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MAXIMAL SUBGROUPS AND AUTOMORPHISMS OF
CHEVALLEY GROUPS

N. BURGOYNE, R. GRIESS AND R. LYONS

We study outer automorphisms o« of a finite Chevalley
type group K and show that under certain conditions Cx(a)
is a maximal subgroup of K.

1. Introduction.

(1.1) In classification problems for finite simple groups there is
often the need for detailed information about known families of groups.
A particular question, that can arise in proving generation lemmas,
is this:

If K is a known finite simple group, and « is an automorphism
of K of prime order, is Cx() a maximal subgroup of K?

The results in this article were motivated mainly by this question.

We consider the case when K is a Chevalley type group. Simple
examples show that if « is inner or diagonal, then, in general, Cy(x)
is not maximal. However, we find that if « is a field or graph
type automorphism then, in general, Cx(®) is maximal. There are
exceptions, and we also emphasize that our results are not complete
for the graph type automorphisms for the families of types A, D, E,.

In §2 we give a general result about finite subgroups of simple
algebraic groups over fields of finite characteristic: let L be a finite
Chevalley type group, let G O L be a corresponding algebraic group;
then, in Theorem 1, we describe all finite groups M such that L &
Mc G. This allows us to answer the above question in a large
number of cases. See 1.8 for details.

In §3, Theorem 2 gives an explicit description of all subgroups
lying between Cr(a) and K when K is a twisted Chevalley group
and « the automorphism induced by the usual field automorphism
of the corresponding algebraic group.

In the remainder of §1 we give notation, some lemmas, and a
discussion of automorphisms of Chevalley type groups.

(1.2) Notation. We use the approach of Steinberg [23] to
describe the finite Chevalley type groups. We let G be a simple
algebraic group over the algebraically closed field & of characteristic
»# 0. In particular we suppose G is connected and its centre Z(G)=1.
Let ¢ be an endomorphism of G onto itself: thus ¢ is an automorphism
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of G as an abstract group and a morphism of G as an algebraic
group but, in general, ¢™* need not be a morphism. We will be
concerned almost exclusively with the case where the group

G, ={geGlog = g}

is finite. In this case the possibilities for ¢ can be explicitly des-
cribed, see §11 of [23]. Before summarizing these results we need
some notation.

Let B be a Borel subgroup of G and H a maximal torus contained
in B. Let ¥,%* and I = {«,, ---, @} denote the corresponding sets
of roots, positive roots, and fundamental (or simple) roots. Here
l = rank of G. We use lower case Greek letters for roots (and also
for endomorphisms) and reserve 6 for the unique highest root in 3+
and 6, for the unique highest short root in X* (in case there are
short roots). We let ¥* denote the dual root system to 5. Let V
be the real vector space spanned by I7 and (a, 8) the usual Euclidean
inner product on V and put {a, 8> = 2{a, B)/(B, B).

As usual, for each e X, let z, denote a fixed homomorphisms
of k&, into G satisfying hz (t)h™* = z,(ta(h)) for h € H. For convenience
we often identify H with Hom,(I', k*) via h(a) = a(h) where I
denotes the lattice spanned by X in V. Let X, = (z,(t)|t€k); then
U= (X,|aell) is the unipotent radical of Band G = (X, | = a¢cl).

If N= Ny H) then W = N/H is the Weyl group. W acts nat-
urally on V and if n,H=we W for some n, € N we have (n,hn,){a) =
hMw™'a). For acl and 0=teck let n.(t) = xt)r_o(—t " )2.(t) and
Ne = N{l). Then n(t)e N and h.(t) = nt)nz'e H and h(t)(B) =
(AL

The above facts are all well known and can be found, for example,
in [5] and [17].

Now let ¢ be an endomorphism of G such that G, is finite. By
results in [23] we may suppose that o normalizes B and H. Hence
o induces a permutation on /7 which (by slight abuse of notation)
we also denote by o. From the explicit caleulation in §11 of [23]
we may suppose that ¢ is in “standard form,” i.e.,

0(%a(t)) = Tp(t?) for Faell

where ¢, is a power of p. The above formula uniquely determines
the action of 6 on G. We list the distinet possibilities for the standard
form o in Table 1. In column 1 we give the type of X; in column
2 the Dynkin diagram for 77, here “L” denotes a long root; in column
3 a standard notation for o, ¢ is always a positive power of p; in
column 4 the permutation action of ¢ on I7; in column 5 the values
of ¢; = ¢.,; and in column 6 any restrictions on [, p or q.
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TABLE 1
O—0— -0 Jq 1 q l=z1
A i 2 l
oq [(1,D(2,1-1)- - - q 1=z2
L L
B, O=0—-0:— ay 1 q 1=3
1 2 l
L o, 1 q =2
C, O=0—:--—0
1 2 l %04 1,2 291 = q2 1=2,p=2q9=q:
1 I 1
q q
SN 124
Dl /(3)— ——? 204 (1’ 2) q
? 3011 (19 2v 4) q l =4
z <|) 6 Oq 1 q
8 — J— — —
TS || wee q
O7
B| o0—0—b_0—0-0 | 1 ¢
i1 2 8 4 5 6
(l) 8
B 0-0-0-0-0-0-0 | % 1 g
1 2 38 4 5 6 17
Oq 1 q
F O0-0=5—3
4 —_— = — = =
12 3 1 | (Lo | BT P=2¢=aa
) 293 = 2q,
L Oq 1 q
G, O=0
1 2 K2 (1, 2) q1=3¢: P=3,q=qq

be renumbered).

With o as above, if » is a positive integer then ¢" is also in
standard form (except for (°¢,)? in the D, case, where the roots must

If 0 =0, then 0" = 0.

nections between ¢ and ¢" in the twisted cases.

Table 2 gives the con-

TABLE 2
Type of G 7 a”
r if r=even
A Do, By i Z«j r if r=odd
. =
ar if r =0(3)
D 3 K
* 7 Sogr if 7 X 0(3)
agriz if r = even
G Fu Ge % % if r=odd

& but if »r = —1(3), ¢” acts as (1, 4, 2) on II.
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We put 07(G,) = G and use the usual notation to denote these
groups. With 8 exceptions, namely A4,(2), 4,(3), 24,(2), C,(2), 2C,(2),
2F,(2), G4(2), °G4(3), these groups are simple. Also G, is the product
of G and all its diagonal automorphisms. Note that if » = 2 then
|G G,l, = |G G|, # 1.

Keeping the above notation we give two elementary lemmas.

LemMA 1.1. N4 (U, < B.

Proof. If ge Ng(U, then using the Bruhat normal form ¢ =
bn,u. Now Ul =Ur"'CUand also U? CU. For each i1 =1, ---,1
an #,(t) with ¢ # 0 occurs in some element of U,. Now =z.(t)’ =
Ta(t')v where t' = 0 and only z, with B of height =2 occur in v.
Hence w(e;)e X+ all 7. Hence w =1 and so g€ B.

LEMMA 1.2. Let K be a group, G: = K =G,. Then Ci(K)=1
and Ny(K) = G,.

Proof. Let g € Ci(K). By the above lemma, g€ B. Now [g, N,] =
1 implies g € H and identifying H with Hom (I, ¥*) gives g(a;) =1
for =1, .--,1 and so g = 1.

Next let ge Ny(K); then for all ke K, g~'kg = 0(97'kg). Thus
g0(g7)eCy(K) =1 and so geG,. Since G,/G; is abelian we have
Ny(K) = G,.

Finally we mention that our notation from finite group theory
is standard, see for example [13]. In particular we use g° = x 'gx.

(1.8) Awutomorphisms of G,. Let G and ¢ be as in (1.2). In

TABLE 3
G a(g = p") l Coset representatives Aut (Go)/Inn (Go)

Al l g 2 gq Zg X Zf
D, 125 oy, 0 1Z1Sf
E ZUG Z2f

[ Oty 0pi, 30pi 1=s12f SaXZf
D, 20, opi, %0 1512 S Zys

Saq oph, oyt 11 =S Zss
C p=2 q opi, i —1 1Si<f Zyy
F4 p= 2
G. p=3 204 %pi —1 1S4 S Zy
All others aq gyl 125+ f Zs
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particular we suppose ¢ is in the standard form given in Table 1
for a fixed choice of B, H and z.’s in G. Hence G, is finite.

Let A be any endomorphism of G satisfying \o = o)\, then X\
induces an element X\ € Aut(G,). The structure of Aut(G,)/Inn (G,)
is described in [5]. Using these results it is straightforward to
check that the endomorphisms A listed in Table 3 give, via X, a
complete set of coset representatives for Inn (G,) in Aut (G,). Note
that G, is not, in general, simple.

Now suppose A is one of the “coset representatives” given above
and let @ be any element in the coset Inn (G,)x. Thus a = ¢, where
1,(x) = gxg™* for g, xe (..

LEMMA 1.8. Let N\, @ = i,n be as above. Suppose N and a both
have order r and ' = 0. Then \ and & are conjugate under Inn (G,).

Proof. Using N, = ;)\, and Z(G,) =1, a" =" =1 gives gr(g) - - -
NM7(g) = 1. By Lang’s theorem [20] there exists ke (G such that
g = k*Mk). Hence k = M (k) = (k) and so k€ G, and @ = ;'\,

LEMMA 1.4. Let \, @ = i,n be as above. Suppose X\, & both have
order r. Suppose N # o but that N = o for some A\, such that
Ny = X>. Then X and a are conjugate under Inn (G,).

Proof. Suppose X, = A™ for some integer m. Let 8 = a™ then
B = i, », for some ke G,. Since X, and @ both have order r, Lemma
1.8 implies that X, and £ are conjugate under Inn (G,). Suppose
X = ¢ for some integer d then, since A and @ have the same order,
we have a = 8% Hence X and a are conjugate under Inn (G,).

Using these two results an inspection of Table 3 immediately
yields

PROPOSITION 1.1. Let A be as above and suppose N = 1, where
r 18 a prime number. Then, apart from the possible exceptions (i),
(ii) given below, the coset Inn (G,)\ contains a unique class of elements
of order r, under conjugation by Inn(G,), and furthermore there
exists an endomorphism X\, such that N\ = o and X)) = (X). The
possible exceptions are:
o =0, with » =’0,

. _ > > .
(i) G=A10=2),D( =4), E, with {a g, with \ =0, .

o =0, with » = %0
(ii) G = D, with { v !
o =%, with » =o0,.
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Note that » =2 in (i) and » = 3 in (ii). These exceptions do occur;
in fact only for G = A, with I = even is there a single class for
the given . For G = D, the number of classes increases as /2.

We now consider when C = Cy:(@) is a maximal sugroup of G:.
Apart from the exceptions (i), (ii) Proposition 1.1 implies first that
we may suppose a =\, and next, since Cg(A) = Cp2(\,), We may
suppose that A" = 0. Now an immediate consequence of Theorem 1
is that, if C is nonsolvable, then it is always maximal in G°.

In the exceptions (i), (ii) we have a more complicated problem,
especially when 7 = p. Theorem 2 is one step towards a solution.

2. Theorem 1.

(2.1) Statement of results. Let G be a simple algebraic group
over an algebraically closed field &4 of characteristic p = 0. Let M\
be an endomorphism of G onto itself such that the subgroup G, of
fixed points is finite. As discussed in (1.2) we may suppose A\ is in
standard form. If » is any positive integer the endomorphism A\~
is also in standard form. The possibilities for » and the corresponding
A" are listed in the tables in §1.

Recall that G5 = 0?(G,) and, with eight exceptions, is a simple
group. G, is the product of G§ and all its diagonal-type outer auto-
morphisms.

If G, \» are such that G§ is one of the three groups A4,(2), 4.(3),
*Cy(2) we call this an exceptional case.

THEOREM 1. Let G, A be as above and not an exceptional case.
Let M be a finite subgroups of G containing G5. Then there exists
a positive integer r such that (with g = \")

G.SMZG,.

An immediate consequence is that if G, \ are as in the statement
of the theorem and ¢ = \" where r is a prime number then G, N G
is a proper maximal subgroup of G.

The proof of the theorem is given in (2.3)-(2.5). It was necessary
to handle the case G; =*G,(q) separately and this occupies (2.5). In the
general case the proof falls into two parts. In (2.3) we first describe
Ny(U,) (see Lemma 2.3) then use this to show there exists a (unique)
integer r such that, if =\, U, €Syl (M). In (2.4) we combine this
result with induction on the rank of G and show that either (a) the
theorem holds, or (b) M contains a proper strongly 2-embedded sub-
group. Using results of H. Bender [2] we easily rule out (b).



MAXIMAL SUBGROUPS AND AUTOMORPHISMS OF CHEVALLEY GROUPS 371

(2.2) The ewxceptional cases. If G, )\ are an exceptional case
there do exist finite subgroups M such that Gic M c G and which
do not satisfy the conclusion of the theorem. We now describe all
these ‘exceptional’ M.

If G5 = A,(2) or A,(3) we use results of Dickson, see [6]. If
G5 = *Cy(2) we use Suzuki [25] and the recent work of Flesner [11].

A(2): M is a subgroup of a dihedral group of order 2(¢ £ 1)
in G;» = A,(q) where ¢ = 2" and ¢ =1 = 0 (mod 3).

A,3): M is a subgroup of G%: = A,(9) and is isomorphic to the
alternating group on 5 letters.

C,(2): M is either a subgroup of a group of order 4(¢+1"2¢+1)
in G;» = *Cy(q) where ¢ = 2" and r is odd, or else M is a subgroup
of G- = Cy(2") and is isomorphic to a subgroup of the four dimensional
orthogonal group of index one over F..

(2.83) Proof. First part. We assume throughout this subsection
that G, » satisfy the hypothesis of the theorem and also that G, #
*Gy(q). The main technique in proving the following lemmas is the
Chevalley commutator relations together with the known embedding
of U,in U.

The subgroups B, U, H and sets of roots X, I, etc. are as des-
cribed in (1.2).

LemMmA 2.1. Cy(U) = Z(U).

Proof. We call two roots o, 0€X fundamentally independent
if o +0€2 and {p, 0} is a fundamental system in the rank 2 system
(Zpo + Zo)N2. 1If p and o are fundamentally independent, then in G
we have a commutator relation [x.(t), 2, (u)] = @, (Ftu) ---. Note
that o, 0€2 and (0, 0) < 0, then o and ¢ are fundamentally indepen-
dent unless ¥ = G, and o and ¢ are short roots inclined at 120°.

Recall that 6 is the highest root in X*, and 6, is the highest
short root (in the case of two root lengths). Let D ={xe RX|(x, 0) =0
for all 0e€3%} be the usual fundamental domain for the action of
W on RJ3. Since W is transitive on roots of a given length, D
contains exactly one root of each length. Clearly 8 e D; otherwise
for some o€2X*, we would have (4,0) < 0 and so 6 + o€2X. Since
D is also a fundamental domain for the dual root system X*, D
contains the highest root of Y*, whose dual—which is 6,-therefore
lies in D. Thus, for any poe3 — {4, 6,}, there is o€ X such that
(0, 0) <O0.

Hence:
(*) If peZ* — {0, 6,}, then there exist 0 € 3* such that o and
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o are fundamentally independent, unless ¥ = G, and p is the sum
of the fundamental roots.

We also need:

(**) Suppose X has two root lengths, poe X, and 4, < p < 4.
Then 6, + p¢ X, and there exists ¢ € I such that o and o are funda-
mentally independent and 6, + o ¢ 2.

To prove this, note that if ¢ is any long root in X+, then 4, +
o ¢ 2, since otherwise 4, + ¢ would be a short root. In particular,
0, + p ¢ since p(>46,) is long. Now, using (*), choose o€t such
that o and o are fundamentally independent. Since o + a(>4,) is
long, o is long, so 6, + o ¢ 3, as required.

For any ue U, we have u = [[,cs+ %o(t)), to € k. We take all pro-
ducts over 3+ to be in increasing order with respect to J+*. We set
supp (w) = {p e X" |t, = 0} for uec U.

Now consider the case A = g,, where ¢ is some power of p, so
U, = {Il, %.(ts) |2, € GF(q)}. Let u e Cy(U,). We shall show supp (u) &
{6, 6}. Let p, be the least element of supp (%), so

U = xpo(tpo)pg @o(to), to, = 0 .
0

If there exists 0 €3 such that p, and ¢ are fundamentally indepen-
dent, then we get 1 = [u, #,(1)] = @, ..(£t,,) - - -, contradiction. Thus
no such o is available. By (*), either p,€{d,, 6}, or 3 = G, and 0, =
@ + B, where IT = {, B}, with, say, « long and S short. In this last
case, 1 = [u, La105(1)] = Donrss(F8ts)) and 1 = [u, 2(1)] = Tasas(£28,,), sO
3t,, = 2t,, = 0, contradiction. Hence, o, ¢ {f,, 6}. Suppose o, = 6, and
let o, be the least element of supp (u) greater than o, (if supp (u) =
{o). If p,# 6, choose ¢ so that p, and ¢ are fundamentally inde-
pendent and p, + ¢ ¢ 3 (by (**)). Then 1 = [u, #,(1)] = @ 1(£t,) -
contradicting ¢, # 0. Therefore o, = 6, so supp (u) < {0, 6}. If
actually supp (u) S {6} for all ueCy(U,), then Cy(U,) = X, < Z(U),
as required. So we may assume 6, € supp (u), i.e., u = 2, (t)xy(t") with
t #+0. There exist a (short) ce3* such that 0, + 0. We get
1= [u, 2,1)] = @, (£mt) -+, where m =2 if G is of type B, C or
F,and m = 8 if of type G,. Hence m = p and in precisely these
case Z(U) = X, X, 2 Cy(U,), as required.

Next, suppose 3 has one root length, A = 2g, or °c,, and ¥ # A,,.
Let u € Cy(U)), let p, be the least element of supp (u), so

U = xpo(tpo)pg’ @o(to)
0

with t,, # 0. Suppose p, + 0, and choose ¢ € X* such that ¢ and p,
are fundamentally independent. Let Z, be the product of the dis-
tinct images of x,(1) under the powers of A, so that Z,e U, and
T, = 0,(1)2;y(1)-++. The roots s, \(s),--- have the same height, so 1=
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[u, ] = %p1o(Ets,) « - -, contradiction. Thus o, = 6, so u € X,& Z(U).

If ¥=A4,, and M =%, essentially the same argument works,
except that if ¢ + Mo)e 3, we define T, = ¢,(1)%1(1)%01120(b), With
b € GF(g®) chosen to satsfy b + b* =1; if ¢ = \Mo), we define 7, = x,(b)
with b chosen to satisfy b + b = 0. Then 1 = [u, Z,]=2,+(Ets,) " -+
or ®,,.(=xbt,) -+, contradiction, unless o, = 6.

Suppose 3 = C, and \ = %0,. Then ¢ = 2n’, n =27 >1, by as-
sumption. Let IT = {a, B}, with a long. For every te GF(q), let
Z(t) = @o(t)2p(t")Z0sp(t™™) € U,.  Suppose u = [[, z.(¢p) € Cy(U;). Then
1 = [u, Z(t)] = Cars(tts + t"t2)Tayas(tts + t*"t,) for all ¢ € GF(g). Hence
tty + t"t, = tt3 + t*t, = 0. With ¢ = 1, we conclude ¢, = t; = t;. Now
if t, =t; =1, we get t* = ¢* for all ¢t e GF(q), so ¢ = 2, contradiction.
Hence t, =t;, =0, so u € Xoy s Xs105€ Z(U).

Suppose ¥ = F, and M = %g,. We need:

(***) if p,e 3+ — {4,, 6}, then there exist o,0'€ X" and an ele-
ment T, = 2,(1)2,(1) [I, .(t,) of U, such that (i) ht(o) = hi(o’), and
t, = 0 unless ht(0) > ht(o), (ii) o, and o are fundamentally independent,
and o, +0 —0'¢2.

Assuming this, let u € C,(U,) and let p, be the least element of
supp (w), u = @, (t,) -+ If o, # 6, or 6, choose o,0’, and %, as in
(***). Then 1 = [u, ] = 2,,+.{t,,) -+ because the condition p, + o —
o' ¢ ¥ guarantees that the only way to express p, + 0 as the sum
of an element of supp (#) and an element of supp (%, is as p, + o.
But ¢,, # 0, so p,e{f,, 6}. Hence 6, is the only possible short root
in supp (u). Since Mu)e€ Cy(U;), and MH,) = 6, the same argument
applied to Mu) implies that the only possible long root in supp (u)
is 6. Hence ue X, X, = Z(U), and we are done.

To prove (***) we examine X in detail. Let I = {a, @, a,, a},
read from one end of the Dynkin diagram to the other, with «, short.
We write the root 3., n.,@; as nnn.m,. Thus §,=2321 and 6=2432, If
0, € {0100, 0110, 0221, 1221, 1321}, take 0=1000, ¢’ =0001, Z,=x,(1)z,(1).
If p, {0010, 0210, 2431}, take ¢ = 0001, ¢’ = 1000, Z, = z,(1)z,(1). In
the remaining cases, take Z, = z,(1)z,(1)2,..,(1). If p,<€{1000, 0011,
1110, 1111, 2221}, take ¢ = 0100, ¢’ = 0010. If p,< {0001, 1100, 0211,
1211, 2211}, take ¢ = 0010, ¢’ = 0100. If p, € {1210, 2210, 2421}, take
o = 0011, ¢’ = 1100. If p, = 0111, take ¢ = 1100, ¢’ = 0011. Then
(***) is easily verified.

LemMA 2.2. C (U) = Z(U).

Proof. By Lemma 1.1, C,(U,) < B, so by Lemma 2.1, it suffices
to show C(U,) S U. Let U’ = (X,|pe3* — II), define B = B/U’, and
for any A < B write A for AU'/U’. It suffices to show C3(U,) = U.
Now U is the direct product of X, over all pe/l, and X, = X, for
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pell. In particular U is abelian, so C5(U,) = UCx(U)), as B =UH.
Thus it suffices to show Cz(U;) = 1. Suppose ke H and ke Cx(T).
For any pell, there exists we U, such that oesupp (u), say u =
@,(t,) -+, t, # 0. Then, identifying H with Hom (I, k*), I = [k, @] =
z,(t,(h(0) — 1)) -, so h(0) = 1. Thus h =1, as required.

LemMa 2.3. Ny (U, = (B, Z(U)).

Proof. Let g€ N,(U,). Then g *\g)€Csx(U,. By Lemma 2.2,
g7"Mg) € Z(U). Since Z(U) =X, or X, X,) is connected, an elementary
version of Lang’s theorem [20] implies the existence of ze Z(U)
such that g™a(g) = 27'M2). Then gz = Mgz™"), so gz 'eG,. By
Lemma 1.1, g€ B, s0o g2 '€ G, N B = B,. Hence g = gz7'2 € (B,, Z(U)>,
so Ni(U) < (B,, Z(U)). The other inclusion is obvious.

LEMMA 2.4 Let ze Z(U) and suppose (G5, 2> is a finite group.
Then there exvists a positive integer r such that (G35, 2) & G

Proof. First suppose Z(U) is one-dimensional. Thus Z(U) =
{xy(t)|t € k) where 0 is the root of maximal height in ¥*. Choose
neNN{(Xy X4 so that nx(t)n™ = z_(—t). Suppose z = 24(t) for
some fixed, nonzero, tek and put g = nz. On the 3-dimensional
adjoint module for (X, X_,> g is represented by a matrix whose
trace is t? — 1. Since g has finite order this implies that ¢ is algebraic
over GF(p). Suppose teGF(p") then, since we may suppose that
Mxo(t)) = z4(t9), we have (G}, z) & G

Now suppose Z(U) is two-dimensional. First suppose G is of
type C, or F,. Hence k has characteristic 2 and there exist roots
{0,y 0y 0, + 0y, 0, + 20,} € X+ such that Z(U) = {@;,45,(t), s 420,() [t €K
(in fact 9, + 9, = 6, and 0, + 20, = 6). We suppose 2z = @51 5(E.)%s,4+0,(t:)
for some fixed t,t,€k. Put G, = {(x,(t)| =7€{0, d,}, t€k) thus G, is
of type C, and ) fixes G,. Choose n€(G,), such that nwz, (t)n™" =
#_s,(t) and put g = nz. There is a natural 4-dimensional module for
G, on which

-
-

S
»

1
'n——>(1 1 1 ) and z—

-t

This gives t? and ¢, as coefficients in the characteristic polynomial of
g. Since g has finite order ¢, t, are algebraic over GF(Z) and we
are done.

If G is of type G, 2 = @pn 1a)(t))%s0,420,(t:) and choosing n € N, such
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that na.(t)n™" = 2_.(—%t) put g = nz. Compute the characteristic
polynomial for g as represented in the 7-dimensional module for G.
Its coefficients are (t2— 1) and (t{ — ¢ + 1). Hence, as before, we
are done.

LEMMA 2.5. There exists a positive integer r such that, with
p® =N\, we have G, = M and U, € Syl, (M).

Proof. Choose the positive integer » to be maximal subject to
Gi- € M. Without loss, we may assume » = 1, and shall show that
U,eSyl, (M). Suppose U,¢Syl,(M). By Lemma 2.3 and Sylow’s
theorem, there exists z € Z(U) — U, such that (G5, z) S M. By Lemma
2.4, (G, z) & G;» for some n. Hence the lemma follows from the
following statement, which contradicts the maximality of »:

(t) If 2€ Z(U)pm — U, for some n, then (G:, z) 2 G5n for some
m > 1.

We now establish (1). Let K = (G%, z).

Our method is to first study the case A, and use this result
along with the action of N, on the root subgroups of G.. '

Case 0. 2 = A,: If p is odd, (f) is an immediate consequence
of a result of Dickson [7]. Suppose p =2. Then G¢ = (z,(t),
z_,(t)|t € GF(q)) and z = z,(¢t,) for some t, € GF(q") — GF'(q), where
3+ = {p}. Define m by GF(q)t) = GF(q™), so that K< Gym and
m > 1. Now distinet Sylow 2-subgroups in G;» intersect trivially,
so distinct Sylow 2-subgroups in K intersect trivially. Since G; & K
and G; has more than one Sylow 2-subgroup, so does K. It follows
that any two involutions in K are conjugate in K, [13]. In particular,
2,(t) and z,(1) are conjugate in K, hence conjugate in N (U N K).
Hence there are we U, h, € H such that uh,€ K and 2z,(1)** = z,(t,).
Identifying H with Hom (I, k*), we see that h,(o0) = t/>. Hence for
any positive integer [, and any ¢t € GF(q), we may choose k€ K such
that ,(1)* = x,(t), and conclude that ,(tt!) = z,(1)***»'c K. Thus
2,(f(t)) € K for all f[X]eGF(Q)[X]. Hence z,t)c K for all t e GF(q™),
i.e., Umn € K. Then K 2 (U=, N;)> 2 Gi= as required.

Case 1. X arbitrary, » = d,, and Z(U) = X;: Let Gy = (X,, X_,)
and Ky, = KN Gs. Then ) is an endomorphism of Gy, and {(Gy),, 2> <
Ky S (Go)» since z€ Z(U) = X,. By Case 0, (Go);m S K, for some
m >1, so (X,)» & K. Conjugating by elements of N, we get
(X,)m S K for all pe3 of the same length as #. If there is one
root length, this gives immediately Gin S K. If there are two root
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lengths, let o €Y be short and choose ¢ € Y long such that p + o€ 3.
For any teGF(q™),t+ 0, h,(t)e K, so z,(t™") = x,(1)** € K. Thus
(Xo)m S K, 50 K 2 {(X)m|0€Z) = Gin.

Case 2. N =0, Z(U) # X, We have two root length, Z(U) =
(X,,, X7, and the characteristic of k is the strength of the multiple
bond in the Dynkin diagram of 3. Let X°= (Z6, + ZO)N 3, G =
(X,|pe2, K’=G°NK. Then \ is an endomorphism of G°, {(G°);, z) =
K°. If (f) holds for G°, then {(G"), z) 2 (G°)in for some m >1. In
particular, (X,);» S K for p = 6, and 6, and then for all peZ, by
conjugation by elements of N,. Hence in proving (1) we may assume
Y =23 Thus ¥ =C, or G,, with p =2 or 3 respectively.

We take I7 = {«, B}, with a long and B short. Suppose 3 = C,,
so p=2. For every ¥y = &uis(t)Pasos(ts) € Z(U), set Tars(y) =ty
Tarap(y) =t Let b, = 7o o(K N Z(U)), by = Taros(K N Z(U)). Thus k;
is an additive group, GF(q) S k, < GF(g"), + = 1, 2, and k, U k, # GF(q)
as 2¢ U,. Let t,ek,t,ek, and choose u, = Xo s(t)%aszs(t)) € K and
Uy = B 5(62)ai28(t:) € K. Now m4(1), n,(1) € G{ S K, so

(1) xa+ﬂ(t1tz)xa+2ﬁ(t§tz) = [u?“m; u”ﬁ(l)] eK.

Thus tt,ek, tit,ck,, so {t*|tek} <=k, Sk, from the special cases
t,=1and ¢, = 1. But the map ¢t —t* is injective on GF(q"), so k, =
k.. From (1), k,-k, =k, so k, is a field. Thus for some m > 1, k, =
k.= GF(™). For any teGF(q™), we take ¢, =t and ¢, =t and ¢t*
in (1) and conclude ((Xui4)im, (X,100)im) S K. As usual this gives
Gin S K.

Suppose ¥ =G, so p =3. Write z = wu,, with u, € X,,,; and
Uy € Xygrzp. Then w, = [2"M) 2, (1)]*' € K, so u, = zu;' € K. Since z¢
G,, either u, or u,¢ G,, so without loss we may assume 2z = u, Or
Z = Uy

Since G has a graph automorphism commuting with \ and inter-
changing 6, and ¢ we may assume that ze€ X,,.;;. By Case 0 applied
to (Xpuyss X sa—ssy, there is m > 1 such that (X,)m» & K for o =
2c + 38, and then for all long p€ 3. For any t € GF(¢™), K contains
[@a(t), %5(1), %5(L)] = @rop( £ 1) @rs(t ) Teas2p(t”) Wwith ¢/, 8" € GF(q™), so
Zoros(t) €K as a + 38 and 2« + 38 are long. Thus (X,);» £ K for
0 = a + 28, hence for all short o, whence Gij» & K.

Case 3. N = ‘o, or °c,, with G, a Steinberg variation, but % #
A,, (the cases of twisted F,, G,, C, are not being considered here):
In this case Z(U) = X,, so by Case 0, K 2 (X;);» for some m > 1.
Conjugating by N,, we get K 2 (X,)» for all peX fixed by the
twist defining G. Choose such a p and a ¢ not fixed by the twist,
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such that (o, ¢) < 0 (these can be found in 7, for example, joined
by the multiple bond in the twisted Dynkin diagram). Denote the
images of o under the twist by o, (and also ¢, if G, =3D,). Then
2,(6)2,,(t)(-2,,t") € K for all teGF(¢)(GF(¢)). Since K 2 {(X,)in,
(X_p)imy, ho(t)€ K for all teGF(g™), t + 0.

If G, =°D, and m =1 (mod 3), then for all ¢t € GF(¢°) and all 0 =
u € GF(g™), we have (2,(t)a, ()%, ()™ = z,(tw)x, EU)2.,(t"0) =
x,(tw)w, ((tu) ™)z, ((tw)”"™) € K. Hence z,(v)z, (v'") 2, (v*") e K for all v
of the form Y, t.u, with ¢, GF(¢®), u, € GF(q™), that is, for all ve
GF(¢*"). Thus (X,X,X,)m S K, so Gin S K. The case m = —1
(mod 3) is similar, as is the case M = ¢, and m odd.

If G, =°D, and m = 0 (mod 3), we may assume m = 3, and must
prove z,(t) € K for all t€ GF(¢®). Now

w(t, u) = @, (U — w)E)w,(u? — u)t®)
= (@) () ((B)) @ () (™ € K

for all ¢, ue€GF(¢®), so for all ¢, u, ve GF(¢°) with u, v¢ GF(q), K
contains (¢, u)te! T Mgt ) = ,,(y(u, v)ET), where y(u, v) =
w — W — v)(u! — u)™ — (v — v).

Clearly there exist u, ve€ GF(¢®) — GF(q) such that y(u, v) # 0;
fixing these and letting ¢ vary, we get x,(t)e K for all teGF(¢),
as desired. The case \ = %g,, m even, is similar but simpler:
%, (u?* — u)t)) € K for t, uw € GF(¢*), and w may be chosen so u? — u # 0.

Case 4. XY = Al N ="‘g,; For each peZ, let p, be the image
of p under the twist. If pe X and p + 0, € ¥, then G; has a nonabelian
“root subgroup” {@,(t)w,,(t)2,.0,(w) |t, u € GF(g?), t' + u + u? = 0}, If
o€ and p + p, ¢ 2%, then G, has an abelian root subgroup

{@o ()2, (¢) [t € GF(g")}

There exists 7€ 2% such that 7 + 7, =60. Thus (X)), = {z,(u)|u e
GF(¢Y), u + u* = 0}. Choose 0 #* u,€ GF(¢*) such that wu, + u{ = 0.
Then for any weGF(¢®), w +~ w? = 0 if and only if uu,'e GF(q), so
(X); = {@wo(uou,)|u, € GF(q)}. Let K, = KN<X, X 4, so that K,
contains (Xp);, (X_y);, and z. Let h = hy(u,) € H. Then K% contains
{z.6(u,)|u, € GF(q)}, canonical generators of A,(g), and also contains
2" = w4(t) for some t ¢ GF(q). By Case 0, there exists m > 1 such
that K} contains {z.,(u,)|u,€GF(q™)}. In particular, K, contains
Zoo(w)" ' = Beo(wou,) for all u, € GF(q™)-ho(u,) € K for all u, e GF(q™),
s0 ho(u) = ho(u)* ‘e K, for all u, e GF(¢g™), u, # 0. For any t, ue
GF(q%) satisfying t'** + u + u? = 0 and any u, € GF(¢™)*, we conjugate
@ (t)x., (t)zs(u)( € G;) bY hy(u,) and get

w(t, u, ) = (), (Cu)r(uni) € K .
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Suppose m is odd. Then t'w, = (tw,)* and tu,(tu,)™ + wud +
(uud)™ = tut'u, + wul + uwui=E""+u +ud)ul=0, so x, u, u)e
Gmm. Now every element of GF(¢*™) is a sum of elements of the
form tu, with t€GF(¢®), u,€ GF(q™)*, so for every teGF(¢"), K
contains an element of the form w.(t)x. (t")wy(w) with 9" + u + u?" =
0. Since K contains x,(u,u,) for all u, € GF'(¢q™), it contains z,(v) for all
v € GF(¢*") satisfying v+v"=0. Hence K contains {x,(¢)x,, (t*")x,(u)|t,
u € GF(g*™), 7" + u + u" = 0}, a nonabelian root subgroup of Gm.
Conjugating by N,, we see that K contains all nonabelian root sub-
groups of Gm. If m =1, we are therefore done. If n > 1, there
exists Y€ 2 such that v + 7,¢ 3 while v + 6, 7, + 6 € ¥ (for example,
—vyell, with —7 at an end of the Dynkin diagram). Then for all
teGF(¢), u, € GF(q™)*, we have w,(tu)x, ((tu)™) = @, (tu,)x, (tu,) =
(), (t)) o € K. It follows that x,(v)x, (v*)" € K for all v e GF(¢*"),
so K contains an abelian root subgroup of G;». Hence K 2 Gin,
as required.

Suppose m is even. We may assume m = 2, and shall prove
G2 K. Let 7,7 be as in the previous paragraph. For any te
GF(¢*) and u, € GF(¢°)*, we have x, = x,(tu,)x, (t'u,) = (z,(t)z, (t9))*™ e
K, and also &, = x/(tu,)w, (tu,)?) €G; & K. Hence x, (t'(u{— u,) =
w27t € K. Fix u, such that u! # u, and let ¢ vary; we get (X,).S
K. Similarly, (X;):<S K, so conjugating by N, we get (X,)2S K
for all pe X such that o + p,¢¥. Also, we have x,(u,u,) € K for all
u, € GF(¢®). Since u, was chosen in GF(¢%) and wu, # 0, (X,);: C K.
Hence (X,)S K for all pe X with p = p,. For any teGF(g®) there
is weGF(¢®) such that =, = w.(t)x.,(t)2s(w) € G;. Let u,cGF(¢%".
Let », = ;o™ = x.(tw,)®. (t'u,)xs( ) € K and choose u' € GF(g’) such
that @, = w.(fu)o. ((tu,))2e(u’) € G;. Then . (E9(uf — u,) = v@'wy( ) €
K. As above, we get (X.):<S K. Conjugating by N, (X,):S K
for all pe X such that o0 + p,€X. Thus (X,):S K for all peX, as
required.

Case 5. ¥ =CyN="0,,q>2: Thus ¢q=2¢,q,=2">1. We
take Il = {a, B}, with B short. Let .5 be the additive group kP k.
For (¢, t,) € S set x(t,, t,) = Tays(t)Tursp(t,). For any subgroup J of
G set &4 = {(t, t)|x(t, t,) €J}, an additive subgroup of .2 Thus
Gy = (6,19t € GF(q)}).  Since z€ Z(U) — Gy, %,C % S oy
Also, let n, = (n(1)ns(1))’ € G, so that z,(t) = z_,(t) for all pe X,
tek, and also ni = 1. Finally, for any ¢, t,€k®, let h(t,t,) be the
element of H which takes « to t%;* and 8 to t;'t,. Thus (¢, £,)" " =
x(tfwu tzuz)-

Suppose (¢, t,) € % and tt, = 0. We show that k(¢, ¢,) € K. First
Cy(x(t, t,)) € B, for if ge Cy(x(t, t,)), we write g = bnu in canonical
form and get (¢, ¢,)" € X,.sX,.0s, 50 n€ H and g€ B. On the other
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hand, Cy(n,) = 1as UN U™ = 1. Hence 2(¢, t,) and %, do not centralize
any involution of G in common. If follows that z(t, ¢,) and =, are
conjugate in the (dihedral) group <z(t, t.), n,), hence also in K.
Similarly, #(1, 1) and », are conjugate in K. Thus «(¢, ¢,) = =(1, 1)?
for some ge K. Writing ¢ in canonical form, we see g = uh(t, t,)
for some we U. However, BN K =(UN K)HNK). To see this,
choose teGF(q),t# 0 or 1, and let h = h(, t*)eG, < K. Then
Cy(h) =1, so Cx(h) = H. By the Schur-Zassenhaus theorem, BN K
has a subgroup H, such that BN K=(UnK)H, UNKnNH,=1,
and he H,, Then H, is abelian, so H,< Cyz(h) = H, so H = HN K.
Since ge BN K, h(t, t;) e HN K S K, as claimed.

Thus, if (¢, t,) € %, (U, u,) € %, and u,u, = 0, then (¢, u,, t.u,) €
%

Suppose now that no element of &% has the form (0, ¢) or (¢, 0)
with ¢ #0. Let &4 = {t|(@, u)e.S% for some u}, and define the
function @ on &4 by the condition (¢, o(t)) € %. Since &4 is an
additive subgroup of GF(q"), and GF(q) .4, the last paragraph
implies that .4 is a field, so . = GF(¢g™) for some m >1; also, @
preserves multiplication, so is an automorphism of GF(¢™). Thus for
some d = 2%, d < g™, % = {(t, t%) [t € GF(g™)}. Since .S, S %, t¢ = ¢
for all teGF(q). Let z, = 2.(1)xs(1)%..s(1)(€G;). For each ¢, ue
GF(g™)?, K contains [w}®*Y, k] = w(w, w,) where w, = t* %' 4
UL w, = 2y + 2922, By the above w, = wf. In the special
case u = 1 this yields (¢7¢ + ¢t~ #+*43)(t# 4 *) = 0. Fix t. We wish
to show ¢t + t* = 0. Suppose t* + t*** = 0. For any u € GF(g), u® =
#*%; with the equation w, = w?, this gives (t>7¢ + t* ) (u'~% 4 u*0 ™) =
0 for all u € GF(q)*. Since ¢ > 2, also ¢ — 1 > 3¢, — 2, so for suitable
%, the right hand factor does not vanish. Thus ¢*¢ = ¢*~%, Hence
2+t = ¢ + 3% = 0 anyway. So t*=t* for all te GF(q™). Let
d, = 1/2d; then t*% = t, which implies that m is odd and HN K 2
{n(t, *)|t € GF(g™)} = H;». Conjugating elements of U, by those of
Hn, we find Uyn S K, 80 K 2 {Ujn, 1,y = Gim.

Finally, suppose .&% contains an element of the form (¢, 0) or
(0,¢t) for some t = 0. We show that K 2 G;.. This is equivalent
to K* 2 G2, so without loss we may assume (0, t) € %, 1.e., Zayss(t) €
K. Then K 2 (@aios(t), M) 80 g = N(1)Basos(t) = Na(1)Natos(1)2ass5(t) €
K. A 2 x 2 matrix calculation shows that 7,..,:(1)%..5(t) has odd
order e. Since it commutes with %.(1), 7.(1) = n.(1)° = g°€¢ K. For
any u, v€ GF(q), 2(u, w**) e K and z,(v) = 2,(v)2:;(v)2,. ;v € K, so
2(uv, uv) = [o(u, u)"", x(v)]e K. Replacing u by wv and v by 1,
we get x(uv, uv®) € K, S0 &u5(u*(v* + v)) € K. Since ¢ > 2, v exists
with v* + v # 0; this gives (X,.):z S K. It follows easily that
(Xarp)e S K. Hence 7ai5(1) € ((Xarp)iz Moy S K, 50 K 2 {(Xarg)as
Na(1)y Wars(1), Ny = G
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Case 6. X = F, N ="', Here q = 2¢}, q, = 2. We notate ele-
ments of ¥ as in Lemma 2.1. Then X* is partitioned into 4 subsets
giving root subgroups of U, of type *C, ({0100, 0010, 0110, 0210}, {0011,
1100, 1111, 2211}, {0211, 1110, 1321, 2431}, and {0111, 2210, 2321, 2432})
and 4 subsets giving root subgroups of type A, ({1000, 0001}, {1210,
0221}, {1211, 2221}, and {1221, 2421}). Z(U) = X3 Xos. Let & =
k@®Ek, for each (t,t,)e.o” set z(t, t,) = Xusu(t)%uus(t:), and for each
subgroup J of G set & = {(t,t)e S |x,t)eJ}. Thus &%, =
{¢, t*)|t € GF(q)}, where ¢ = 2¢;, and 5%, C % S S%;a-

We show that if (¢, ¢,), (u,, u,) € 5%, then (t,u,, tiu,) € 5%. Namely,
conjugating x(t, t,) and x(u,, u,) by appropriate elements of N, (ZK),
we get o0(8)%o0(te)s (U )30, (%) € K, 80 2(tyuy, Biy) = [Bo0(t)Toniols)s
Ly01(U) sy (Ua)y Tro0o(1)Zo0ei(1)] € K. In particular, since (1, 1) € .%%, the
map @: (¢, t,)—(t, t?) is a permutation of S%. For (¢, t,), (u, u,) € . 5%,
let (2, z,) = @ (¢, t,). Then (t.u,, tu,) =(2u,, 2u,) € %, s0 % is closed
under multiplication. Since @ maps &% to itself, %S GF(q"PGF(q™)
for some m, and %% projects onto both summands.

If 5% contains no element of the form (0, ¢) or (¢, 0) for ¢ = 0,
then the map : GF(q™) — GF(q™) defined by (¢, v«(t)) € &% is an auto-
morphism of GF(g™), so % = {(t, t¥)|t € GF(q™)} for some d = 2°.
Since %%, C %, m > 1. Since o(t, t9) = (7, t9) € S%, we get t¥ = ¢
for all teGF(q™). Hence m is odd and K contains (Z(U));». Con-
jugating by N,, we see that K contains(Z (U,)),» for any nonabelian
root subgroup U, of U. Hence for all ¢t € GF(¢™), K contains

[ xOllO(t)xOZIO(td)’ xuu(l)xzzu(l)] ’

which, modulo terms in (Z(U,)),» for various nonabelian U,, equals
%130, (t) 0, (t9). Thus K contains (U,);» for all abelian root subgroups
UP' Hence K = <(X1000X0001)1m’ Nl> =2 {hmoo(t)hooox(td)[t € GF(qm)}- COD-
jugating %o.00(1)%o0ie(L%0(L)( € G;) by these element yields

'(XomoXoowXouoonw)lm ; K .

Hence K 2Um, 50 K 2 Gim.

If % contains an element of the form (¢, 0) or (0, ¢) with ¢ = 0,
then since @ maps &% to %, &% = GF(q) @ GF(q). Hence K contains
(Z(U,));z for all nonabelian root subgroups U, of U. From the com-
mutator [2,.,(t), £,,(1)] we see that K contains (U,);: for all abelian
root subgroups U, of U. If ¢ > 2, we apply the argument of case
5 to the group generated by a nonabelian root group and its negative,
and conclude that (U,);: € K for all nonabelian root groups U,
whence G:: S K. If ¢ =2, a direct examination of Cy2)(=S;, the
symmetric group) shows that 2C,2) and a Sylow 2-center generate
C,(2), whence (U,);: € K for all nonabelian root groups U,, so again
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s © K. This completes the proof of Lemma 2.5.

(2.4) Proof. Second part. We continue with the assumptions
given in (2.3). As a consequence of Lemma 2.5 we have a unique
¢ =\ such that G4 S M and U,eSyl,(M). Put K=G,NM. In
this sub-section we will show that K = M. Apart from the *G,-case
this will complete the proof of the theorem.

We use induction on the rank of G. The first step is when G
is of type A,. Since ¢ +# 0, 0; we see from [6] that in this case
K= M.

The induction will be applied to the components of semi-simple
groups which occur in parabolic subgroups of G and, when p # 2,
in centralizers of involutions in G. Since such components may have
the same rank as G we perform the same rank as G we perform
the induction among groups of the same rank in the following order,

A<D G)<(BE)LF.

This partial ordering insures that the induction procedure is valid
when the above described subgroups hare the same rank as G.

To begin, we review some elementary facts. Let S be a con-
nected, semi-simple, algebraic group and z an endomorphism of S
onto itself with §,, finite. Since ¢ must permute the components of
S we have a unique decomposition S = F\F, ... where F,n F, <
Z(S) for i # j and each F, has the form

§ = Apd) .- (&)

with p#*(A) = A and A a component of S.

For X one of S, F, A put X = X/Z(X) and note that # is naturally
defined on S and F and ¢ on A. It is easily seen that F; = Aj.
and that the images of S: and N3(S%) in S are, using an obvious
extension of Lemma 1.2, respectively S; and S,.

The purpose of the next lemma is to extend the conclusion of
Theorem 1 to the case where G is replaced by a semi-simple group
S. This lemma is used in the proofs of Lemmas 2.8 and 2.9. In
the situations there the assumption (i) below will hold because of

our induction hypothesis.

LEMMA 2.6. Let S be a connected, semi-simple, algebraic group
and p an endomorphism of S onto itself with g,, finite. For a
component A of S put A = AJZ(A). Assume that

(i) For each component A of S the conclusion of Theorem 1
holds with G replaced by A and N\ replaced by p*, where n is the
length of the p-orbit containing A.
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(ii) L is @ finite subgroup of S satisfying S:SL and |L: S sle=L1.
Then L normalizes S,

Proof. Put S=258/Z(S) and L =L2(S)Z(S) then since
N:(8:2)2(8)/Z(S) = 8, it suffices to show that L < S,.

Suppose first that the components of S form a single p-orbit.
Thus S= A X B where A is a component and B = g(4) X «++ X
¢ (A) and p*(A) = A. If n =1 then B=1. Now BL N A is finite
and BS;N A = Aj» and hence |BL N A: Ax|, =1. By assumption
(i) we have BLN A< A,.. Hence L normalizes S, and so L S S,.

~ We now use induction on the number of t-orbits of components
in S. Suppose S= FE x F where E, F are nontrivial products of
p-orbits, Then S,=FE, X F, and S, = E, X Fi. Again we have
ELNF finite and ES. N F = F; and hence |[ELNF:F:|,=1. By
induction ELNF S F,. Similarly FLNEZ E,. Hence LS (ELNF)X
(FLNE)S F.x F,=8,.

NoTE. In the two situations where the above lemma is used
assumption (i) fails to hold only if A4, ¢ are one of the 8 exceptional
cases described in (2.1). Furthermore n =1 except in one special
occurrence in Lemma 2.8 with G =F,2) and S of type A4, X A,.
If S has an orbit E containing a component A such that A, ¢~ do
not satisfy assumption (i) we call this an exceptional orbit (and E =
A except for one case). From the last step of the above proof we
see that if £ is an exceptional orbit the conclusion of the lemma
still holds provided FL N E normalizes E;. Now LNE<FLNE
and by inspection of the cases in (2.2) we conclude that if LNE
normalizes E; then FL N E must also normalize Ei. We may conclude
that if E is an exceptional orbit of S then the conclusion of the
lemma still holds provided L N E normalizes E:.

LEmMmA 2.7. MNB= KN B.

Proof. Since U,eSyl, (M) we have MNU = KNU and hence
MnB= N,(U,), using Lemma 2.3. Let ge M NB, since B, = H,U,
we may suppose that g = hz where he H, and z€ Z(U). If heM
then ze Z(U)N MU, and so ge K.

If h ¢ M we argue as follows. First suppose Z(U) is 2-dimensional.
In such a case it is is always true that G, = G and hence H, & M.
Thus we may suppose that Z(U) is one-dimensional. Thus Z(U) =
(x4(t)|t € k) where 0 is the root of maximal height in ¥*. If G is
not of type A, or C, 1 = 2, then @ is either a fundamental weight
or for A, 1 = 2, the sum of two distinct fundamental weights. This
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implies that there exists h, € H N G such that A,(6) = k() and hence
[h7'h, 2] = 1 (here we identify H with Hom (I, k¥*)). Since HN G, &
H.N\ M, hi*hze M 0 B and since h7'h and z have coprime orders ze
M N B. Hence ze U, and again g€ K.

If G is of type A, we quote L. Dickson [6].

If G is of type C, let z = w4(t) for some fixed tck, where 6 =
a, + 2a, + «-- + 2a;, We may choose h, € HN G, such that if &k, =
h,h then, for some sek*,

hz(al) =38 hz(az) = = hz(al) =1.

Let w, € W denote the reflection corresponding to a,€ll. Put n, =
n,, €N and m=m,---n,. It is easily checked that mnh,en™ =
ha.(£t)e M N B. Now h. (£t)hwe(t) = hiwa, (£s7't)e(t) and since
hie M therefore x,(xs 't)x,(t)c M. Since MNU =U, we have z =
xs(t) € U, and so g€ K.

Let X be a subgroup of the finite group Y. Reecall that X is
said to be strongly p-embedded in Y if | X N X¥|, =1forallye Y — X,
Using Sylow’s theorems we see that X is strongly p-embedded in Y
if and only if N(T) < X for all 1 # T & S where Se€Syl, (X). The
‘only if’ part is clear. Conversely, take yeY — X and assume
pl]|XNXY. Let PeSyl(Xn X¥. Then N,(P)< X, so that Pe
Syl, (X¥). Therefore P, P*"' e Syl, (X) Z Syl,(Y) as well. Choose ¢
X with P = P**. Thus yx e Ny(P) S X, so that y € X, as required.

LemMmA 2.8. K is strongly p-embedded in M.

Proof. Let 1+ T, then a theorem of A. Borel and J. Tits
[4] implies the existence of a parabolic subgroup P C G such that
P is fixed by ¢ and Ng(T) € P. Without restriction we may suppose
B< P. If PC B by Lemma 2.7 we have N.(T) S K. If P+ Blet
R = radical of P and put S = P/R. S is a connected, semi-simple,
algebraic group and g acts naturally on it. Put i = (M N P)R/R,
KE=(KNP)R/R then St K < N;(S:). If S has no exceptional
orbits Lemma 2.6 says that M normalizes K. By Lemma 2.7, since
R< B, we have MN R = KN R. Hence MNP normalizes KNP
and so, again using Lemma 2.7, MNP = (KNP)N,,»(U,) = KN P.
Hence K is strongly p-embedded in M.

Suppose next that A is an exceptional orbit in S. By the note
following Lemma 2.6 we must show that / N A normalizes K N 4.

Let V' be the unipotent radical of P and put W =V/V'. Let W,
be the image V, in W. Since V’ is closed and connected an argument
similar to that in Lemma 2.3 shows that W, is just the fixed points
of the endomorphism vV’ — p(v)V',ve V, of W.
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Now V.= KNV =MNV so MN A normalizes W,. Hence for
all ke MN A, kp(k) centralizes W,. Our aim is to show that C3(W,) S
Z(A). This will immediately give M N A & N3(4,) and since N5(4,) =
N3(K n A) we are done.

To compute Cy(W,) we may suppose P is maximal, subject to
P) = P. Let 4bea proper subset of I7 such that I — 4 contains
no proper u-invariant subset (note that g permutes 7) then

P=/(x(t)|veXr or —ve4,tek)

and the choice of 4 is further restricted by requiring A to be a
component of S = P/R. The possible cases are easily listed: except
when G is 2A4,(l = odd), *D,, *F,. II — 4 is a single root, say «, and
A is the image modulo B of ((2), 2_g(t)|t k) some Bed. In this
case an A-invariant, p-invariant submodule W, of W has basis

g D)|Y=a,a+ B, a+ 28, ---}modV’.

It is easily seen that C3((W.),.) < Z(A).

When |IT — 4] = 2, A is again of type A, except for the F, case
when A is either of types A4, X A, or C,. Again a suitable A- and
p-invariant sub-module W, C W is easily found such that Cy((W).) =
Z(A). For example in the 2F, case with A the image modulo R of
{xs(t)|B = *a, +a, tck) let W, have basis

{z,(1)]|7 = @, a5 @, + a,, @ + @}

then (W), has basis {2, (1)%e,(1), Taysa,(1)Tayra,(1)}.
LeMMmA 2.9. K is strongly 2-embedded in M.

Proof. By Lemma 2.8 we may suppose p # 2. If the lemma
is false then there exists a teIlnv(K N K™) for some meM — K.
Now Cg(t) contains a unique, maximal, semi-simple, connected algebraic
S, [18]. Since we may suppose G is not of type A, S = 1. Since
¢(t) = t, ¢t normalizes S and hence S: = SNK<SnM.

Since all p-elements of Cy(t) lie in S we have S N K|, #1. By
Lemma 2.8 |[K N K™|, =1 and hence 0*(SN M) & S n K. However
if S contains no exceptional orbits Lemma 2.6 implies 07(S N M) <
S N K, contradiction.

If 4is an exceptional orbit of S then A is of type A, and p=
3. If AN M does not normalize A N K then from the list of excep-
tional cases in (2.2) we see that A N K is not strongly 8-embedded
in AN M. But then K is not strongly 8-embedded in M, contradicting
Lemma 2.8.
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LEmMMA 2.10. K = M.

Proof. Suppose K # M, by Lemma 2.9 and a theorem of H.
Bender [2] either the Sylow 2-subgroup of K is cyclic or quaternion
or K is solvable. Using ref. [8], [12] and a theorem of Burnside
we see that K has no non-abelian simple subgroups. Since K con-
tains [G, Gi] it follows that G, is 24,(2).

Let ¢ eInv K then K = 0,(K)Ck(t) and 0,(Cx(t)) = 1. By Lemma
2.9 Cx(t) = Cy(t) and so by [12], M = O,(M)Cx(t). Then O,(K) <
0,(M) and C,, ,(t) S 0,(Ck(t)) =1 so O,(M) is abelian. Hence M <
Ng(0,(K)) and now a direct calculation yields N0, (K)) = G.. So
K = M, a contradiction.

(2.5) Proof. *G,case. In this subsection G is of type G, and
N = %0, where q¢ = 8¢} q, = 8. For this case we give a direct proof
of the theorem by analyzing the structure of C,(j) where j is an
involution in G,.

Proof. We let ¢t be the highest power of A such that G. < M,
and show that M = G,.. Without loss, we may assume g = )\, since
the various powers of \ are %, and o, and the o,,-case has
already been done.

We take I = {a, 8}, with a@ long and choose notation so the
commutator formulas are as in [15]. Let j be the element of H
such that j(a) = j(8) = —1 and let C = Cy(j). Thus kerjn2* =
{fa+8 a+ 38}, so C = L,L,, where L, = (Xarpy X_wp)y Ly = <Xa+3ﬂ’
X ooy Ly, L) =1, L, N L, = Z(C) = {j), and each L, is isomorphic
to SL,(k). Clearly jeG,. For any subgroup J of G let C, = C,(j).

Put 2%(t) = @0y s(t)Tayss(t®°) and define z*(¢) similarly, and let L =
(@¥(t), z%(¢)|t € GF(g)). Then L = PSL,(q) and C,;, = L x {j).

Suppose C, & N¢(C;,). Let Ty, Ty, and Ty be Sylow 2-subgroups

of Cg, Cy, and Ny(C;,), respectively, such that T,, & T, < Ty. An
easy computation shows Ny(Cgy,) = TyCy,, Ty is nonabelian of order 16,
T, is elementary abelian of order 8, and |N;,(T¢,)/Ce,(Te,)| = 21. If
Ty = Ty, then |Ny(T:)/C.(Ts,)| = 42, which is absurd since GL(3, 2)
has no subgroups of order 42. Thus T, C Ty, so Cy = T,Cs, = C,.
By a theorem of Walter [28], |M|=|G,|, so M = G,, as required.
Thus, we may assume C,, £ Ny(Cs,).

Let C = C/{5), and for any A S C write A for A(j)/{5>. Then
C = L, x L, L, isomorphic to PSL,(k). Let 7, ¢ = 1,2, be the pro-
jection C on L,.

Suppose 7,(L) £ C,. Since L < C,, also n(L) < C,. Since je
Cy, we get z,(t)e M for p = +(a + B), =(a + 3B), and all ¢t € GF(q).
In particular, n..,(1) € M. Now U, contains an element
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T = xa(l)xﬁ(l) ctt

S0 M contains [2, Z,.:5(t)] = Xyarss(+t) for all t € GF(g). Conjugating
by N, we find x_,, .;(t)eM for all t€GF(q). Hence M contains
Noursp(l).  Since W = (W,i s, Woasssy, M covers N/H. As {(Xuis),
(Xarsp)zy & M, it follows that G, & M. Thus, we may assume
n(L) & Cy, and similarly, n(L) & C,,.

Suppose next that 7,(C,) is not solvable. Now (L) = (L):2,
so either 7,(C,)’ = (L,);en for some m, or else ¢ =3 and 7,(C,) =
4,, the alternating group. To see this observe that since 7,(C,) is
finite its inverse image in L, is a finite subgroup of SL,(%) and so
is conjugate in GL,(k) to a subgroup of SL,(3’) for some f. Hence
for purposes of identifying 7,(C,) up to isomorphism, we may assume
it lies in SL,3%). If 3*)|x,(C,)|, the argument of Lemma 2.4 shows
that 7,(C,) S (L) for some » and Dickson’s results [6] may be
used. While if 3} |x,(C,)|, these results imply 7,(C,) = 4,.

If n,(C,) = A,, then CMNL, x(C,) and (L) & C, imply C, N
L,=1. Hence r, (C,)/C, N L,= A,, so m,(C,) is nonsolvable. Applying
the above argument to 7,(C,) yields 7,(C,) = A4;, hence C, = A, so
Cy=2Z,x A,. Since M contains G, = 2G,(8), all involutions in C,
are M-conjugate in this case, so by a theorem of Janko [19], 3*} | M|,
which is absurd as G, < M.

Hence, 7,(C,)* = (L,)%n. Since we are assuming that =,(C,) is
not solvable this group is simple, so as in the A, case we get 7,(C,)° =
(Ly2m, CynNL,=CyNL,=1. If m =1, then L < C, implies L =
Csy, so Cy © N4(L), contrary to what was shown above. Hence m >
1. Now C is defined by an isomorphism between the 7,(C,)°, which
restricts on 7 (L) t0 @.iwip(t) = Tuitarsn(@®). From the well-known
classification of automorphisms of PSL, there exists d = 3° such that
Cs = (TX(t)|t € GF(q™)), where we define 2*(t) = Fiass () iassn(t?) and
x* is defined similarly. (This extends previous notation; ¢* = t*® for
t€GF(q).) Hence C; = (z%(t)|t € GF(q™)). Set h*(t) = huys(t)horsp(t?).
Since [L,, L,] = 1, C contains h*(t) for all t e GF(q™).

Let z, y and 2z be elements of G, of the form ¢ = z. (L)1) -+, ¥y =
Tt p(D)Zarap(1) =+ *y 2 = Barp5(1)W2asas(1), then for any ¢, weGF(g™)*, M
contains the following elements:

(1) oM = () -y U = G (W) ) -
(2) [,y O] = @y s (E8 T U) Ty 5o(E° )

Since every element of GF(¢™) is a sum of square, M contains
(3) ot 2p (87 U) Do 007

Replacing # by ut®* and ¢ by 1 in (8), and multiplying the resulting
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element by the inverse of (3), we get

(4) Taasss((B7F — t*Nud) e M .

Also, M contains

(5) [64°, 8] = st = 645 — 879 -

Suppose t* = t} for some t,€ GF(q™). From (4), %,usss(t) € M for all
t € GF(g™), and then from (38), @...s(t)€ M for all ¢. By (1),

Bors(U)Parap(u?) € M ,

and by (5), X s(t*% — t9 )@y 55(t% " — t*7%) € M. Substituting £*-¢ — ¢¢!
for u and multiplying by the inverse of this last element,

wa+3ﬂ(t3d—dz . tdz—d — t3d-3 + ta—d) eM

for all te GF(q™). Since Cy N L, =1, the expression in parentheses
vanishes identically. This yields

(6) (E — e 4 7Y =0

for all ¢ € GF(¢q™)*. On the other hand, since M contains (X,..s)m,
(X,ar5p)22m, and an elment of N, (H) taking all roots to their negatives,
M contains ﬁ(t, U) = Rgyop(t)yars(w) for all ¢, w e GF(¢g™)", so contains
yhew = Doy s(E* U)X aysp(tu’) - - -, hence contains @, ,(t*u)2.s(tu®). Since
CynL,=1,i=1,2, it follows that tu® = (tu)* for all ¢, u € GF(q™).
Hence u? = u® (taket¢ = 1) and ¢** = ¢ (take v = 1). Therefore t* = ¢*
and t°=1¢ for all teGF(@™), so ¢ =83 and m =2. For any te
GF(9) — GF(8), we get t* = t*, and so by (6), t¥*** = —1. But the
left side is t**** = 1, contradiction.

Hence t** = ¢* for all te GF(¢™). This implies that m is odd,
and Cy = Cpn. Hence M N Gjpm 2 (Cpm, G;) D Cpm. It follows from
Walter’s theorem [28] (applied to M N Gpzn) that |[M N Gen| =
|Gyem|, i.e., M 2 Gum, as required. Hence we may assume =,(C,)
is solvable, and similarly that 7,(C,) is solvable. In particular, ¢ =3.

It follows from Dickson’s results [6] that 7,(C,) = Nzi(fl) =S,
the symmetric group for ¢ =1,2. If 9||C,|, it follows easily that
z(L) x n(L) < C,, contrary to what was shown above. Thus C,
has Sylow 3-subgroups of order 3. Since C, & NE(C’GZ), C,, must be
an extension of the central product Q:*Q, by either a group of order
3 or the symmetric group S,. Let by a Sylow 2-subgroup of C,.
It is easily verified that Z(T) = {j). Hence T is a Sylow 2-subgroup
of M. Since {(j”) 2 (G;)’, which is perfect, O, (M) =1. Now T, is
elementary of order 8, and all its nonidentity elements are conjugate
in M (indeed in G,). Since je T, and 0,(C,(4)) = 1, it follows that
0, (M) = 0,(Cy(@))|1€ T% =1. Let M, be a minimal normal subgroup
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of M. Thus M, is the direct product of isomorphic nonabelian simple
groups. By [8],[12] and and a theorem of Burnside, each simple
factor has 2-rank at least 2. However, one sees easily that T has
2-rank 3. Hence, M, is simple. From the structure of 7, we see
that T; = C(T), and | Nz(T;)/T:| = 4. On the other hand, since {j) =
Z(T), j € M,, and so (G)' = {j*) S M,, so | N, (T»)/T;| is divisible by
7. Since Ny (T3)/T: <I Nu(T3)/T;, a subgroup of GL4(2), it follows that
Ny (T)/T; = Nu(T))/T; = GLy2). In particular, |T| = 2% so |T| = 2,
and also T & M,. Hence M,2 T[T, Cy] = C,. By the the Frattini
argument, M = MN(T) = M,Cy, = M,, so M = M, is simple.

Quoting the classification of finite simple groups in which the
centralizer of an involution (in the centre of Sylow 2-subgroups) is
isomorphic to C,, we find that the only such group which in addition
has a subgroup isomorphic to G, is the alternating group A, (see,
for example [14]). Hence M = A,.

Let S be a Sylow 3-subgroup of M containg U,. Then |S| = 3¢,
so U;<8, i.e., SSNy(U,). By Lemmal.l,SCB,soSCU. LetU =
X5 Xor38Xur28Xonrsse Now S is the wreath product Z, Z,. 1t follows
easily that S'=U;NU" = (@ass (D)%arss (1), Batos (1) Toars5 (1)), and also
that S is generated by U, and an element z € C,(S’) of order 3. The
only such z lie in U’, so S =U,(SNU’). Hence |S:SNU’'| =8. Let
U= Z(U) = X445 Xo0155. Then U'JU? = Z(U/U?, so SNU'ISNU*S
Z(S/SNnU?, so S/SN U*? is abelian. Hence S’ < SN U< Z(S), con-
tradiction. This completes the proof.

3. Theorem 2.

(8.1) Statement of results. As in previous sections G denotes
a simple algebraic group over an algebraically closed field & of charac-
teristic p # 0.

We wish to examine certain 7 e Aut (G,) and determine the sub-
groups of G, lying above Ce (7). We cannot restrict ourselves to
induced on G, by an element of the form g-), where A" = ¢, 0 <n e
Z,9¢€G,. Forexample, let G = Ayk), ! =2, ¢t =*0,. The “field” (or
“graph”) automorphism 7 of 0*(G,) = 2A,(q) = PSU(l + 1, g) does not
have the above shape. Indeed, it is induced on G, by Ae Aut (G),
» = 0,. Thus, to examine questions of this type, we must consider
pairs of commuting endomorphisms A, ¢ of G with G; and G, finite.
Then some power of \ centralizes G,. We may suppose that g, )
are in standard form (see 1.2) and put G,,; = G. N G,

THEOREM 2. Let G be as described above. Let r > 1 be an integer
and N = 0, Ut = 0y Where G possesses o graph automorphism of
order se{2, 3} and s divides 7.
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Let M be a group, 0% (G,,) £ M < G,. Then precisely one of
the following holds if r is o prime (i.e., r = s)

(1) G, =C,2", G =A,.(27), O"(M) = *A,,_.(2"), M|O*(M) s
cyclic of order dividing 2™ + 1, n = 2.

(2) M= G

(3) 0"(G)=M

(4) »p=2, G, =2Cy2), G. = *Cy2"); M lies in a a unique max-
imal subgroup M, which is a Frobenius group of order 4(2"+£27/2+1)
and G, = 2Cy2") for odd r = 5.

(5) p=38,G,,=PGL(2,3), G, =*4,8)=U,38), G1,, <M< G, M=
PSL(2, 7),

(6) »=05,G,, = PGL(2,5), O(G,) = 24,(5) = Uy5), G1,. < M, <
O"(Gy,v1=1,2, M, = A,, M, = M,,.

Furthermore, if r is mot assumed to be prime, but | M|, = |G, .l,,
then (x) holds, for some 2 < z < 6.

We wish to emphasize the point that we have not fully examined
the question: if G, is a finite group of Lie type and 7 is a noninner
automorphism, what are the subgroups of G, lying above Cg (7)?
We have examined only the case where 7 is induced on G, by ), an
endomorphism of G with \" = ¢ or A = 0,7 and ¢ = °064s. For ins-
tance, letting A* be the image of one of the above )\ in Aut (G.),
there may be an 7 in the coset Inn (G,)-\* such that || = |\*], yet
7n and A* are not conjugate in Aut (G,) or even (G.), % (Gu)x.

In proving the above result we may apply Theorem 1 wherever
(N, 18 a cyclic group; for then A may be replaced by a generator

of {(\, f£).

(8.2) An example. As an illustration of where our results do
not apply we give the following example, for which we thank J. E.
McLaughlin.

Take G to have type A, ¢t =%, » =0, Then L = 0¥(G,) =
*A,(3) = U,(3) satisfies L, = B;(3). However, L has an automorphism
7 of order 2, 7 =\ (modInn(L)), such that L, =*D,3) = A;. There
is a subgroup M < L containing L, M = PSL(3, 4). The existence
of this M is not easily predicted by a study of the Lie structure.
Indeed, its existence led J. E. McLaughlin to construct a sporadic
simple group [21]. Looking at this example in more detail, we see
that *A4;(3) = *Dy(8), so that L may be regarded as K/Z(K), where
K = 2 (6, 3), the commutator subgroup of the orthogonal group
0=(6, 3). In terms of matrices, let B be any symmetric 4 X 4 non-
singular matrix of determinant —1 with entries from F;, and let ~
be the result of applying the field automorphism xz+—2* to a 4 x 4
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matrix with entries from F,. Then SU(4, 3) may be identified with
{A|'"ABA = B, det A = 1} and it has a “natural” field automorphism
p: A— A. However, @ is not the “standard field automorphism” of
SU(4, 3), as we have defined the term above. In fact, the fixed
points of @ is the special orthogonal group associated with B. See
Artin [1], p. 210.

A variation of our situation is the following: M is a group lying
between O7'(G;,.) and O*(G,). The problem (still not fully solved)
is to show that 07(G,;,.) <{ M or identify M.

Of course, any “interesting” exceptions will be ones not already
described by our main theorem. That is, we will be dealing with
a Chevalley or twisted group O*(G;,.) which is not perfect (i.e., is
not equal to its commutator subgroup). The possibilities for 0?'(G;,.)
are then the solvable groups A4,(2), 4.(8), 24,2), and *C,(2), plus the
nonsolvable groups B,(2) = 3, Gy(2) = Aut (U;(3)), 2G,(3) = Aut (L,(8))
and ®F,(2)’. The only exception known to the authors, for 0?(G,,.)
nonsolvable, is

Gy(2) < M < G,(4), M = J,, Janko simple group

group of order 604,800; there are two conjugacy classes of such M,
see Wales [27].

We mention that [27] does not determine all maximal subgroups
of G,(4) containing G,(2)'.

Another example we mention is the containment

Fi2) < M <*Eq2),

where M = M(22), the Fischer group of order 273%*.7-11.13 [9], [10].
This does not quite fit in the above situation, because *F,(2) cannot
be realized as @,,, where G = E;(k), char &k = 2. However, the
questions to be asked here are obvious: find finite groups M (if any)
for which *F,(2) < M < X, where X = *F\(q), F\(q), *E,(q) and Eq),
for q even, and where *F,(2)’ < *F,(2) is embedded in the natural
fashion in X. We point out that in the above case where M = M(22),
it is not known for certain that the *F,(2)' subgroup of M is conjugate
to the one embedded in the “natural” way in 2E (2).

(8.3) Proof of Theorem 2. We proceed by a series of lemmas.
Some important intermediate results are given in Propositions 3.1 and
3.2

LEMMA 3.1. Suppose G has a root system X having one root
length. Let p = ‘0, s€{2, 8}, and let » = g,. Suppose M is a sub-
group of G such that G5, € M C G:. Then one of the following holds:
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@ prIM:Gl |
(b) »=2 3 =A4,, and either O¥(M) = %A4,,_,(q), or G, = 24,2).

Proof. Let 3 be the twisted “root system” of G, and W the’
corresponding Weyl group. Thus N,/H, = N, ./H,.=W. Also, U, =
Il,es@,. If 3 A,,, then 5 is a bona fide root system, and X, is par-
ametrized by GF'(q) for long p, by GF(¢®) for short p. If ¥ = A4,,
then s =2, and F = {£(a, 20,), ta,+a,;/1 <1< j<n} is of type
“BC,”, with X.,,..; parametrized by GF(¢®) and Xi(% wap Of type
*A4,. The parametrizations by GF(¢*) are not quiteé canonical: if 7 is
the Frobenius automorphism of GF(¢°)/GF(q) there are s canonical
parainetrizations of X,, in which the same element is represented as
Zo(t), or ,(t°) (or X,(t”*) if s = 8). We shall ignore this ambiguity
since it does not affect the validity of our arguments. Note that
if X, is parametrized by GF(qg), then (X,), = X,; while if by GF(¢*),
then (X,). = {,(t)|? € GF(g)}.

We show first that N, (U,,) S B.. Let ge N (U,.), and write
g = bn,u in canonical form (we W) For every fundamental 0 es,
let U° = II,# , so that U, <{U, U=UX,, and X, NU,=1. (In

case Y= BC we take {(a, 2a), @, — a, -+, @, — a,_,} as the funda-
mental system.) Now U,.N X, # 1 for each such p, so (U,.)" con-
tains an element of the form z,u, with 1= x,€ X,, u,€ U’. Since
(woup)"» € (U, ) < U, w(p)eZ’+ Hence w =1, so g€ B,.

Now suppose (a) fails. Let U* = Nuno, (U,,.). Since U,, is not
one of N(U,,) which equals Nynz (U, ) by the above. Since U, is
the Sylow p-subgroup of B,, U* 2U,,.

Suppose 3 # A,,. Put a partial order <on Y refining the order
given by heights. Write each ue U, as u = [Is+ %.(¢,) in order, and
set supp(u) = {0|t, = 0}. Among all elements of U* —U,,,, choose
2 to have the greatest support, in the lexicographic ordering. Write
% = Doy(to,) [Lose, To(ts) With t,) 5 0. Then in fact z,,(¢s,) € U, u, other-
wise &' = x,(—t,)r e U* — U,,, and supp (¢') > supp (x), contrary to
choice of x. In particular, ¢, ¢ GF(q), so p, is short. Suppose there
is v €3+ such that o, and ¢ are fundamentally independent. Let

* = [w,(1), #] = @pps0(Et,) -+, (for a complete description of the
commutator formula in Steinberg variations, see [15]). Then z,(1) €
U, and we U* imply «* e U,,, so t,, € GF(q), contradiction. Hence
no such o is available. Suppose 3 = G,, with fundamental system
{a, B8}, B short, and o, = a + B. Then 2;(1), X, (1) € U, so U,
contains both [2.(1), 2] = Zeos(E£ (5, + ¢52)) and

[#ass(1), ] = xza+aﬁ(i(tpo + &5 + t;:)) .

Hence GF/(g) contains both coefficients, so contains t,, contradiction.
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We conclude from (*) (see Lemma 2.1) that po,=0,. In the factorization
of z, all terms x,(t,) after the first are for long o, hence lie in U, .
Hence 2,,(to)) '@ € Uy 80 @,(t,) € U*. Hence X, N M D(X,);,. Now
(Xop X_pp» = Ai(g°), and N induces a field automorphism o, on this
group, so by Theorem 1 (more precisely Lemma 2.5, which holds even
for ¢ = 2), (X, X_,,») & M, as s is prime. Conjugating by N, ., we
get X, £ M for all short p; since X, = (X,), & M for long p, M = G,
contrary to hypothesis. Therefore, 3 = A4,,.

If » =1, then (b) is immediate from work of Mitchell [22] and
Hartley [16]. Suppose then n» > 1. For a root p = *+a,+a;, X, =
{z.(t)|t € GF(¢®)} and (X,); = {®.(t)|t € GF(q)}. For each i =1, -+, n,
there is a root subgroup X, = {x,(¢, )|t + u + u? = 0, t, u € GF(¢%)}
corresponding to the “root” (e, 2a;). The opposite root subgroup is
denoted by X_,. We separate X, into parts X,, and X,,, as follows:
let X,., = Z(X)) = {x(0, u)|u € GF(¢°), w + u’ = 0}, and write ., (u)
for 2,0, w). Let X,, be a transversal to X,,, in X,. If ¢ is odd,
we may choose X, to be p-invariant, so that if a coset C of X,
in X, is fixed by A, then the representative of C in X, is fixed by
N. The element of X, representing the coset x,(f, u)X,,, will be
written 2,(t)(¢t € GF(¢*)). Thus X, is parametrized by GF(g®). We
choose #,(0) = 1, without loss.

Let 5 = {*a, +2a, +a,+a;|1 <1< <n}. Define a height func-
tion on & by setting ht(a;) = i and extending linearly. Then for
p,0e3" [ X, X,] S (X,|ael, ht(a) = ht(p) + ht(c)). Let < be a
partial order on I refining the height order. Since Xiagray Xoays
and X, = X, X,,, are subgroups of G, and since a, < 2a,, every
we U, is uniquely expressable as I7,(t,), the product over pe S+ in
increasing order, with t, in the appropriate field. Set supp (u) =
{olt, # 0}. Again, among all x€ U* —U,,, choose ¥ maximal in the
lexicographic ordering. Say « = w,,(t,,) I1s>s, Zo(ts), With t,) %= 0. Then
as before, x,(t,,) € U,, ..

Suppose ¢ is odd. Then (X)), = (X,,); = {«.,(t)|t € GF(q)} for each
1. So #,(1)e U, for all 7. Suppose 0, = a; — a; for some j > 1.
Then [z, ©,,(1)] = @.;(£t,) --- lies in U,,. so t, € GF(q), whence
© @,,(t,) € Upu, contradiction. If p, = a,, then for j=1 or 2, U,,
contains [#, %,,(1)] = %o, 40, (£2t,) -+, 80 L, € GF(q) and @,(ts,) € U,y
contradiction. If o, = @, + @;, § > 4, then U, , contains [, %,;_,,(1)] =
xza,-(i (to, — t8y)) +++. Since (X2aj)F =1, t,, — t3, =0, so ¢, €GF(g),
again giving a contradiction. Suppose 0, =2a;,, 1 < 17 <1l. Write
& = Tpe,(bog) *** Tayrayi,(t) -+ -. Then

[x? xai.{_l—ai(l)] = xai+ai+1(-_—l-tpo) ccc w2ai+1(i(t - tq)-_'—-tﬁo) c

lies in U, s0 t,,€ GF(q) and t — t* = ¢, = 0. Hence ¢t — t?e GF(q).
Since ¢ is odd, this implies ¢ — t* = 0. Hence ¢, = 0, contradiction.
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We conclude that o, = 2a,. Hence M N X, > (X,):(=1). Applying
the case n =1 to (X,, X_,>, we get (X,, X_,> & M. Conjugating
by N,., we get X; & M for all <. Hence M contains [z, (%), %.,(t')] =
To+a(Ett) for all t,t' e GF(¢®), so X, .., & M. This easily yields
G, = M, contradiction. Therefore, ¢ is even, i.e., p = 2.

In this case, we have (X)), = X,,,, and X,, is not \-invariant.
Let 2, 0, and t,, be as before. If 0, =a; —a, for some j > 1,
then U, contains [&, %y, (1)] = @4;4q,(80,) <+, 8O L5 € GF'(q), contra-
diction. If p,=2a, then ,(t,)€ X,., SU,, contradiction. If
0y = a; + a; # &,_, + a,, then there exists ¢ = a;, — a,, 7 > 7, such
that p, + o is of the form «, + @;, and so U,, contains [z, z,(1)] =
%o, + 0(ts,) « -, contradiction. If o, = a,, 1 <7 < n, then U, , contains
[x, %o, ,—a, (V)] = 2., (ts,) -+, contradiction. Suppose p, = @,, and write
& = o, (p,) ** * Daa,(E), Ta,(tp,) = Tultoy, w). Then u + u? = t577+ 0, so
u € GF(¢°) — GF(q). Let m,=mn,, ., (1), and set &’ =a™ =, _ () -
T3a,_,(t") (with other nontrivial terms coming only from roots of the
form @, + a; or 2a;). Let 2® =[2', %, _,,_(1)]. Then z®¢c M, and
2® = @, (to,) ** * Taptan_,(t'0 + U)Py,( ), with inside nontrivial terms
coming only from roots of the form a, + a; Let u’ = ¢’ + u? Since
t'e€GF(q) and u ¢ GF(qg), w' ¢ GF(q). Now set n, = n,,_ (1), and 2® =
[«’, (@®)]. Then «® e M, and 2® = x, (¢, w') --+. Since u' ¢ GF(g),
we may assume that ¢, ¢ GF(q), by replacing & by #® at the outset
if necessary. But then [z, 2™] =2, .., (¢}) and t; € GF(q), so the
maximality of x is violated. Thus p, # a,, so p, = @, + @,_,. Hence
Do (to,) = 2 %y,( )€ U* — U, .. Applying Theorem 1 (Lemma 2.5) to
(Xoptany X-ap-any, We see that X, ., < M. Thus X, & M if
o= +a,+a;. Let G =(X,|p = +a,%a; or 2a,>, so that G < M, and
G is (canonically generated) ®4,,_,(¢). It is easily ve~riﬁed that NGF(G)
is the unique maximal subgroup of G, containing G. One considers
the permutation group induced by SU(2n + 1, q) on anisotropic vectors
of a given length in the natural 2n + 1-dimensional module over
GF(q*), and shows that the only sets of imprimitivity have the pro-
perty that every block is a subset of one-dimensional subspace. Hence
G S MZ N, (G). Since N, (G)/G = Z,,, is of odd order, G = O%(M),
completing the proof.

We are now entitled to work under the following conditions:
(A) r>1is an integer
(B) A, ¢ are commuting endomorphisms of G with G, and G,
finite and )\ induces an automorphism of order » on G,
~ (C) Either (i) A = ¢ and » = g, or N = *g, where 7 /s and the
Dynkin diagram for G has period se{2, 8}; or (ii) A =0, and g =
*0,5, where r|s and the Dynkin diagram for G has period se{2, 3}.
D) 007G = M = G,
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(E) M|, =|Gy,l, ie., U,,.€Syl, (M).

First a few observations. Namely, G,, and G, have the same
rank and consequently, if P is a (), ¢#)-invariant parabolic subgroup
of G, )\ leaves invariant every component of P,/O,(P.) (see 2.4 for a
discussion of components). We do not assume 7 is 2 prime. Here,
the critical assumption is that M,,= M N G,, contains a Sylow p-
group of M. Also, even though Theorem 1 deals with the above
case (C. i), none of the following arguments, except Lemma 3.9 and
Proposition 8.2 are simplified by quoting Theorem 1.

LEMMA 3.2, Let P, be a proper parabolic subgroup of G, con-
taining B.. Write P, = O,(Py)+ L., where L, is generated by H, and
standard root groups from G.. Let X, be a root system for G.. Let
S, ={rel,| X, £0,P,)}, where X, denotes a root group for G,
(rather than for G). Set P, = (X,, H,|X_, < P,). Then G,={0,(P,),
O4(P7))-

Proof. Let S = <O,(P,), O,(Pz)>. Then L, normalizes S, whence
SL, is a group containing B,, i.e., SL, is a standard parabolic sub-
group. If SL, were proper, then O,(SL,) would meet X, nontrivially,
for some ael, But X_,= S implies that 0,((X,, X_,)) =1, con-
tradiction. Thus SL, = G. Since S<]SL,, S = G,, as required.

LEMMA 3.3. Let P be proper parabolic subgroup of G containg
B. Then CG#(O,,(PF)) < O,(P,), i.e., 0,(P.) =1 and P, is p-constrained.

Proof. If necessary, we shall replace ¢t by v = g/, where j > 1
is an integer such that (i) if ¢ involves a graph automorphism of period
s>1,(j,8) =1 (il) in G,, two opposite root groups generate a qua-
sisimple group, i.e., we are avoiding small fields. Note that G, and
G, have the same Weyl group and G, < G,. We claim that this
change affects neither hypothesis nor conclusion. Namely, set C, =
Co(0,(P.)) ] P. for te{y, v}. By the fact that if X, is a root group
for G, and X, = (X)), Cs(X,) = Cs (X)) (a straightforward exercise)
and the fact that O,(P.) is a product of root groups in G., 7 € {Y, v},
we get C, = C,N G,.. Thus, it suffices to prove C, =< O,(P,), because
then C, is a normal p-group in P,, whence C, < O,(P,). So, we make
the replacement.

Let » be a root in the root system Y, and X, the corresponding
root group in G,.. An element of H, centralizes X, if and only if
it centralizes X_,. Therefore, by Lemma 3.2, CNH, < Z(G) = 1.
Letting ~ denote the quotient P,— P, = P,/O,(P.), we claim that
CnH.,=1. If not, let H, < H, satisfy H,=Cn H, Now, C isa

normal subgroup of p-power index in C.O,(P.), whence H, < C, and
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so CN H,# 1,absurd. Thus CN H,=1. It follows that CNO*(P,)=
1, because our replacement of # guarantees that any normal subgroup
of O”(P,) lies in H,. Therefore, [C, U,] = 1. This means C < B..
Since B, has a normal Sylow p-subgroup and O,(C) = 1, it follows
that C is a normal p’-subgroup of B,, whence 1 = C £ H,, in conflict
with above statements. The lemma follows.

LEMMA 3.4. (i) For any p, U is the unique conjugate of U
which contains U,. (ii) Also U is the unique conjugate of U which
contains U,,, unless q is even, N = 0,, tt = 0,5 and G has type
A,,, in which case {geG|U,.=U’% = BUBn, BUn,B, where

i, w,, w,} = {welw, w,| X*, < (X,, X,)} where r, s are the nth and
(n + 1)st roots in the Dynkin diagram for G. (iii) However, in all
cases, U, ts the unique G,conjugate of U, containing U,,,.

Let P(\, 1) be @ parabolic subgroup for G,,.. (iv) Then there
18 a wunique parabolic subgroup P(t) of G, which contains P(\, pt),
and satisfies P(t);=P(\, p). (v) Also there is a unique {\, t)-invariont
parabolic subgroup P of G for which P, .= P(\, tt) and P={P(\, ), B),
unless we have the above exceptional q, G, N, tt (see (il)) and the
P(\, ) is the one containing B,, which s associated with the subset
of the Dynkin diagram for G consisting of all short roots. In the
exceptional case, there is a {\, ty-invariant parabolic subgroup of G
for which P, , = P(\, p), e.g., P = (P(\, t), B®), where g € G;,,. satisfies
B, < P.

Proof. (ii)) Let U. <V =U%geG. Let X be a root system
for G. Write g = bn,u, where b€ B, n,, € Ny(H) represents the ele-
ment w of the Weyl group, and ue Uw) = (X,|ae3t, a" e Z™).
Let U™ = (X,|laeX*, a*'3*). Then U’ = U™* and so U, <U™*
Suppose g ¢ B. Then there is such a g for which w is a fundamental
reflection, w = w, (see the appendix of Steinberg’s notes [24]) so that
U™ <U. Thus to get a contradiction, it suffices to show U, , L U™.

Write X, =U,,. If {\, ) leave X, invariant, we are done, as
(X,); = 1. Therefore pt = *o,, where ¢’ is some power of p and s = 2
or 3. But now, we see that R = (X*'|0 <1 < —1) satisfies R,, &
U™ by checking the possibilities, unless G = A,,(k), » = 1, ¢ = o,7/2
and » = 0, and 7 is the nth or (n + 1)st node in the Dynkin diagram
for A,,. The verification of the rest of (i) and (ii) is an exercise.

The proof of (iii) is obtained by a similar argument, and (iv)
and (v) are straightforward.

LEMMA 3.5. There does not exist a proper parabolic subgroup
of G, containing G,.
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Proof. Assume false, and take a parabolic subgroup R, G; <
R < G,. Embed U, in a Sylow p-subgroup of R. By Lemma 3.4,
U, <U, < R. Since R is a proper parabolic subgroup, it is p-con-
strained (by Lemma 3.3) whence Z(U) =< O,(R). Thus 1= Z(U), =
0,(R) N G;  G,;, whereas 0,(G;) = 1, contradiction.

LEMMA 3.6. Let P be a parabolic subgroup of G which is {\, t)-
invariant. Then O,(P;) = O,(P);, Oy(P,) = Op(P)py OP(PX,#) = Op(P)M“

Proof. Clearly O,(P); < O,(P;). Suppose the containment is
proper. Let ~ denote the quotient map P— P/O,(P). Then 0,(P,) # 1
is a normal p-subgroup of P. However, (), #) leaves invariant a
complement L to O,(P) in P. The structure of L implies that
0,(L;) = 1, contradiction. So O,(P;) = O,(P);. The other assertions
are proven similarly.

LEMMA 3.7. Let V< H, be a group of order prime to p for
which [Uyw, V1=1. Then V =1 unless p =2, {t =*04p, A= 0y
G = A, k), n even, and |V|[qg+ 1 and 0" (Cg( V))/Z(O”'(CGP(V))) =
*A,-(9)-

Proof. If G, has rank 1, i.e., G.= 4,(q), *4.(q), *Cxq) or *G.(q),
the lemma is well-known to be true.

Let G be a counterexample of minimal rank. Letting I7 be the
set of fundamental roots, we may apply induction to P = P/O,(P), P
any parabolic subgroup. Then V < Z(P) unless P/Z(P) has a com-
ponent of type A, leven. If V < Z(P), the Frattini argument shows
Cy(V) covers P/O,(P). Since V =1, Cx(V) cannot cover all such
P/O,(P), whence G has type A,, n even. On the other hand, letting
P be associated with various subsets of 77, we see that V centralizes
all root groups, for short roots in J,, and on any root group for a
long root in %, V centralizes precisely the center. The remaining
statements now follow.

LEMMA 3.8. Let P be a proper parabolic subgroup of G con-
taining B. Assume P is (, py-invariant. Then Cp,(0,(Pyy) =
0,(P.)-K where K =1 unless G, = *A4,(q), n, q even and K < H is a
cyclic group of order dividing q + 1 and centralizing G,,.. In
particular, Cay(Gl,,,) =1 wunless G, =*4,q), »,q even, and G,, =
C./i(9), in which case Cq(Gr,) = Zgire

Proof. The last sentence follows from the first statement of
the lemma whose proof we now begin. We may assume 7 is a prime
and that » = s if there is a graph automorphism involved in p. Let
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C = Cx(0,(P;)) and let - be the quotient map P— P = P/O,(P).
We may assume C = 1. Since C = 1, P = B, and so G, has rank at
least 2. Let L be the standard {\, #)-invariant complemet to O,(P)
in P (i.e., L = (H, X,|@ runs over a subset of ¥)). Then P = L as
(N, py-groups. Since L, normalizes O,(P,,), L,, normalizes D =
CnL=C.

Assume that D, = C,(0*'(L,,) = Co(0” (P,,.)) # 1. A Frattini
argument then shows D, centralizes O,(P, . )UN L;,) =U,,. By
Lemma 3.7 G, =%4,(q), », q even, and 1+ D, < K in the notation of
Lemma 3.7. Then, as D, <D, D < NG#(K) and the lemma is verified
by inspection.

We may now assume D, = 1. This will eventually lead to a
contradiction. Now D, < Cp,(0,(P)) = O,(Py), by Lemma 2. So,
D,=1. We may assume D, = 1. Since r is prime, D, is nilpotent
by Thompson’s theorem [13]. Let 1 #V < D, be minimal normal
in D,L;.{\). Then V is an elementary abelian ¢-group, for some
prime ¢ # r. ’

Assume that ¢ = p. Let L, ---, L, be the components of O*'(L,)
and let z,: 0?(L,) — L, = L,/Z(L,) be the “projections.” Our hypo-
theses on M\, ¢# imply that A stabilizes each L,. Since V %1 is a »p-
group, and Z(L,) is a p’-group for all ¢, V7 = 1 for some 7. Then
V=(L,); lies in a proper parabolic subgroup of L,, which is impossible
by Lemma 3.5. Thus ¢t # p.

Take S =< 0,(P,) such that S > O0,(P,,) = Sim Si = Cs(V) S
and S/Cs(V) is an irreducible V{\)-module for which C,(S) <V
(such a choice is possible because O,(P.) > O,(P,.), t # p, V < P, and
04(P,) Z Cy,(0,(P)).

We claim that » = p. If » # p, then (S/C4(V)), = 1, which implies
SV/Cs(V) is nilpotent, whence [S, V] < C«(V), [S, V] =[S, V, V] =1
and so S £ Ci(V), which is false. Therefore r = p.

We next argue that p = 2. In S, take a minimal V{\)-invariant
subgroup T which covers S/Cs(V). .Then T is special or elementary
abelian, T = [T, V] and C(V) = T'. Since V{\)/{\*) is a Frobenius
group, S/Cs(V) = T/C,(V) is a free 4 = F,({(\Y/{\*))-module. Choose
T, < T so that T, = C(V), T./C-(V) has order p* and is a free 4-
module. Observe that 7T, cannot be elementary, or else ¢ # p implies
that T, = C(V) x T,/C,(V) as (\)-groups, and freeness of the right
factor over 4 contradicts (T,); < C(V). Take any hyperplane A of
Cr(V) which is A-invariant. Then T,({A)/{\?)) is a “maximal group
of maximal class,” so by one of [26],[7], [3] we get, for odd p,
Z(T,(OD])N/A > C(V)/A. So assume p odd. Since T/C(V) is
an irreducible V{\)-module, and since Z(T/4) > Cr(V)/A, it follows
that T/A is abelian, hence T' = [T, V] x C;(4) = [T, V] is elementary,
which is impossible as noted above. Therefore, p = 2 and we also
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get O,(P,) nonabelian.

Next consider the action of involutions in L;, on V. Suppose
there is an involution w in L,, with Cy(w) # 1. Then C,, (w)=
Q, a proper parabolic subgroup of L;,. Let @, = 0,Q), @, = Co(w).
Then we get [Cy(w), Q] £ @,NCy(w) = 1 (because L, , normalizes V).
So, [Cy(w), @]=1, by the P X @ lemma. By induction and ¢+ 2, we
get that V N L, < Z(L,) whenever L, is a component of L, such that
we C(Ly).

If [L,, w] =1, we claim that V* = 1. Suppose % is an index for
which [L;, w] =1 and V* = 1. Set Y = L,. Then V% is normalized
by Y,. If, for some involution # in the center of a Sylow group of
Y, C,=(») # 1, we apply induction to get a contradiction. Therefore,
by easy calculation, one concludes that there is no four-group W in
Y,. Therefore Y, = A,(2), 2A,(2), *B,(2).

We eliminate these cases. First assume Y, = A4,(2). Then Y =
A,(4) or *A,(2). But Y = A,(4) is out because the only possibility for
V™ is O4Y;), whence V= = [V, Y;] V. The P x @ lemma applied
to the action of ((A)/(A*)) X [V, Y;] on O4P,) tells us that [V, Y;]
centralizes O,(P,), against Lemma 3.3. Thus Y =24,(2) and Y, = A4,(2).
Also, G, = *4,,(2), and m = 8, since w e L centralizes Y,. The only
possiblity is |V*| = 3. Since V is an irreducible (\)-module, V=i =
[V,Y,]. We have Vii =1 because D, = 1. Thus, as [V, Y,] is cyclic
and is normalized by Y;, the structure of PSU(S3, 2) implies Z(Y) = 1.
Now it is clear that the parabolic subgroup P weé are considering
is associated with a subset of the Dynkin diagram

B Be Bs m—1 Bm
O—O0—0 -+ —0

for G, (type C,, m = 3) which contains the rightmost (long) root,
B, but not B,_,. Let @ be the parabolic subgroup associated with
{Ba Bs *+*» Bm}. Then 0¥ (Q)/0Q) = SU@m — 1, 2) and 0,Q) is the
“standard module” for SU@2m — 1,2). In particular, as Y is the
group generated by the root groups associated with +2,, ¥ =
SU(, 2). But this contradiets Z(Y) = 1. Thus, Y, = 4,(2) is impos-
sible.

Suppose Y, = 24,(2). Since » = 2 one sees that )\ cannot induce
a field automorphism on Y by inspecting the possibilities. Thus » =
‘0, s€{2,8}. If ¢ =\ were not a field automorphism, s =3 and A
would induce a field automorphism on Y, which is impossible. Thus
s =2 and ¢ = \? is a field automorphism; in fact A = %0, t =0, Y =
A,(4). Then, the structure of A,(4) and [V, Y] # 1 implies that
[V,Y,)]=Z(Y)= Z,. But then V =[V, Y,] cannot satisfy V= =1,
contradiction.

Suppose Y, = *B,(2). Then r = 2 implies that Y is not of type
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’B,. Thus, Y = B,(2). Clearly, V:=1 and V, =1 are impossible
in this case.

We conclude that each V* =1, i.e., that V N 0*(L,) < Z(0*(L,) <
H,. Therefore, [V,LNU,, )< H.NV. Since t=»,[V,LNU,.] =
[v, LnU,, LNnU,,) <[H, U,, ] £U. Therefore [V, LNU,, = 1.
Since [OP);,., V] =1, this gives [V, U,,] =1. We new quote Lemma
3.7 to see that our lemma holds.

It therefore remains to treat the case that C,(w) = 1 for every
involution w in L,,. Assume this. If W < L,, is elementary of
order 4, V = (Cy(x)|x € W*). So, no such W exist, i.e., L, , has cyclic
or quaternion Sylow 2-groups. Thus » = 2 implies that L, = 4,(4)
or 2A,2) if L, > L,, and L, = A(2) or *A,2) if L, = L,,,.

At this point we may enlarge P if necessary to assume that P,
is a maximal parabolic subgroup of G,. Thus, G, has rank 2. If
L,= A/(4), then G, = 4,(4), By,(4), 24:(2), 2A,(4) or 2A,2). If L, = *A,2),
then G, =*4,2). If L,= A,(2), then G, =4,(2). By inspection,
each of these groups satisfies the conclusion of the lemma, so that
the proof is complete.

PRrOPOSITION 3.1. Let M be a group such that O*'(G,,.) = M < G,,
M£G,, and U,,eSyl,(M). Then M,, = N,(0?(G;,) is strongly
p-embedded in M.

(Note that G,,.= N;(G,,) unless G = A,(k), n, ¢ even, p=
50 grsy N = Gy.)

Proof. Let R+ 1 be a p-group in G,, and, as in Lemma 3.4
embed Ng, (R) in P(\, #), a parabolic subgroup of G;,. We may
assume that P(\, ) 2 U, , by replacing R with a conjugate by an
element of O07'(G,;,) if necessary. Using Lemma 3.4(iv), we have that
P(\, 1) lies in a unique parabolic subgroup P(y) of G, with P(y), =
P(\, ). By Lemma 3.4(v), we may take P, a {\, ¢)-invariant par-
abolic subgroup of G with P, = P(#) and we may assume U < P,
by Lemma 3.4(i).

It suffices to prove MNP =MnNP, < P,,.-K, where K is as in
Lemma 3.8. Set C = C5,(0,(P,,)) and take ge M N P,. Then U;,.¢€
Syl, (M) implies that M N P, normalizes O,(P;,.), whence [g, O,(P;.), M=
1. Clearly [O,(P;.), N, 9] = 1, and so [N, g, O,(P;,.)] = 1 by the three
subgroups lemma, Thus [\, ¢g]€¢C. By Lemma 3.8 C < O0,(P,)-K,
where K< H,, |K||q+ 1. Letting - be the quotient P— P =
P/O,(P), we get [PNM,N]=C =K. ThusPNM< P, orif K+#1,
PAM < Nz ([P0 M, \]) = N3 (K) = C3,(K) and P has a component
of type A,(k), »,q even. Also, we may enlarge P, if necessary, to
assume that P, has one component.

Suppose PN M < P,,. Then O¥(P,,) < PNM<0,P,)-L;,., where



400 N. BURGOYNE, R. GRIESS AND R. LYONS

L is a (\, ¢)-invariant complement to O,(P) in P. Then (| M: G,.|, 2) =
1 implies that PN M = O¥(P,,.), as required. Thus, we may suppose
PNMZP,,. Let K, L be as above. We havel = [PN M, \] £ K,
¢ is even and G = A,(k),n even, ¢t =2, \=0, From Lemma
3.8, we know that O”(CPL,(K))/Z(O2 Cs, (K))) =4, (g). Thus ¥ =
o¥ (CP (K)) satisfies: PNnMNY contams a Sylow 2-group of PN M.
Since U,LZ < 0%(Y)) £ 0*(PN M), we may apply induction to P to
get 0*(Y)) = C,,(q). The structure of P, implies that NP () =
K xY, whence PN M= PnMnNEK)x7Y,.

As in the case PN M < P, ,, we argue that 0¥(P,,) = O¥(P N M).
Write (0(P,)-K)N M = O,P,,)-K,, where K, is a cyclic 2-group.
Now, K, is trivial on the Frattini factor group of O,(P,.), because
K is, whence K, centralizes O,(P,,). But also, [U,,, K] < O.P;,).
Since K, then stabilizes the chain U,, = O(P,,) =1, we get K, <
C(U,,). The Frattini argument on O,(P,,)K, < PN M implies that
Crou(K)) covers PN M, whence K, < Z(P N M). Since K contains a
Hall 2’-subgroup of Z(P N M), it follows that K, < K, whence K, =
Kn M. Therefore, M < P, ,.-K, as required.

COROLLARY. If p=2,|M|,=|U,.l, M = O¥(G;,) and M £ G,
then e Ny and M lies in a unique maximal subgroup M, of G,
and we are in one of the following situations.

@) G,= A(2), M, = Dy, and r is odd, r = 3; G, = A(2")

(b) G, =°By2) = S2(2), » is odd, r = 5, and M, is a Frobenius
group of order

427 £ 2072 4 1), G, = *By(27) .

Proof. Let L = 0¥(G,,) then II,,= N,(0¥(G,,) is strongly
embedded in M and L = O, ,L), which implies L = A,(2), ®By(2)
or 24,2). We claim that L = 24,2) is impossible. So, assume
L =2A4,2). Then G, must be isomorphic to 24,(27) for odd r = 3.
Let ¢ be an involution of L. Then ¢ inverts O(M) because Cg (t) =
U.. Thus, O(L) = [O(L), t] = O(M). An easy calculation (which we
omit) shows that O(L) = Z, x Z, is self centralizing in G,. This
means O(L) = O(M) and so M < Ng, O(L)) = G, = PGUS, 2), i.e.,
we have no exception in this case. Therefore, M has cyclic Sylow
2-groups, whence M = O,, ,(M). A survey of the possibilities produces
(a) and (b) as the precise list of exceptions to M £ G;,.

REMARK. We henceforth assume that p is odd. Thus, M,, =
M,,=MnG,, (see Lemma 3.8 and use G, , = NG#(O”’(GLU)) if G,
*A.(q), n, g even).

LEMMA 3.9. If t is an involution of M,,, then C,(t) < M,,
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unless either " = ¢ (i.e., Theorem 1 applies to G) or one of (2), (3),
(5), (6) holds.

_ Proof. Let t be an involution of M;,.. Set C = C¢(t). Then C=
HL, where H is a conjugate of H and L = 0*'(C).
We assume that CN M £ M,,.

Case 1. L = 1. Then, letting ¢’ be a conjugate of ¢ in H, have
that ¢’ inverts every X,, €. This implies that U is abelian, so
that G = A,(k). Thus, ¢£ = A" and Theorem 1 applies.

We observe that, if L contains some L <]C with p||L,,| and
LnM=L,, weare done; for then, letting R e Syl,(LNM) we have
M = (L nM)-Ny(R) £ M,,, a contradiction.

Case 2. L #1 and quasisimple of rank at least 2. Then by
induction, CN M < M, unless L,/Z(L,) = *Ayp), p =3 or 5. In the
latter case, L/Z(L) = A,k). Let t' be a conjugate of ¢ in H and let
X,, X;, X..s be the root groups centralized by ¢’. The shape of L,
forces G = A,(k),» =4 and ¢ =%0,. Since n =4, we may choose
roots ¥ and ¢ so that {«, B, 7, 6} is a linearly independent set such
that v + 0 is a root. Then, as ¢ inverts X, and X, t’ centralizes
X,is = [X;, X;]. Since ¥ + 6 is not in the span of @ and B, this is
a contradiction. Thus, Case 2 does not hold.

Case 3. L # 1 and quasisimple of rank 1, i.e., L/Z(L) = A,(k).
Let t' be a conjugate of ¢ in H. Then ¢’ inverts X; for all 8 # a,
a a fixed root in 3* (as in Case 1, we know U is nonabelian). It
follows that C;(X,)/X, has abelian Sylow p-subgroups. Also, if
07" (Ce(X,)/ X, were strictly larger then O,(C,(X,)/X,), a Frattini
argument would show that ¢’ centralize some X;, 8 # a. Since this
is false, 07 (Cy¢(X,)/X,) = 0,(Cs(X,)/X,). Therefore, if « islong, G =
A,(k) and if « is short, the fact that there are no long roots orthog-
onal to a implies G = By(k).

Assume G = By(k). Then (), ¢£) is a cyeclic group and Theorem
1 applies since G;,. is not an exceptional case.

Thus G = A,k). If O\, ) is eyclic, then Theorem 1 applies since
G,,. cannot be an exceptional case. So we may assume (), ) is not
cyclic. We then have p =% ,r/2 and M = ¢,. Then G,, = PGL(2, q)
and we quote [22] to get that (2), (3), (5) or (6) holds.

Case 4. L # 1 is not quasisimple. Let I £ Z(L) be any {\, -
invariant normal subgroup of L. By Lemma 3.2 we have that | L, .| =
0 (mod p). Thus, if {\, ¢£) had more than one orbit on the set of
components of L, Lemma 3.8 applied to an I as above, I # L dan
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to Cy(L) = 1, shows that LN M = M, ., a contradiction. Therefore,
{\, ) has one orbit on the set of components of L. So, L has s¢
{2, 3} components, {¢> is transitive on them and A normalizes each
one.

Since L N M > L, ,, induction implies that 0*(L, .)/Z(L,,) = A,3),
A5), or A(5) and LN M= A;, A, or M, respectively. But then
L,/Z(L,) must be isomorphic to, respectively, A,(9), 24,(5) or 2A,(5).
No p¢ of the form °o,r/s will give L,/Z(L,) isomorphic to any of these
possibilities. This final contradiction proves the lemma.

PropOSITION 3.2. Suppose M,,< M. Then M,, is strongly
embedded in M, or else (6) or an exceptional case listed in (2.2) holds.

Proof. By Lemma 3.9, it suffices to prove that N,(S) < M,,,
for SeSyly(M,,.). Supposing this to be false, take an element
g€ Ny(S) — M,, of odd order such that {g) causes fusion among
elements of Z < 2,(Z(S)) which are not fused in M. Let 2,2, be
two such elements. Assume that ICMM(zl) |=0 (mod p), =1, 2. Then,
as 0"'(CM1,IU(21)) and O"’(CMM(zz)) are fused under g, |M,.N M. =
0(mod p). By Proposition 3.1, this forces g € M,,, contradiction.
Hence we must show that |Cy, (2,)] =0 (mod p).

The arguments in the proof of Lemma 3.9 show that if 0?'(C,(z,))=*
1, then 07'Cy,, (2.)) # 1, so that we may assume O*(Cy(z,)) =1. Then,
as in Case 1 in the proof of Lemma 3.9, we get that G = A4,(k). But
then (\, ) is cyclic, and Theorem 1 tells us that p =3, G, = A,(9)
and M = % as in (2.2).

LEmmA 38.10. G, ¢, » and M satisfy one of the conclusions of
Theorem 2.

Proof. If false, Proposition 3.2 tells us that M,, is strongly
embedded in M. By Bender’s theorem [2] and Theorem 1, as (), ¢
is not eyclic, M, , is a solvable Steinberg variation. The only pos-
sibility is 24,(2), where » = 2 and and the Corollary to Proposition
3.1 tells us that no such M exists, contradiction.

This completes the proof of Theorem 2.

REFERENCES

1. E. Artin, Geometric Algebra, Interscience, N. Y. (1957).

2. H. Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau
einen Punkt festlaft, J. Algebra, 17 (1971), 527-554.

3. N. Blackburn, On a special class of p-groups, Acta Math., 100 (1958), 45-93.

4. A. Borel and J. Tits, Eléments unipotents et sous-groupes paraboliques de groupes



MAXIMAL SUBGROUPS AND AUTOMORPHISMS OF CHEVALLEY GROUPS 403

réductifs. I, Inv. Math., 12 (1971), 95-105.

5. R. Carter, Simple Groups of Lie Type, J. Wiley & Sons, N. Y. (1972).

6. L. Dickson, Linear Groups, Dover, N.Y. (1958).

7. L. Evans, On a theorem of Thompson on fixed points of p-groups acting on p-groups,
Math. Z., 93 (1966), 105-8.

8. W. Feit and J. Thompson, Solvability of groups of odd order, Pacific J. Math., 13
(1963), 775-1029.

9. B. Fischer, Finite groups generated by 8-transpositions. I, Inv. Math., 13 (1971),
232-246.

10. , Subgroups of 2Es(2) generated by 3-transpositions, (to appear).

11. D. E. Flesner, Maximal subgroups of PSpu2") containing central elations or non-
centered skew elations, Illinois J. Math., 19 (1975), 247-268.

12. G. Glauberman, Central elements in core free groups, J. Algebra, 4 (1966), 403-420.
13. D. Gorenstein, Finite Groups, Harper & Row, N. Y. (1968).

14. D. Gorenstein and K. Harada, Finite groups whose 2-subgroups are generated by
at most 4 elements, Mem. Amer. Math. Soc., No. 147 (1974).

15. R. Griess, Schur multipliers of finite simple groups of Lie type, Trans. Amer.
Math. Soc., 183 (1973), 355-421.

16. R. W. Hartley, Determination of the ternary collineation groups whose coefficients
Lie in the GF(2"), Ann. Math., 27 (1925), 140-158.

17. J. Humphreys, Linear Algebraic Groups, Springer-Verlag, N. Y. (1975).

18. N. Iwahori, Centralizers of imvolutions in finite Chevalley group, Lecture Notes in
Math. No. 131, Springer-Verlag (1970).

19. Z. Janko, A new finite simple group with abelian Sylow 2-subgroups and its charac-
terization, J. Algebra, 4 (1966), 147-186.

20. S. Lang, Algebraic groups over finite fields, Amer. J. Math., 78 (1956), 555-563.
21. J. McLaughlin, A simple group of order 898,128,000, From R. Brauer & H. Sah,
‘Theory of Finite Groups’, Benjamin, N. Y. (1969).

22. H. N. Mitchell, Determination of the ordinary and modular ternary linear groups,
Trans. Amer. Math. Soc., 12 (1911), 207-242.

23. R. Steinberg, Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc.,
no. 80 (1968).

24, , Lectures on Chevalley Groups, Yale Univ. (1967).

25. M. Suzuki, On a class of doubly transitive groups, Ann. Math., 75 (1962), 105-145.
26. J. Thompson, Fized points of p-groups acting on p-groups, Math. Z., 86 (1964),
12-13.

27. D. Wales, Generators of the Hall-Janko group as a subgroup of Gy(4), J. Algebra,
13 (1969), 513-516.

28. J. Walter, The characterization of finite groups with abelian Sylow 2-subgroups,
Ann. Math., 89 (1969), 405-514.

Received April 14, 1976 and in revised form December 14, 1976. This research was
supported by NSF Grants, MPS 74-07807, MPS 71-03070, and MPS 75-07512.

UNIVERSITY OF CALIFORNIA
SanTA CrUZ, CA 95064








