+3^(έ3αo). From the well-known
classification of automorphisms of PSL2 there exists d = 3* such that
Cjf = <^ϊ(έ)|έeGF(gw)>, where we define xl(t) = a?(«+is)(ί)ίβ(α+8̂ )(ί<i) ^ n d
a?ΐ is defined similarly. (This extends previous notation; td = f90 for
ί e GF(g).) Hence CM = <a?ί(ί) | ί e GF(qm)). Set A*(t) = ha+β(t)ha+3β(td).
Since [L1? L2] = 1, C& contains Λ*(t) for all t e GF(qm).

Let x, y and s be elements of Gλ of the form x = α;α(l)^(l) •••,?/ =
xa+β(l)xa+sβ(l) •••, « = xa+2β(l)x2Mβ{l), then for any ί, ueGF(qm)xy M

contains the following elements:

Since every element of GF(qm) is a sum of square, M contains

( 3 ) xa+2β(td-1u)xιa+iβ(t*-dud) .

Replacing u by t^^"1 and t by 1 in (3), and multiplying the resulting
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element by the inverse of (3), we get

( 4 ) x2a+U(ts-d-td2-d)ud)eM.

Also, M contains

( 5 ) [x*™,. x] = xa+β(t*-d - td-')xa+zβ{t*d-* - f ~ d )

Suppose tf Φ t\ for some t0 e GF(qm). From (4), x2a+3β(t) e M for all
teGF(qm), and then from (3), xa+2β(t}eM for all t. By (1),

xa+β(u)xa+3β(ud) e l ,

a n d by (5), xa+β(t3~d - td~ι)xa+,β{t*d-* - tz~d) e M. S u b s t i t u t i n g f~d - tΛ'x

for u and multiplying by the inverse of this last element,

xa+zp(t*d-" - td2~d - tu~z + t*~d) e M

for all t e GF(qm). Since CS

M Π L2 = 1, the expression in parentheses
vanishes identically. This yields

( 6 ) (£3 - td2)(t~d2~wd + t~d) = 0

for all teGF(qm)x. On the other hand, since M contains (Xa+2β)λzm,
(X2a+3β)iz*9 and an elment of NG(H) taking all roots to their negatives,
M contains h(t, u) = ha+2β(t)h2a+β(u) for all t, u e GF(qm)x, so contains
yh{t>u) = xa+β(tsu)xa+3β(tu*) , hence contains xa+β(tfu)xa+3β(tuz). Since
C'M n Γ, = 1, % = 1, 2, it follows that to3 = (£3^)d for all ί, w e GF(qm).
Hence ^rf = ^ 3 (take t = 1) and £3<ί = ί (take u = 1). Therefore td = tz

and t9 = ί for all teGF(qm), so <? = 3 and m = 2. For any t e
GF(9) - GF(S), we get ίrf2 Φ t\ and so by (6), td2~4d+3 = - 1 . But the
left side is £9-12+3 = 1, contradiction.

Hence td2 = t3 for all t e GF(qm). This implies that m is odd,
and C^ = Cλ2m. Hence M Π G^m 2 (Cλ2m, Gλ) z> Cλ2m. It follows from
Walter's theorem [28] (applied to l ί l W that \Mf]Gλ2m\ =
\Gλ2m\y i.e., M^Gλ2m, as required. Hence we may assume π^(CM)
is solvable, and similarly that π2(CM) is solvable. In particular, q = 3.

It follows from Dickson's results [6] that πt(CM) £ NΣ^L) = S4,
the symmetric group for i = 1, 2. If 9 | \CM\, it follows easily that
TΓ^L) x π2(L) £ Cjf, contrary to what was shown above. Thus CM

has Sylow 3-subgroups of order 3. Since CM §= Nc(CGχ), CM must be
an extension of the central product Q8*Qs by either a group of order
3 or the symmetric group Sz. Let by a Sylow 2-subgroup of CM.
It is easily verified that Z{T) = (j). Hence Γ is a Sylow 2-subgroup
of M. Since (jM) 2 (G;)', which is perfect, O2(M) = 1. Now Tλ is
elementary of order 8, and all its nonidentity elements are conjugate
in M (indeed in Gλ). Since j e Tλ and O2,(CM(j)) = 1, it follows that
Or{M) £ (Or(CM(i)) I i 6 T\> = 1. Let ilf0 be a minimal normal subgroup
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of M. Thus Mo is the direct product of isomorphic nonabelian simple
groups. By [8], [12] and and a theorem of Burnside, each simple
factor has 2-rank at least 2. However, one sees easily that T has
2-rank 3. Hence, Mo is simple. From the structure of Γ, we see
that Tλ = CT(TX), and \NT(TX)/Tλ\ ^ 4. On the other hand, since <i> =
Z(T), jeM0, and so (Gλ)' = (jM) £ Mo, so \NMo(Tλ)/Tλ\ is divisible by
7. Since NMo(Tλ)JTx < NM(TX)/Tλ, a subgroup of GL3(2), it follows that
NMo(Tλ)/Tλ = NM(Tλ)/Tλ = GL,(2). In particular, | Γ | ^ 2β, so | Γ| = 26,
and also Γ £ Λf0. Hence Mo 2 Γ[Γ, C*] = CM. By the the Frattini
argument, M = M0NM(T) £ A^C* = Af0, so I f = Λf0 is simple.

Quoting the classification of finite simple groups in which the
centralizer of an involution (in the centre of Sylow 2-subgroups) is
isomorphic to CM9 we find that the only such group which in addition
has a subgroup isomorphic to Gλ is the alternating group A9 (see,
for example [14]). Hence M = A9.

Let S be a Sylow 3-subgroup of M containg Uλ. Then \S\ = 34,
so Ux<\Sf i.e., SQNG(Uλ). By Lemma 1.1, SQB, SO SQU. Let U'=
Xa+βXa+3βXa+2βX2a+3β. Now S is the w r e a t h product Zz I Zz. I t follows

easily t h a t & = Uλ Π IT = (xa+β(l)xa+3β(ΐ), xa+2β(ΐ)x2a+3β(l)}, and also

that S is generated by Uλ and an element z e Cπ(S') of order 3. The
only such z lie in IT, s o S = Uλ(S Π J7') Hence |S : S Π t/"| = 3. Let
U2 = Z(U) = Xa+2βX2a+3β. Then U'lU2 = Z(U/U2), so S Π CΛ/S Π C72 £

ZOS/JS Π Ϊ72), so S/S Π Z72 is abelian. Hence S' £ S Π U2 £ Z(S), con-
tradiction. This completes the proof.

3* Theorem 2*

(3.1) Statement of results. As in previous sections G denotes
a simple algebraic group over an algebraically closed field k of charac-
teristic p Φ 0.

We wish to examine certain η e Aut (G>) and determine the sub-
groups of Gμ lying above CGμ{rj). We cannot restrict ourselves to η
induced on Gμ by an element of the form g X, where λ* = μ, 0 < n 6
£, 0 e G> For example, let G = Az(fc), i ^ 2, ^ = 2σ,. The "field" (or
"graph") automorphism η of Op'(Gμ) = 2^z(g) ^ PSC7(Z + 1, ?) does not
have the above shape. Indeed, it is induced on Gμ by λ e Aut(G),
X = aq. Thus, to examine questions of this type, we must consider
pairs of commuting endomorphisms λ, μ of G with Gλ and Gμ finite.
Then some power of λ centralizes Gμ. We may suppose that μ, X
are in standard form (see 1.2) and put Gμ,x = Gμ Π Gλ.

THEOREM 2. Lei G be as described above. Let r > 1 be an integer
and λ = σq, μ = S0>/S where G possesses a graph automorphism of
order s e {2, 3} and s divides r.
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Let M be a group, Op'(Gx,μ) ^ M <; Gμ. Then precisely one of
the following holds if r is a prime (i.e., r = s)

( 1 ) Ghμ ~ Cn(2™), Gμ = >A2n(2m), O*'(M) = 2A2n-A2m), M/O*'(M) is
cyclic of order dividing 2m + 1, n ^ 2.

( 2 ) M£Ghμ

(3) O*\Gμ)£M
( 4 ) p = 2, G;)JU = 2C2(2), G^ = 2C2(2r); ilί ϊiβs in a a unique max-

imal subgroup Mo which is a Frobenius group of order 4(2 r ±2 ( r + 1 ) / 2 + l)
and Gμ ~

 2C2(2r) for odd r ^ 5.
( 5 ) p = 3, G ^ = PGL(2, 3), G, = 2A2(3) ~ C73(3), G,,, < M < Gμ, M =

PSL(2, 7),
( 6 ) p = 5, G,,, s PGL(2, 5), Oδ'(G,) ^ 2Λ(5) = ϋi(5), G,,, < M, <

Oδ'(Gμ), i = 1, 2, ikf, ̂  Λ , M2 ̂  Λf10.

Furthermore, if r is not assumed to be prime, but \M\P = \Gλ>μ\p,
then (x) holds, for some 2 <̂  x <; 6.

We wish to emphasize the point that we have not fully examined
the question: if Gμ is a finite group of Lie type and η is a noninner
automorphism, what are the subgroups of Gμ lying above CGv(^)?
We have examined only the case where 7] is induced on Gμ by λ, an
endomorphism of G with λ r = μ or λ = σqr and μ = 80y/*. For ins-
tance, letting λ* be the image of one of the above λ in Aut (Gμ),
there may be an rj in the coset Inn(G^) λ* such that \rj\ = |λ*|, yet
Ύ] and λ* are not conjugate in Aut (Gμ) or even {Gμ)v & {Gμ)λ*.

In proving the above result we may apply Theorem 1 wherever
<λ, μ) is a cyclic group; for then λ may be replaced by a generator
of <λ, μ).

(3.2) An example. As an illustration of where our results do
not apply we give the following example, for which we thank J. E.
McLaughlin.

Take G to have type A3, μ = 2σ3, λ = σd. Then L = O5'(Gμ) =
2A3(3) = Z74(3) satisfies L ; = B3(3). However, 1/ has an automorphism
η of order 2, η = X (mod Inn (L)), such that Lη =

 2A(3) = AQ. There
is a subgroup M < L containing Lη, M ~ PSL(S, 4). The existence
of this M is not easily predicted by a study of the Lie structure.
Indeed, its existence led J. E. McLaughlin to construct a sporadic
simple group [21]. Looking at this example in more detail, we see
that 2A3(3) = 2A(3), so that L may be regarded as K/Z(K), where
K=Ω~(6, 3), the commutator subgroup of the orthogonal group
O"(6, 3). In terms of matrices, let B be any symmetric 4 x 4 non-
singular matrix of determinant —1 with entries from Fz and let
be the result of applying the field automorphism x v-
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matrix with entries from F β . Then Sί7(4, 3) may be identified with
{A I * ABA = B9 det A = 1} and it has a "natural" field automorphism
φ: A—> A. However, φ is not the "standard field automorphism" of
SU(A, 3), as we have defined the term above. In fact, the fixed
points of φ is the special orthogonal group associated with JB. See
Artin [1], p. 210.

A variation of our situation is the following: M is a group lying
between Op\Ghμ)' and Op\Gμ). The problem (still not fully solved)
is to show that Op'(Gλ,μ)' < J l ί o r identify M.

Of course, any "interesting" exceptions will be ones not already
described by our main theorem. That is, we will be dealing with
a Ghevalley or twisted group Op'(Gλfμ) which is not perfect (i.e., is
not equal to its commutator subgroup). The possibilities for Op'(Gλtμ)
are then the solvable groups A(2)', ^(3) ' , 2A2(2), and 2C2(2), plus the
nonsolvable groups B2(2) = Σ6, G2(2) = Aut(l78(3)), 2(?2(3) = Aut(L2(8))
and 2JF4(2)\ The only exception known to the authors, for Op'(Gλ>μ)
nonsolvable, is

G2(2)' < M < G2(4) , M = J2, Janko simple group

group of order 604,800; there are two conjugacy classes of such M,
see Wales [27].

We mention that [27] does not determine all maximal subgroups
of G2(4) containing G2(2)'.

Another example we mention is the containment

IF4(2)' < M < 2EQ(2) ,

where M = M(22), the Fischer group of order 2173952 7 11.13 [9], [10].
This does not quite fit in the above situation, because 2F4(2) cannot
be realized as Gλtμ, where G = E6(k), char k — 2. However, the
questions to be asked here are obvious: find finite groups M (if any)
for which IF4(2)' < M < X, where X = 2F4(q), FAq), 2E6(q) and EΛ(q),
for q even, and where 2F4(2)' < 2JP4(2) is embedded in the natural
fashion in X. We point out that in the above case where M ~ikf(22),
it is not known for certain that the 2,P4(2)' subgroup of M is conjugate
to the one embedded in the "natural" way in 2£r

6(2).

(3.3) Proof of Theorem 2. We proceed by a series of lemmas.
Some important intermediate results are given in Propositions 3.1 and
3.2.

LEMMA 3.1. Suppose G has a root system Σ having one root
length. Let μ = sσq, s e {2, 3}, and let λ = σq. Suppose M is a sub-
group of G such that Gs

λ>μ £ MaGs

μ. Then one of the following holds:
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(a) p)(\M:GU
(b) p = 2, Σ = A2n, and either O2'(M) = 2A2n_1(θ), or 6> = 2A2(2).

iVoo/. Let 1 be the twisted "root system" of G> and W the
corresponding Weyl gfoup. Thus Nμ/Hμ = Nλ>μ/Hx,μ = TF. Also, £7̂  =
VLpeϊBp If ^ =£ -4.2*» then Σ is a bona fide root system, and XP is par-
ametrized by GF(q) for long p, by GF(q8) for short ô. If J? = A2n,
then s = 2, and J? = {±(α*, 2αJ, ± ^ ± ^ 1 1 <; i < j ^ w} is of type
"BCn", with X±α.±αi parametrized by GF(q2) and X ^ . ^ ) of type
2A2. The parametrizations by GF(qs) are not quite canonical: if τ is
the Frobenius automorphism of GF(qs)/GF(q) there are s canonical
pafafrietrizations of XPf in which the same element is represented as
xp(t), or xp(tT) (or XP(tτ2) if s = 3). We shall ignore this ambiguity
since it does not affect the validity of our arguments. Note that
if Xp is parametrized by GF(q), then (Xp)μ = Xp; while if by GF(qs),
then ( X ^ = {xp(t) \ t e GF(q)}.

We show first that NGu(Uλ,μ) £= Bμ. Let g eNGβ(Uλ,μ), and write
g = bnwu in canonical form (we W). For every fundamental peϊ,
let ϋ* = Πα^ Xo, so that ΪT̂  <] Z7, U = U'XP9 and Xpf]UP = 1. (In

σ>0

case Σ=BCn we take {(ô , 2^), α2 — α:, , an — an_r} as the funda-
mental system.) Now Uλ,μ ί l l ^ l for each such p, so (Uλ>μ)

h con-
tains an element of the form xpup with 1 Φ xp e Xp, up e Up. Since
(XpUp)n* e (Uχ.μ)*'1 £ Z7, w(iθ) e J + . Hence w = 1, so g € Bμ.

Now suppose (a) fails. Let [7* = ^jmir (U*,μ) Since ί/̂ ,̂  is not
one of Nύ(Uλ>μ) which equals NMίλBχ(Uλ,μ) by the above. Since Uμ is
the Sylow p-subgroup of Bμy Z7* g E7i>iB.

Suppose Σ Φ A2n. Put a partial order ^ o n I refining the order
given by heights. Write each n e Uμ as u = Πϊ:+ ^̂ >(̂ )̂ i*1 order, and
set supp(^) = {plί, 9*= 0}. Among all elements of Z7* —Uλ>μ, choose
α? to have the greatest support, in the lexicographic ordering. Write
x = xPo(tpo) UP>PP xP(tp) with tPo Φ 0. Then in fact xPo(tPo) $ Uλ,μ, other-
wise x' — xPo(—tPo)xe £7* — Uχ,μ9 and supp(α;') > supp(α ), contrary to
choice of x. In particular, tPo $ GF(q), so p0 is short. Suppose there
is σ eΣ+ such that p0 and σ are fundamentally independent. Let
#* — [^σ(l), ^] = ^ 0 + σ ( ± ^ 0 ) •••, (for a complete description of the
commutator formula in Steinberg variations, see [15]). Then xσ(l) e
Ux>μ and x e £7* imply x* e Uλ,μ, so tPo e GF(q), contradiction. Hence
no such σ is available. Suppose Σ = G2, with fundamental system
{a, β}, β short, and ρo = a + β. Then ^ ( 1 ) , %a+2β(l) e Ux,μ, so C7i>AI

contains both [xa(l)> x] = Xa+2β(±(tτ

Po + tf0)) and

[a?β+2/!(l), x] = 0 0 O

Hence (?-P(g) contains both coefficients, so contains tPo, contradiction.
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We conclude from (*) (see Lemma 2.1) that pQ = θ8. In the factorization
of x, all terms xP(tp) after the first are for long p, hence lie in UXtM.
Hence xPo(tPf)~ιx e Uλ,μ, so xPo(tPo) e U*. Hence I , o n l D (XPo)x Now
(XPo, X-P0) = A^q8), and λ induces a field automorphism 0 ρ on this
group, so by Theorem 1 (more precisely Lemma 2.5, which holds even
for q = 2), (X^, X-^) £ M, as s is prime. Conjugating by Nλ>μ, we
get XPQ M for all short <o; since XP = (XP)λ Q M for long p, M = Gs

μ,
contrary to hypothesis. Therefore, Σ = A2n.

If w = 1, then (b) is immediate from work of Mitchell [22] and
Hartley [16]. Suppose then n > 1. For a root p = ±α,±αy, X^ =
{xP{t) 116 GF(q2)} and (X,^ = {a,(t) 11 e G.F(<?)}. For each i = 1, , n,
there is a root subgroup X^ = {&<(£, u)|£1+<? + % + %? = 0,ί,ueGF(q2)}
corresponding to the "root" (aif 2a%). The opposite root subgroup is
denoted by X_*. We separate Xt into parts Xa. and X2α. as follows:
let X2a. = Z(X,) = {#,((), u) | w 6 GFfe2), % + uq = 0}, and write x2a.(u)
for ^(0, u). Let Xa. be a transversal to X2a. in X {. If q is odd,
we may choose Xa. to be /^-invariant, so that if a coset C of X2αi

in X^ is fixed by λ, then the representative of C in Xa. is fixed by
λ. The element of Xa. representing the coset x^t, u)X2a. will be
written x^iteGFiq2))] Thus X, is parametrized by GF(q2). We
choose ^(0) = 1, without loss.

Let Σ = {±aίf ±2aif ±ai±aj\l ^ i < 5^w}. Define a height func-
tion on Σ by setting ht(aτ) — i and extending linearly. Then for
p,σeΣ+, [XP, Xσ] ^(Xa\aeϊ, ht(a) ^ ht(ρ) + ht(σ)}. Let ^ be a
partial order on Σ refining the height order. Since X±ai±aj> X*ai9

and Xt = Xa.X2ai are subgroups of Gμ, and since at < 2a o every
ue Uμ is uniquely expressable as Πxp(tp), the product over peϊ+ in
increasing order, with tp in the appropriate field. Set supp (u) =
{p\tp Φ 0}. Again, among all xe Z7* — Uλ>μ choose x maximal in the
lexicographic ordering. Say x = xPo(tPo) ΐ[P>Po xP(tp), with tPo Φ 0. Then
as before, xPo(tPo) ί Uλ>μ.

Suppose q is odd. Then (Xi)λ = (Xa.)λ = {xa.(t) \ t e GF(q)} for each
i. So ajα.(l) 6 UXtμ for all i. Suppose pQ = α5- — at for some j 1 > i.
Then [α;, a;α.(l)] = xa.{±tPo) ••• lies in J7;^ so tPoeGF(q), whence
xPo{tPo)e Uλ,μ, contradiction. If ρ0 = α ,̂ then for i = 1 or 2, t/i,/ι
contains [x, xaj(l)] = α; α . + α /±^ 0 ) , so tPoeGF(q) and xPo(tPo) e Uλ,μf

contradiction. If ^0 = αέ + αy> j > i, then Uλ,μ contains [x, xaά-aj^)] =
x2aj(± (tPo - ίjo)) . Since (X2aj)μ - 1, t,0 - ί?0 = 0, so t,0 e GF(ff),
again giving a contradiction. Suppose ρ0 = 2c^, 1 ^ i < ϊ. Write

* = Λ ^ O ) * ' # ^i+αi+iί*) * * T h e n

lies in Uλ,μ, so tPo e GF(ί?) and t - tq ± tPo = 0. Hence ί - t9 6
Since g is odd, this implies t — tq = 0. Hence tPo = 0, contradiction.
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We conclude that ρ0 — 2an. Hence M Π Xn~D(Xn)λ(=l). Applying
the case n = 1 to (Xn, X_%>, we get (Xn, X_w> £ M. Conjugating
by Nλ>μ, we get Xt £ M for all i. Hence M contains [xai(t), Xaz{tf)\ =
» β ι + β l (±tt ' ) for all t,t'eGF(q2), so Xαi+tt2 £ ilf. This easily yields
GjL = M, contradiction. Therefore, q is even, i.e., p — 2.

In this case, we have (Xi)λ = -Xiα,* and JTαί is not λ-in variant.
Let xy p0, and ί^ be as before. If p0 = αy — α* for some j > i,
then C/^ contains [α?, a?2α.(l)] = a?βί.+βl (ί,0) , so tPoeGF(q), contra-
diction. If PQ = 2α., then xPo(tPo) e X2a. £ £7^, contradiction. If
>̂0 = a,i + #i ^ αw_! + αw, then there exists σ = a$, — aiΊ j r > i', such

that po + σ is of the form ak + αz, and so Uλ>μ contains [x, xσ(l)] =
a;̂  + ^(^ 0) , contradiction. If p0 — aif 1 <^ i < n, then [7̂ ,̂  contains
[x, Xai+ι-aSX)\ = χai+1(tp0) , contradiction. Suppose ^ = α», and write

u e GF{q2) - GF(q). Let n0 = wβ._β Λ - 1(l), and set a?' = α?wo = x«n_StPQ)
^o^iί*') (with other nontrivial terms coming only from roots of the
form at + a, or 2at). Let x{2) = [a?f, ^β^β^Xl)]. Then α?(2) e Λf, and
x{2) = xajppo) ^αu+αw_1(^'? + ^ff)»zαn( )> with inside nontrivial terms
coming only from roots of the form an + a5 Let u' — t'q + uq. Since
t' 6 GFto) and u $ GF{q), u' ί GF(q). Now set n, = n β | l - 1 ( l) , and α;(3) =.
[x'f (x{2))nq. Then a;(3) e M, and x(3) = xan(tPou') . Since u' ί GF(g),
we may assume that tPo £ GF{q)y by replacing x by x{3) at the outset
if necessary. But then [x, xn°] = a?αw+αw_1(ί^0) and tjo e GF(q)f so the
maximality of x is violated. Thus p0 Φ an, so ô = an + αn« lβ Hence
xPo(tPo) = a?•»£«,( ) e C7* —Uλ>μ. Applying Theorem 1 (Lemma 2.5) to
<Xan+a%-ι9 X-an-an^}L we see that X β n + . n - 1 S ilf. Thus Xp S ΛΓ if
j0 = ± α , ± α i . . Let ,G = (XP\p = ± a i ± a y or 2 ^ ) , so that G £ M, and
G is (canonically generated) ^ ^ - l ί ? ) . It is easily verified that NGμ(G)
is the unique maximal subgroup of Gμ containing G. One considers
the permutation group induced by SU(2n + 1, q) on anisotropic vectors
of a given length in the natural 2n + 1-dimensional module over
GF{q2), and shows that the only sets of imprimitivity have the pro-
perty that every block is a subset of one-dimensional subspace. Hence
G QMQNGμ(G). Since NGμ(G)l& = Zq+1 is of odd order, G = O2\M),
completing the proof.

We are now entitled to work under the following conditions:
(A) r > 1 is an integer
(B) λ, μ are commuting endomorphisms of G with Gλ and Gμ

finite and λ induces an automorphism of order r on Gμ

(G) Either (i) λr = μ and λ = σq or λ = *σq where r | s and the
Dynkin diagram for G has period s e {2, 3}; or (ii) λ = σq and μ =
S0>/S, where r | s and the Dynkin diagram for G has period s e {2, 3}.

(D) 0»'{Ghμ) ^M^Gμ
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(E) | J l f | ,= | G a i / l | , i.e., Uλ,μeSylp(M).
First a few observations. Namely, Gx,μ and Gμ have the same

rank and consequently, if P is a <λ, μ>-invariant parabolic subgroup
of G, λ leaves invariant every component of Pμ/Op(Pμ) (see 2.4 for a
discussion of components). We do not assume r is a prime. Here,
the critical assumption is that Mhμ = M f] Gλ,μ contains a Sylow p-
group of M. Also, even though Theorem 1 deals with the above
case (C. i), none of the following arguments, except Lemma 3.9 and
Proposition 3.2 are simplified by quoting Theorem 1.

LEMMA 3.2. Let Pμ be a proper parabolic subgroup of Gμ con-
taining Bμ. Write Pμ = Op(Pμ)*Lμ, where Lμ is generated by Hμ and
standard root groups from Gμ. Let Σμ be a root system for Gμ. Let
Σo = {r eΣμ\Xr ^ Op(Pμ)}, where Xr denotes a root group for Gμ

(rather than for G). Set Pμ = (Xr, Hμ \ X_r ^ Pμ). Then Gμ = (Op(Pμ),

Proof. Let S = (Op(Pμ), Op(Pμ)). Then Lμ normalizes S, whence
SLμ is a group containing Bμ, i.e., SLμ is a standard parabolic sub-
group. If SLμ were proper, then Op(SLμ) would meet Xa nontrivially,
for some a e Σo. But X_a <; S implies that Op((Xa, X_α» = 1, con-
tradiction. Thus SLμ = G. Since S <\ SLμ, S = Gμ, as required.

LEMMA 3.3. Let P be proper parabolic subgroup of G containg
B. Then CGμ(Op(Pμ))^ Op(Pμ), i.e., Op,(Pμ) = 1 and Pμ is p-constrained.

Proof. If necessary, we shall replace μ by v — μj, where j > 1
is an integer such that (i) if μ involves a graph automorphism of period
s > 1, (j, s) — 1 (ii) in Gv, two opposite root groups generate a qua-
sisimple group, i.e., we are avoiding small fields. Note that Gv and
Gμ have the same Weyl group and Gμ <; Gv. We claim that this
change affects neither hypothesis nor conclusion. Namely, set Cτ =
CGτ{Op(Pτ))<\Pτ for τ e {μ, v). By the fact that if Xμ is a root group
for Gv and Xμ = (X»)μ, CGu(Xμ) = CGv(Xv) (a straightforward exercise)
and the fact that Op{Pτ) is a product of root groups in Gr, τ e {μ, v),
we get Cμ — Cv Π Gμ. Thus, it suffices to prove Gv ^ OP(PV), because
then Cμ is a normal p-group in Pμy whence Cμ ^ Op(Pμ). So, we make
the replacement.

Let r be a root in the root system Σμ and Xr the corresponding
root group in Gμ. An element of Hμ centralizes Xr if and only if
it centralizes X_r. Therefore, by Lemma 3.2, Cf]Hμ£ Z{G) = 1.
Letting " denote the quotient Pμ-+ Pμ = Pμ/Op(Pμ)f we claim that
C Γ\Sμ = 1. If not, let Ho ^ Hμ satisfy So = C Π fl,. Now, C is a
normal subgroup of ^-power index in C Op(Pμ), whence HQ ^ C, and
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so C n Hμ Φ 1, absurd. Thus Cr\Hμ=l. It follows that Cf)Όp/(Pμ) =
1, because our replacement of μ guarantees that any normal subgroup
of Op\Pμ) lies in Hμ. Therefore, [C, Uμ] = 1. This means C £ Bμ.
Since Bμ has a normal Sylow p-subgroup and OP(C) = 1, it follows
that C is a normal ^'-subgroup of Bμ, whence 1 Φ C ^ 3μ, in conflict
with above statements. The lemma follows.

LEMMA 3.4. (i) For any μ, U is the unique conjugate of V
which contains Uμ. (ii) Also U is the unique conjugate of U which
contains Uλ>μ, unless q is even, X = σq, μ •= 2σqr/8 and G has type
A2n, in which case {geG\ Uλ>μ < U9} = B U BnWrB U nwB, where
{1, wr, ws} = {we (wr, w8)IX?+s <L <Xr, Xs)} where r, s are the nth and
(n + l)st roots in the Dynkin diagram for G. (iii) However, in all
cases, Uμ is the unique Gμ-conjugate of Uμ containing Uχ,μ.

Let P(λ, μ) be a parabolic subgroup for Gλ>μ. (iv) Then there
is a unique parabolic subgroup P(μ) of Gμ which contains P(λ, μ),
and satisfies P{μ)λ — P(λ, μ). (v) Also there is a unique (X, μ)-invariant
parabolic subgroup P of G for which Px>μ — P(X,μ) and P=(P(X,μ),B),
unless we have the above exceptional q, G, X, μ (see (ii)) and the
P(X, μ) is the one containing Bχ>μ which is associated with the subset
of the Dynkin diagram for G consisting of all short roots. In the
exceptional case, there is a (X, μ)-invariant parabolic subgroup of G
for which Px,μ = P(X, μ), e.g., P = <P(λ, μ), B9), where g 6 Ghμ satisfies
B9

λ,μ ̂  P.

Proof, (ii) Let Uμ <V = Uδ, geG. Let Σ be a root system
for G. Write g = bnwu, where beB,nwe NG(H) represents the ele-
ment w of the Weyl group, and ue U(w) = (Xa\aeΣ+, aw~ιeΣ~).
Let U{w) = (Xa\aeΣ+, aw~^+). Then U9 = Un-U and so Uμ^U(w)*.
Suppose g 0 B. Then there is such a g for which w is a fundamental
reflection, w = wa (see the appendix of Steinberg's notes [24]) so that
U{w) < U. Thus to get a contradiction, it suffices to show Uλ,μ S U{w).

Write Xr = Uiw). If <λ, μ) leave Xr invariant, we are done, as
(Xr)λ Φ 1. Therefore μ = 8σq, where qf is some power of p and s = 2
or 3. But now, we see that R = (X?\Q ^iS -1> satisfies Rhμ £
U{w) by checking the possibilities, unless G = A2n(k), n ^ 1, μ - 2σqr/2
and X = σq and r is the wth or (n + l)st node in the Dynkin diagram
for A2n. The verification of the rest of (i) and (ii) is an exercise.

The proof of (iii) is obtained by a similar argument, and (iv)
and (v) are straightforward.

LEMMA 3.5. There does not exist a proper parabolic subgroup
of Gμ containing Gλ.
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Proof. Assume false, and take a parabolic subgroup R, Gλ <;
R < Gμ. Embed Uλ in a Sylow p-subgroup of R. By Lemma 3.4,
Uλ < Uμ < R. Since R is a proper parabolic subgroup, it is ^-con-
strained (by Lemma 3.3) whence Z(U) ̂  OP(R). Thus 1 Φ Z{U)λ ^
OP(R) Γ\GX<\ Gλ, whereas Op{Gλ) = 1, contradiction.

LEMMA 3.6. Let P be a parabolic subgroup of G which is (λ, μ)-
invariant. Then Op(Pλ) = Op(P)λ, Op(Pμ) = Op{P)μ, Op{Phμ) = Op{P)hμ.

Proof. Clearly Op(P)λ <* Op(Pλ). Suppose the containment is
proper. Let ~ denote the quotient map P—»P/OP(P). Then Op(Pλ) Φ 1
is a normal ^-subgroup of P. However, <λ, μ) leaves invariant a
complement L to OP(P) in P. The structure of L implies that
Op{Lλ) = 1, contradiction. So Op(Pλ) = Op(P)λ. The other assertions
are proven similarly.

LEMMA 3.7. Let V ^ Hμ be a group of order prime to p for
which [Uχ,μ, V] = 1. Then V = 1 unless p = 2, μ = Vgr/2, λ = σg,
G = il.(fc),n even, αnώ | F | | g + l α^ώ 0>'(C0μ(V))/Z(0>'(C0μ(V))) =

Proo/. If G> has rank 1, i.e., Gμ = ASΆ), 2A2(q), 2C2(q) or 2G2(q),

the lemma is well-known to be true.
Let G be a counterexample of minimal rank. Letting Π be the

set of fundamental roots, we may apply induction to P = P/OP(P), P
any parabolic subgroup. Then V ^ Z{P) unless P/Z(P) has a com-
ponent of type Au I even. If V ^ ^(P), the Frattini argument shows
Cff(7) covers P/OP(P). Since F ^ l , CG(F) cannot cover all such
PjOp(P), whence G has type AM n even. On the other hand, letting
P be associated with various subsets of /Z, we see that V centralizes
all root groups, for short roots in Σμt and on any root group for a
long root in Σμ, V centralizes precisely the center. The remaining
statements now follow.

LEMMA 3.8. Let P be a proper parabolic subgroup of G con-
taining B. Assume P is <λ, μ)-invariant. Then CPμ(Op(PX}μ)) ^
Op(Pμ) K where K = 1 unless Gμ =

 2An(q), n, q even and K <; H is a
cyclic group of order dividing q + 1 and centralizing Gλ,μ. In
particular, CGμ(Gλ>μ) — 1 unless Gμ =

 2An(q), n, q even, and Gχ,μ =
C%/i(q)f in which case CGμ(Ghμ) ~ Zq+ι.

Proof. The last sentence follows from the first statement of
the lemma whose proof we now begin. We may assume r is a prime
and that r = s if there is a graph automorphism involved in μ. Let
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C = CP(Op(Pλ,μ)) and let - be the quotient map P -> P = P/OP(P).
We may assume C Φ 1. Since C Φ 1, P Φ B, and so Gμ has rank at
least 2. Let L be the standard <λ, μ>-invariant complemet to OP(P)
in P (i.e., L = (H, Xa\a runs over a subset of Σ)). Then P = L as
<\ μ>-groups. Since Lhμ normalizes Og(Pλ>μ), Lhμ normalizes D —
CnL = C.

Assume that Do = CD(Op'(Lλ,μ)) = CD(Op'(Px,μ)) Φ 1. A Frattini
argument then shows Do centralizes Op(PXffI)(U0 Lλ,μ) = Uλ>μ. By-
Lemma 3.7 Gμ = 2An(q), n, q even, and 1 Φ DQ <; K in the notation of
Lemma 3.7. Then, as Do <> D, D ^ NG (K) and the lemma is verified
by inspection.

We may now assume Do = 1. This will eventually lead to a
contradiction. Now Dλ <̂  CP}ί(Op(Pλ)) ^ Op(Pλ), by Lemma 2. So,
JD; = 1. We may assume Dμ Φ 1. Since r is prime, Dμ is nilpotent
by Thompson's theorem [13]. Let 1 ΦV ^ Dμ be minimal normal
in DμLλ>μ(X). Then F is an elementary abelian £-group, for some
prime t Φ r.

Assume that t — p. Let L19 , Ln be the components of Ov\Lμ)
and let πi:O

p'(Lμ)~+Li = LJZ(Li) be the "projections." Our hypo-
theses on λ, μ imply that λ stabilizes each L^ Since V Φ 1 is a p-
group, and ^(Li) is a p'-group for all ί, VZi Φ 1 for some i. Then
F^ίLi)^ lies in a proper parabolic subgroup of Li9 which is impossible
by Lemma 3.5. Thus t Φ p.

Take S S OP(P,) such that S > Op{Phμ) = Sλ,μ, Sλ^Cs(V)<\S
and S/C8(V) is an irreducible F<λ>-module for which CV(S) <V

(such a choice is possible because Op(Pμ) > Op{Pλ μ),t Φ p, V ^ Pμ and

Op(Pμ) ^ CPμ(OP(Pμ))).

We claim that r = p. If r"=£ p, then (S/Cs{V))λ = 1, which implies
ST7C*(F) is nilpotent, whence [S, V] ^ C^(F), [S, F] = [S, V, V] = 1
and so S ^ C5(F), which is false. Therefore r = p.

We next argue that p = 2. In S, take a minimal F<λ>-invariant
subgroup Γ which covers S/CS(V). Then Γ is special or elementary
abelian, T = [T, V] and CT(V) = Γ'. Since F<λ>/<λp> is a Frobenius
group, S/CS(V) = T/CT(V) is a free Λ = F2>«λ>/<λp»-module. Choose
T, ^ T so that ϊ7! ^ Cτ(V)y TJCT{V) has order pp and is a free Λ-
module. Observe that ϊ\ cannot be elementary, or else t Φ p implies
that Tι = CΓ(F) x TJCT(V) as <λ>-groups, and freeness of the right
factor over Λ contradicts (TJχ <̂  CT(V). Take any hyperplane A of
CT(V) which is λ-invariant. Then Tr

1«λ>/<λ2>» is a "maximal group
of maximal class," so by one of [26], [7], [3] we get, for odd p,
Z(T1«λ>/<λ3)»)/A > CT{V)/A. So assume p odd. Since T/CT(V) is
an irreducible F<λ>-module, and since Z(T/A) > CT(V)/A, it follows
that T/A is abelian, hence T = [T, F] x CΓ(A) = [Γ, F] is elementary,
which is impossible as noted above. Therefore, p = 2 and we also
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get O2(Pμ) nonabelian.
Next consider the action of involutions in Lhμ on V. Suppose

there is an involution w in Lx>μ with Cv(w) Φ 1. Then CLλu(w) <£
Q, a proper parabolic subgroup of Lλ,μ. Let Qi = O2(Q), Qo = CQl(w).
Then we get [Cv(w), Qo] ^ Qo Π Cv(w) = 1 (because Lλ,μ normalizes F).
So, [Cv(w), Qi] = 1, by the Px Q lemma. By induction and t Φ 2, we
get that F f l l i ^ Z(L%) whenever Lt is a component of Lμ such that
w £ C(Lt).

If [Lif w] == 1, we claim that V** = 1. Suppose i is an index for
which [Lίf w] = 1 and F** =£ 1. Set F = L*. Then FΓ i is normalized
by Yλ. If, for some involution x in the center of a Sylow group of
Fj, Cv*i(x) Φ 1, We apply induction to get a contradiction. Therefore,
by easy calculation, one concludes that there is no four-group W in
Yλ. Therefore Yλ ^ A,(2), 2A2(2), 252(2).

We eliminate these cases. First assume Yλ = Ai(2). Then Y =
Aλ(4:) or 2A2(2). But Y = Ai(4) is out because the only possibility for
V** is O3(Γ^), whence Vπt = [F, Γ̂ ] ^ V. The P x Q lemma applied
to the action of «λ>/<λ2» x [F, Yλ\ on O2(P^ tells us that [V, Yλ]
centralizes O2(Pμ), against Lemma 3.3. Thus Y= 2A2(2) and Yλ = Λ(2).
Also, Gμ = 2A2w(2), and m ^ 3, since w e L centralizes Ϋλ. The only
possiblity is | V"* \ — 3. Since V is an irreducible <λ>-module, Vπi =
[F, Γ2J. We have Fj* - 1 because Dλ = 1. Thus, as [F, ΓJ is cyclic
and is normalized by YXf the structure of PSU(3, 2) implies Z(Y) — 1.
Now it is clear that the parabolic subgroup P we are considering
is associated with a subset of the Dynkin diagram

Pi P2 P3 Pm-1 Pm

o—o—o o=o
for Gμ (type Cm, m ^ 3) which contains the rightmost (long) root,
βm, but not /Sm_lβ Let Q be the parabolic subgroup associated with
{A, &,•••, iβj Then O"(Q)/0M s SC7(2m - 1, 2) and O2(Q) is the
"standard module" for SU(2m — 1, 2). In particular, as Γ is the
group generated by the root groups associated with ±βm, Y =
Sί7(3, 2). But this contradicts Z(Y) = 1. Thus, Yλ ^ ^(2) is impos-
sible.

Suppose Yλ ^ 2A2(2). Since r = 2 one sees that λ cannot induce
a field automorphism on Y by inspecting the possibilities. Thus λ =
s<7g, 8 e {2, 3}. It μ = X2 were not a field automorphism, s = S and λ
would induce a field automorphism on Y, which is impossible. Thus
s = 2 and /̂  = λ2 is a field automorphism; in fact λ = V2, μ = σ4, y =
A2(A). Then, the structure of A2(4) and [F, F ]̂ ^ 1 implies that
[γf γλ] = Z(Y)±i Zz. But then V = [V, Yλ] cannot satisfy Vπi Φ 1,
contradiction.

Suppose Yλ = 2JB2(2). Then r = 2 implies that F is not of type



MAXIMAL SUBGROUPS AND AUTOMORPHISMS OF CHEVALLEY GROUPS 399

2B2. Thus, Y = J52(2). Clearly, V** = 1 and Vλ = 1 are impossible
in this case.

We conclude that each V** = 1, i.e., that V Π O2'(Lμ) ^ Z(Ov(Lμ)) ^
Hμ. Therefore, [ F , L ί Ί Uλ,μ] ^Hμf]V. Since tΦp,[V,LΠ Uλ,μ] =

[V,Ln Uhμ, L n UλJ ^ [Hμ, Uhμ] ^ U. Therefore [V, L n Uλ>μ] = 1.

Since [O2(P)jfAι, F] = 1, this gives [V, Uλ,μ] = 1. We new quote Lemma
3.7 to see that our lemma holds.

It therefore remains to treat the case that Cv{w) = 1 for every
involution w in Lλ,μ. Assume this. If W <; Lλ,μ is elementary of
order 4, V = (Cv(x)\xe TF*>. So, no such W exist, i.e., L;,^ has cyclic
or quaternion Sylow 2-groups. Thus r = 2 implies that 1/̂  = AL(4)
or 2A2(2) if L^ > L,,, and Lμ = Ax(2) or 2A2(2) if LΛ = L,,^.

At this point we may enlarge P if necessary to assume that Pμ

is a maximal parabolic subgroup of Gμ. Thus, Gμ has rank 2. If
Lμ s Λ(4), then G, = A2(4), J52(4), 2A3(2), 2Λ(4) or 2A4(2). If L, = 2Λ(2),
then G^ = 2Λ(2). If L^ = A1(2)> then Gμ s 2A3(2). By inspection,
each of these groups satisfies the conclusion of the lemma, so that
the proof is complete.

PROPOSITION 3.1. Let M be a group such that Op'(Gλtμ) <, M <Gμ,
M S Gχ,μ and Uλ,μ e Sylp (M). Then Mhμ = NM(Op/(Gλ>μ)) is strongly
p-embedded in M.

(Note that Ghμ = NG(Gλ,μ) unless G = An(k), n, q even, μ =
2σqr/Sf λ = σq.)

Proof. Let R Φ 1 be a p-group in Ghμ and, as in Lemma 3.4
embed NGλt (R) in P(λ, //), a parabolic subgroup of Gitμ. We may
assume that P(λ, ^) ^ ?7;^ by replacing R with a conjugate by an
element of Op'(Gx>μ) if necessary. Using Lemma 3.4(iv), we have that
P(λ, μ) lies in a unique parabolic subgroup P(μ) of G^ with P{μ)λ =
P(λ, ^ ) . By Lemma 3.4(v), we may take P, a <λ, ^>-invariant par-
abolic subgroup of G with Pμ = P{μ) and we may assume U ^ P,
by Lemma 3.4(i).

It suffices to prove Λ f n P = M f Ί P Λ ^ Pχ,μ'K, where if is as in
Lemma 3,8. Set C = CPμ(Op(Pλ,μ)) and take ^ e ikf n P^ Then ^ ^ e
Sylp (M) implies that Mf]Pμ normalizes Op{Pλ,μ), whence [g, Op{Pλ,μ), λ] =
1. Clearly [Op(Pλ>μ)y λ, g] = 1, and so [λ, g, Op(Pλ,μ)] = 1 by the three
subgroups lemma, Thus [λ, g ]eC. By Lemma 3.8 C ^ Op(Pμ) K,
where g ^ ίZ^, |jg| [g + 1. Letting ~ be the quotient P->P =
P/OP(P), we get [FfvM, λ] ^ C = K. Thus P D M ^ Λ/. or if ίΓ Φ 1,
P Π Λί ^ iV^([P n M, λ]) ^ Npμ(K) = Cpμ(K) and P has a component
of type A%(fc), %, q even. Also, we may enlarge P, if necessary, to
assume that Pμ has one component.

Suppose Pirn<,Pλ,μ. Then Oι\Pλ,μ)^PnM^O2(Pμ) 1 ^ , where
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L is a <λ, μ>-invariant complement to O2(P) in P. Then (\M: Gλ>μ |, 2) =
1 implies that P Π M = O2'(P;,^), as required. Thus, we may suppose
PpiM S Pχ,μ. Let K, L be as above. We have 1 Φ [P Π M, λ] ^ iΓ,
g is even and G = Aw(fe), w even, μ = 2σ?r/2, λ = σq. From Lemma
3.8, we_know that O2'(CPu(K))/Z(O2'CPu(K))) = 2An^(q). Thus Ϋ =
O2\Cpμ{K)) satisfies: PnMf)Y contains a Sylow 2-group of P Q Λf.
Since £7^ ^ O2'(F^) ^ O2'(P Π M), we may apply induction to P to
get O2\Ϋλ)~ Cn/2(q). The structure o f ^ implies that ^ ( F J =
i£ x Yλ, whence P n M = (P n Λf Π ίΓ) x Γ2.

As in the case P n l ^ P,,^, we argue that O2/(P,,^) = O2'(P Π M).
Write (O2(P^) ί Γ ) n Λ f = O ί ( P ^ ) ί:ι, where i ^ is a cyclic 2f-group.
Now, Kx is trivial on the Frattini factor group of O2(Pλ>μ), because
K is, whence Kγ centralizes O2(Phμ). But also, [ Uλ,μ, Kx] <; O2(Phμ).
Since Kx then stabilizes the chain Uλ,μ ^ O2(Pλiίi) ^ 1, we get ^ S
C(Ux,μ). The Frattini argument on O^Pχ^K^P Γ\ M implies that

covers P Π M, whence iΓx ^ Z(P Π M). Since i ί contains a
Hall 2'-subgroup of Z(P f] M), it follows that Kx ^ iΓ, whence K, =
ί Π l . Therefore, ikf ^ P ^ iΓ, as required.

COROLLARY. 1/ p = 2, |Λf |2 = | C7,^|, M ^ O2'(G,>;U) α^ώ Λf £ Gλ>μ,

then μ e <λ> and M lies in a unique maximal subgroup MQ of Gμ,
and we are in one of the following situations.

(a) Gλ = A&), Mo ~ D2r+1, and r is odd, r^2>)Gμ = Ai2r)
(b) Gλ = 2B2(2) ~ Sz(2), r is odd, r ^ 5, and Mo is a Frobenius

group of order

4(2" ± 2 ("+ 1 ) / 2 + 1); Gμ = 2B2(2r) .

Proof. Let L = O2\Gλ,μ) then Mλ,μ = NM{O2\Ghμ)) is strongly
embedded in M and L = O2,,2(L), which implies L = Λ(2), 2B2(2)
or 2A2(2). We claim that L = 2A2(2) is impossible. So, assume
L ~ 2A2(2). Then Gμ must be isomorphic to 2A2(2r) for odd r ^ 3.
Let t be an involution of L. Then £ inverts O(M) because CGβ) =
[7 .̂ Thus, O(L) = [O(L), ί] ^ O(M). An easy calculation (which we
omit) shows that O(L) = Zs x Z3 is self centralizing in Gμ. This
means O(L) = O(M) and so M ^ NGμ(O(L)) = G ^ = PG£7(3, 2), i.e.,
we have no exception in this case. Therefore, Λf has cyclic Sylow
2-groups, whence M = 02%2(.M). A survey of the possibilities produces
(a) and (b) as the precise list of exceptions to M £ Gλiμ.

REMARK. We henceforth assume that p is odd. Thus, Mλ,μ =
Mhμ = M Π GjlAI (see Lemma 3.8 and use Ghμ = NGμ(Op'(Gx>u)) if G> ^
2A.to), w, g even).

LEMMA 3.9. / / t is an involution of Mλtμ, then CM(t) ^ Mx>μ
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unless either Xr = μ (i.e., Theorem 1 applies to (?) or one of (2), (3),
(5), (6) holds.

Proof. Let t be an involution of Mhμ. Set C = CG(t). Then C =
HLt where H is a conjugate of H and L = OP'(C).

We assume that C Π ikΓ ̂  M^.

1. L = 1. Then, letting t' be a conjugate of t in JET, have
that tf inverts every Xaf aeΣ. This implies that U is abelian, so
that G — Ax{k). Thus, μ — λr and Theorem 1 applies.

We observe that, if L contains some L <\C with p | | Lhμ | and
LΠM= Lλ,μ, we are done; for then, letting ReSyl^(LΠM) we have
J l ί=(Lf] M)'NM(R) <: ikf̂ , a contradiction.

2. L ^ l and quasisimple of rank at least 2. Then by
induction, C Γ\ M <ί Mhμ unless Lμ/Z(Lμ) = 2A2(p), p = 3 or 5. In the
latter case, L/Z(L) = A2(&). Let ί' be a conjugate of £ in H and let
Xα, Xβ, Xa+β be the root groups centralized by t'. The shape of Lμ

forces G = An(k), n ^ 4 and μ = 8(jp. Since n ^ 4, we may choose
roots 7 and <5 so that {a, β, 7, δ} is a linearly independent set such
that 7 + δ is a root. Then, as £' inverts Xr and Xr, t

τ centralizes
Xr+δ = [Xr, Xδ], Since 7 + δ is not in the span of a and β, this is
a contradiction. Thus, Case 2 does not hold.

Case 3. L Φ 1 and quasisimple of rank 1, i.e., L/Z(L) = A f̂c).
Let ί' be a conjugate of t in iϊ. Then tr inverts Xβ for all β Φ a,
a a fixed root in Σ+ (as in Case 1, we know U is nonabelian). It
follows that CG(Xa)/Xa has abelian Sylow p-subgroups. Also, if
Op'(Ce(Xa)/Xa were strictly larger then Op(Cσ(Xa)/Xa), a Frattini
argument would show that tf centralize some Xβ, β Φ a. Since this
is false, Op'(CG(Xa)/Xa) = Op(CG(Xa)/Xa). Therefore, if a is long, G =
A2(k) and if a is short, the fact that there are no long roots orthog-
onal to a implies G = B2(k).

Assume G = B2(k). Then <λ, μ) is a cyclic group and Theorem
1 applies since Gλ>μ is not an exceptional case.

Thus G — A2(k). If <λ, μ) is cyclic, then Theorem 1 applies since
Gλtμ cannot be an exceptional case. So we may assume <λ, μ} is not
cyclic. We then have μ = 2σqr/2 and λ = σq. Then Gλ>μ = PGL(2, q)
and we quote [22] to get that (2), (3), (5) or (6) holds.

Case 4. L Φ 1 is not quasisimple. Let L g* Z(L) be any <λ, μ}~
invariant normal subgroup of L. By Lemma 3.2 we have that \LXffl\ ==
0 (mod p). Thus, if (X, μ) had more than one orbit on the set of
components of L, Lemma 3.8 applied to an L as above, L Φ L dan
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to CL(L) Φ 1, shows that L Π M = Mλ,μ, a contradiction. Therefore,
<λ, μ) has one orbit on the set of components of L. So, L has s e
{2, 3} components, (μ) is transitive on them and λ normalizes each
one.

Since L f] M> Lλ,μr induction implies that Op'(Lλ>μ)/Z(LX)μ) = A(3),
AΊ(5), or Ai(5) and L Γ) M = Aδ, A7 or M10 respectively. But then
Lμ/Z(Lμ) must be isomorphic to, respectively, AΛ9), 2A2(5) or 2A2(5).
No μ of the form *σqr/s will give Lμ/Z(Lμ) isomorphic to any of these
possibilities. This final contradiction proves the lemma.

PROPOSITION 3.2. Suppose Mx,μ < M. Then Mhμ is strongly
embedded in M, or else (6) or an exceptional case listed in (2.2) holds.

Proof. By Lemma 3.9, it suffices to prove that NM(S) ^ Mλ,μ,
for SeSyl2(Mλ>μ). Supposing this to be false, take an element
g 6 NM(S) — Mhμ of odd order such that (g) causes fusion among
elements of Z ^ ΩΛ(Z(S)) which are not fused in M. Let zίf z2 be
two such elements. Assume that | GMχ μ{z^ \ Ξ O (mod p), i = l, 2. Then,
as Ov\CMλtU(zύ) and Op'(CMλμ(z2)) are fused under g, \Mλ,μf) Miμ\ =
0 (mod p). By Proposition 3.1, this forces g e Mλ>μ, contradiction.
Hence we must show that | CMχ {z%) \ Ξ 0 (mod p).

The arguments in the proof of Lemma 3.9 show that if Opf(Cσ(zt))Φ
1, then OpfCGλyμ(Zi)) Φ1, so that we may assume Op\CG{z%)) = 1. Then,
as in Case 1 in the proof of Lemma 3.9, we get that G = A^k). But
then <λ, μ) is cyclic, and Theorem 1 tells us that p = 3, Gμ = Ax(9)
and M ~ Σ5 as in (2.2).

LEMMA 3.10. G, μ9 X and M satisfy one of the conclusions of
Theorem 2.

Proof. If false, Proposition 3.2 tells us that Mλ,μ is strongly
embedded in M. By Bender's theorem [2] and Theorem 1, as <λ, μ)
is not cyclic, Mλ,μ is a solvable Steinberg variation. The only pos-
sibility is 2A2(2), where p = 2 and and the Corollary to Proposition
3.1 tells us that no such M exists, contradiction.

This completes the proof of Theorem 2.
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