A CHARACTERIZATION OF $P S p(2 m, q)$ AND $P \Omega(2 m+1, q)$ AS RANK 3 PERMUTATION GROUPS

Arthur Yanushka

This paper characterizes the projective symplectic groups $P S p(2 m, q)$ and the projective orthogonal groups $P \Omega(2 m+1, q)$ as the only transitive rank 3 permutation groups G of a set X for which the pointwise stabilizer of G has orbit lengths $1, q\left(q^{2 m-2}-1\right) /(q-1)$ and $q^{2 m-1}$ under a relatively weak hypothesis about the pointwise stabilizer of a certain subset of X. A precise statement is

Theorem. Let G be a transitive rank 3 group of permutations of a set X such that the orbit lengths for the pointwise stabilizer are $1, q\left(q^{r-2}-1\right) /(q-1)$ and q^{r-1} for integers $q>1$ and $r>4$. Let x^{\perp} denote the union of the orbits of length 1 and $q\left(q^{r-2}-1\right) /(q-1)$. Let $R(x y)$ denote $\cap\left\{z^{\perp}: x, y \in z^{\perp}\right\}$. Assume $R(x y) \neq\{x, y\}$ for $y \in x^{\perp}-\{x\}$. Assume that the pointwise stabilizer of $x^{\perp} \cap y^{\perp}$ for $y \notin x^{\perp}$ does not fix $R(x y)$ pointwise. Then r is even, q is a prime power and G is isomorphic to either a group of symplectic collineations of projective $(r-1)$ space over $G F(q)$ containing $P S p(r, q)$ or a group of orthogonal collineations of projective r space over $G F(q)$ containing $P \Omega(r+1, q)$.

1. Introduction. The projective classical groups of symplectic type $P S p(2 m, q)$ for $m \geqq 2$ are transitive permutation groups of rank 3 when considered as groups of permutations of the absolute points of the corresponding projective space. Indeed the pointwise stabilizer of $\operatorname{PSp}(2 m, q)$ has 3 orbits of lengths $1, q\left(q^{2 m-2}-1\right) /(q-1)$ and $q^{2 m-1}$. In a recent paper [7], the author characterized the symplectic groups $P S p(2 m, q)$ for $m \geqq 3$ as rank 3 permutation groups.

Theorem A. Let G be a transitive rank 3 group of permutations of a set X such that G_{x}, the stabilizer of a point $x \in X$, has orbit lengths $1, q\left(q^{r-2}-1\right) /(q-1)$ and q^{r-1} for integers $q \geqq 2$ and $r \geqq 5$. Let x^{\perp} denote the union of the G_{x}-orbits of lengths 1 and $q\left(q^{r-2}-1\right) /(q-1)$. Let $R(x y)$ denote $\cap\left\{z^{\perp}: x, y \in z^{\perp}\right\}$. Assume $R(x y) \neq\{x, y\}$. Assume that the pointwise stabilizer of x^{\perp} is transitive on the points unequal to x of $R(x y)$ for $y \notin x^{\perp}$. Then r is even, q is a prime power and G is isomorphic to a group of symplectic collineations of projective $(r-1)$ space over the field of q elements, which contains $P S p(r, q)$.

We note that the orthogonal group $P \Omega(2 m+1, q)$ for $m \geqq 2$ acts on the singular points of the orthogonal geometry of a projective $2 m$-space over the field of q elements as a rank 3 permutation group in which its pointwise stabilizer has the same orbit lengths of $1, q\left(q^{2 m-2}-1\right) /(q-1)$ and $q^{2 m-1}$ as $P S p(2 m, q)$ in its action on the absolute points of the symplectic geometry. In the proof of Theorem A, the possibility that G was an orthogonal group was eliminated because of the hypothesis that a hyperbolic line $R(x y)$ for $y \notin x^{\perp}$ carried at least 3 points. It seems reasonable to expect that with a change of hypothesis a characterization of the rank 3 groups G in which the pointwise stabilizer has orbit lengths $1, q\left(q^{r-2}-1\right)$ / ($q-1$) and $q^{2 r-1}$ is possible and that these groups will be subgroups of the collineation groups of the symplectic geometry or of the orthogonal geometry. We establish a result of this nature in the following form.

Theorem B. Let G be a transitive rank 3 group of permutations of a set X such that the orbit lengths for G_{x}, the stabilizer. of a point x in X, are 1, $q\left(q^{r-2}-1\right) /(q-1)$ and q^{r-1} for integers $q>1$ and $r>4$. Let x^{\perp} denote the union of the G_{x}-orbits of length 1 and $q\left(q^{r-2}-1\right) /(q-1)$. Let $R(x y)$ denote $\cap\left\{z^{\perp}: x, y \in z^{\perp}\right\}$. Assume $R(x y) \neq\{x, y\}$ for $y \in x^{\perp}-\{x\}$. Assume that the pointwise stabilizer of $x^{\perp} \cap y^{\perp}$ for $y \notin x^{\perp}$ does not fix $R(x y)$ pointwise. Then r is even, q is a prime power and $G \cong H$ where either H is a group of symplectic collineations of projective $(r-1)$ space over $G F(q)$ such that $H \geqq P S p(r, q)$ or H is a group of orthogonal collineations of projective r space over $G F(q)$ such that $H \geqq P \Omega(r+1, q)$.

The proof of Theorem B actually yields the following corollary which distinguishes between the two cases.

Corollary. Assume the hypotheses of Theorem B.
(i) Assume that the pointwise stabilizer of x^{\perp} is nontrivial. Then r is even, q is a prime power and $G \cong H$ where H is a group of symplectic collineations of projective $(r-1)$ space over $G F(q)$ such that $H \geqq P S p(r, q)$.
(ii) Assume that the pointwise stabilizer of x^{\perp} is trivial and that the pointwise stabilizer of $x^{\perp} \cap y^{\perp}$ for $y \notin x^{\perp}$ does not fix $R(x y)$ pointwise. Then r is even, q is a prime power and $G \cong H$ where H is a group of orthogonal collineations of projective r space over $G F(q)$ such that $H \geqq P \Omega(r+1, q)$.

Note that Corollary $B(i)$ is a stronger result than Theorem A. We consider this paper a continuation of [7] and note that the
proof of Theorem B is similar to that of Theorem A. In §2 we will prove Theorem B. At times we will refer the reader to [7] for the proofs of several statements. There are other characterizations of the rank 3 classical groups, due to D. Higman, W. Kantor and D. Perin $[3,4,5]$.
2. The proof of Theorem B. In this section assume that G is a rank 3 permutation group on X which satisfies the hypotheses of Theorem B. Let $D(b)$ denote the G_{b}-orbit of length $q\left(q^{r-2}-1\right)$ / ($q-1$) and let $C(b)$ denote the G_{b}-orbit of length q^{r-1}. Let v_{r} denote $\left(q^{r}-1\right) /(q-1)$.

Lemma 2.1. (i) G is primitive of even order.
(ii) $\mu=\lambda+2=v_{r-2}$.
(iii) $a^{\perp} \cap b^{\perp} \neq R(a b)$ for $b \in D(a)$.

Note that 2.1 (iii) eliminates problems with generalized quadrangles.

Lemma 2.2. (i) $\left|a^{\perp} \cap C(b)\right|=q^{r-2}$ for $b \in D(a)$.
(ii) $G_{a b}$ is transitive on the points of $a^{\perp} \cap C(b)$ for $b \in D(a)$.

For the proofs, see Lemmas 3.1 and 3.2 of [7].
Notation. If $\left\{x_{1}, x_{2}, \cdots, x_{i}\right\}$ is a set of $i \geqq 2$ distinct points of X, then let $R\left(x_{1}, x_{2}, \cdots, x_{i}\right)$ denote

$$
\cap\left\{z^{\perp}: x_{1}, x_{2}, \cdots, x_{i} \in z^{\perp} \quad \text { for } \quad z \in X\right\}=R\left(x_{1}, x_{2}, \cdots, x_{i}\right) .
$$

Lemma 2.3. (i) $y \in R\left(x_{1} x_{2} \cdots x_{i}\right)$ if and only if $y^{\perp} \supseteq \cap\left\{x_{j}^{\perp}: 1 \leqq\right.$ $j \leqq i\}$.
(ii) $g\left(R\left(x_{1} x_{2} \cdots x_{i}\right)\right)=R\left(g\left(x_{1}\right) g\left(x_{2}\right) \cdots g\left(x_{i}\right)\right)$ for $g \in G$.
(iii) $R\left(x_{1} x_{2} \cdots x_{i}\right)=R\left(y_{1} y_{2} \cdots y_{i}\right)$ if and only if

$$
\cap\left\{x_{j}^{\perp}: 1 \leqq j \leqq i\right\}=\cap\left\{y_{j}^{\perp}: 1 \leqq j \leqq i\right\} .
$$

Remark. This lemma is valid for any permutation group G on X and for any self-paired orbit $D(x)$ of G_{x} where $x^{\perp}=\{x\} \cup D(x)$.

Proof. In the proof the intersections are taken from $j=1$ to i.
(i) Assume $y \in R\left(x_{1} x_{2} \cdots x_{i}\right)$. Let $w \in \cap x_{j}^{\perp}$. Then $x_{1}, x_{2}, \cdots, x_{i} \in$ w^{\perp} by Lemma 2.1 (vi) of [7]. Since $y \in R\left(x_{1} x_{2} \cdots x_{i}\right)$ and $R\left(x_{1} x_{2} \cdots x_{i}\right) \subseteq$ w^{\perp}, it follows that $y \in w^{\perp}$ and $w \in y^{\perp}$.

Conversely assume $y^{\perp} \supseteq \cap x_{j}^{\perp}$. Let $x_{1}, x_{2}, \cdots, x_{i} \in w^{\perp}$. Then $w \in \cap x_{j}^{\perp} \subseteq y^{\perp}$. So $y \in w^{\perp}$ and $y \in R\left(x_{1} x_{2} \cdots x_{i}\right)$.
(ii) By (i) $z \in R\left(g\left(x_{1}\right) g\left(x_{2}\right) \cdots g\left(x_{i}\right)\right)$ iff $z^{\perp} \supseteq \cap g\left(x_{j}\right)^{\perp}$ iff $\left(g^{-1}(z)\right)^{\perp} \supseteq$ $\cap: x_{j}^{\frac{1}{j}}$ iff $g^{-1}(z) \in R\left(x_{1} x_{2} \cdots x_{i}\right)$ iff $z \in g\left(R\left(x_{1} x_{2} \cdots x_{i}\right)\right)$.
(iii) Assume $R\left(x_{1} x_{2} \cdots x_{i}\right)=R\left(y_{1} y_{2} \cdots y_{i}\right)$. For $1 \leqq j \leqq i, x_{j} \in$ $R\left(y_{1} y_{2} \cdots y_{i}\right)$. By (i) $x_{j}^{\perp} \supseteq \cap y_{k}^{\frac{\perp}{k}}$ for $1 \leqq j \leqq i$. So $\cap x_{j}^{\perp} \supseteq \cap y_{k}^{\frac{1}{k}}$. It follows that $\cap x_{j}^{\perp}=\cap y_{k}^{\llcorner }$.

Conversely assume $\cap x_{\dot{j}}^{\perp}=\cap y_{j}^{\frac{1}{j}}$. Then $z \in R\left(x_{1} x_{2} \cdots x_{i}\right)$ iff $z^{\perp} \supseteq \cap$ $x_{j}^{\perp}=\cap y_{j}^{\frac{1}{j}}$ iff $z \in R\left(y_{1} y_{2} \cdots y_{i}\right)$. This completes the proof of the lemma.

Definition. A l-clique is a set $\{x\}$ for $x \in X$.
For $i \geqq 2$, an i-clique is a set $\left\{x_{1}, x_{2}, \cdots, x_{i}\right\}$ of points of X such that $\left\{x_{1}, x_{2}, \cdots, x_{i-1}\right\}$ is an $(i-1)$-clique, $x_{i} \in D\left(x_{j}\right)$ for $1 \leqq j \leqq$ $i-1$ and $x_{i} \notin R\left(x_{1} x_{2} \cdots x_{i-1}\right)$ where $R\left(x_{1}\right)=\left\{x_{1}\right\}$.

If $\left\{x_{1}, x_{2}, \cdots, x_{i}\right\}$ is an i-clique, then we will call $R\left(x_{1} x_{2} \cdots x_{i}\right)$ an "i-space."

Note that a " 2 -space" is a totally singular line of [2] and a " 3 -space" is a "plane" of [7]. Eventually an " i-space" will correspond to a totally singular subspace generated by i linearly independent singular points of a classical geometry.

Notation. Let $T(x y)$ denote the pointwise stabilizer in G of $x^{\perp} \cap y^{\perp}$ for $y \in C(x)$. Thus

$$
T(x y)=\cap\left\{G_{z}: z \in x^{\perp} \cap y^{\perp}\right\}
$$

PROPOSITION 2.4. $T(x y) \leqq G_{R(x y)}$ and $T(x y)$ is transitive on the points of $R(x y)$ for $y \notin x^{\perp}$.

Proof. First we prove that $G_{R(x y)}$ is primitive on the points of $R(x y)$. Indeed if $|R(x y)|>2$, then $G_{R(x y)}$ is 2-transitive on the points of $R(x y)$ by a lemma in [2]. If $R(x y)=\{x, y\}$, then $\left|G: G_{R(x y)}\right|=$ $n l / 2$ if $y \notin x^{\perp}$ and $\left|G: G_{x y}\right|=n l$. Therefore $\left|G_{R(x y)}: G_{R(x y) x}\right|=2$ because $G_{R(x y) x}=G_{x y}$.

If $g \in G_{R(x y)}$, then

$$
g(R(x y))=R(g(x) g(y))=R(x y)
$$

and

$$
g(x)^{\perp} \cap g(y)^{\perp}=x^{\perp} \cap y^{\perp}
$$

by Lemma 2.3. But

$$
T(x y)^{g}=\cap\left\{G_{g(z)}: z \in x^{\perp} \cap y^{\perp}\right\}=T(g(x) g(y))
$$

and so $T(x y)^{g}=T(x y)$. Therefore $T(x y)$ is a normal subgroup of the primitive group $G_{R(x y)}$. Since $T(x y)$ does not fix $R(x y)$ pointwise by hypothesis of the theorem, it follows that $T(x y)$ is transitive on the points of $R(x y)$.

Note that $G_{R(x y)}$ is a doubly transitive group on the points of $R(x y)$ and has a normal subgroup $I(x y)$. By familiar classification theorems not needed here, $|R(x y)|-1$ is usually a prime power.

Note that if $T(x)$, the pointwise stabilizer of x^{\perp}, is nontrivial, then $T(x y)$ does not fix $R(x y)$ pointwise for $y \notin x^{\perp}$ because $T(x)$ is semiregular off x^{\perp} by a lemma in [2] and $T(x) \leqq T(x y)$.

Denote the group generated by $T(x y)$ for all $x, y \in X$ with $y \in C(x)$ simply as K. Thus

$$
K=\langle T(x y): x, y \in X, y \in C(x)\rangle
$$

Proposition 2.5. (i) If $\left\{x_{1}, x_{2}, \cdots, x_{i}\right\}$ is a set of i distinct points of X, then $K_{x_{1} x_{2} \cdots x_{i}}$ is transitive on the points of $\cap\left\{x_{j}^{\perp}: 1 \leqq j \leqq i\right\}-R\left(x_{1} x_{2} \cdots x_{i}\right)$.
(ii) K is transitive on i-cliques.

Proof. (i) In the proof the intersections are taken from $j=1$ to i. Let c and h be distinct points of $\cap x_{j}^{\perp}-R\left(x_{1} x_{2} \cdots x_{i}\right)$. Either $c \in C(h)$ or $c \in D(h)$. If $c \in C(h)$, then $R(c h)$ is a hyperbolic line in $\cap x_{j}^{\perp}$. Since $|G|$ is even, $x_{1}, x_{2}, \cdots, x_{i} \in c^{\perp} \cap h^{\perp}$ and so $T(c h)$ fixes $x_{1}, x_{2}, \cdots, x_{i}$. By Proposition 2.4, there exists $t \in T(c h) \leqq$ $K_{x_{1} x_{2}} \cdots{ }_{x_{i}}$ such that $t(c)=h$.

Assume now that $c \in D(h)$. Since $c, h \notin R\left(x_{1} x_{2} \cdots x_{i}\right)$, there exists by Lemma 2.3 (i) $u \in \cap x_{j}^{\perp} \cap C(c)$ and $v \in \cap x_{j}^{\perp} \cap C(h)$. There are 3 possible cases to consider:
(1) $u \in C(h)$, (2) $v \in C(c)$ and (3) $u \in D(h)$ and $v \in D(c)$.
(1) If $u \in \cap x_{j}^{\perp} \cap C(c) \cap C(h)$, then $R(c u)$ is a hyperbolic line in $\cap x_{j}^{\frac{1}{j}}$. By Proposition 2.4, there exists $t \in T(c u) \leqq K_{x_{1} x_{2} \cdots x_{i}}$ such that $t(c)=u$. The line $R(u h)$ is hyperbolic and lies in $\cap x_{j}^{\perp}$. By Proposition 2.4, there exists $s \in T(u h) \leqq K_{x_{1} x_{2} \cdots x_{i}}$ such that $s(u)=h$. Thus $s t(c)=h$ and $s t \in K_{x_{1} x_{2}} \cdots x_{i}$.
(2) If $v \in \cap x_{j}^{\frac{1}{j}} \cap C(c) \cap C(h)$, then a proof similar to that of case (1) yields the desired result.
(3) $u \in \cap x_{j}^{\frac{1}{j}} \cap C(c) \cap D(h)$ and $v \in \cap x_{j}^{\frac{1}{j}} \cap D(c) \cap C(h)$. Since $c \in$ $D(h)$, there exists $w \in R(c h)-\{c, h\}$ because by hypothesis $|R(c h)|>2$. Note $w \in C(u)$, for if $w \in u^{\perp}$, then $c \in R(c h)=R(w h) \subseteq u^{\perp}$, a contradiction in case (3). Now $w \in R(c h) \subseteq \cap x_{j}^{\perp}$. But $w \notin R\left(x_{1} x_{2} \cdots x_{i}\right)$ because $u \in \cap x_{j}^{\perp} \cap C(w)$. So $u \in \cap x_{j}^{\perp} \cap C(c) \cap C(w)$. By case (1) there exists $t \in K_{x_{1} x_{2} \cdots x_{i}}$ such that $t(c)=w$. Note $w \in C(v)$, for if $w \in v^{\perp}$, then $h \in R(c h)=R(w h) \cong v^{\perp}$, a contradiction. Now $v \in \cap x_{j}^{\perp} \cap$
$C(w) \cap C(h) . \quad$ By case (1) there exists $s \in K_{x_{1} x_{2} \cdots x_{i}}$ such that $s(w)=h$. So $s t(c)=h$ and $s t \in K_{x_{1} x_{2}} \cdots x_{i}$.
(ii) Let $\left\{x_{1}, x_{2}, \cdots, x_{i}\right\}$ and $\left\{y_{1}, y_{2}, \cdots, y_{i}\right\}$ be $2 i$-cliques. The proof is by induction on i. First note that K is transitive on X because K is a normal subgroup of the primitive group G. If $i=1$, then there exists $k \in K$ such that $k\left(x_{1}\right)=y_{1}$. Assume $i>1$. By the induction assumption there exists $g \in K$ such that $g\left(x_{j}\right)=y_{j}$ for $j=1,2, \cdots, i-1$. From Lemma 2.3 (ii) and the definition of i clique, it follows that $\left\{y_{1}, y_{2}, \cdots, y_{i-1}, g\left(x_{i}\right)\right\}$ is an i-clique because $\left\{x_{1}, x_{2}, \cdots, x_{i-1}, x_{i}\right\}$ is an i-clique. Since

$$
g\left(x_{i}\right), y_{i} \in \cap\left\{y_{j}^{\frac{1}{j}}: 1 \leqq j \leqq i-1\right\}-R\left(y_{1} y_{2} \cdots y_{i-1}\right),
$$

by (i) there is $h \in K_{y_{1} y_{2} \cdots y_{i}-1}$ such that $h\left(g\left(x_{i}\right)\right)=y_{i}$. Thus $h g\left(x_{j}\right)=y_{j}$ for $j=1,2, \cdots, i$. This completes the proof of the proposition.

Note that 3 -cliques exist by Lemma 2.1 (iii).
Proposition 2.6. G_{a} is a rank 3 permutation group on the set of totally singular lines through a. For $b \in D(\alpha), G_{a R(a b)}$ has nontrivial orbits

$$
\left\{R(a c): c \in a^{\perp} \cap b^{\perp}=R(a b)\right\}
$$

and

$$
\left\{R(a c): c \in a^{\perp} \cap C(b)\right\}
$$

The proof is similar to that of Proposition 3.4 of [7]. This proposition follows from Lemmas 2.2 and 2.3 and Proposition 2.5 (i) for $i=2$ just as Proposition 3.4 of [7] follows from Lemmas 3.2 and 2.2 and Proposition 3.3 of [7].

Proposition 2.7. Totally singular lines carry $q+1$ points.
Proposition 2.8. If $b \in D(a)$, the $X=\cup\left\{c^{\perp}: c \in R(a b)\right\}$.
Proposition 2.9. X together with its totally singular lines forms a nondegenerate Shult space of finite rank $\geqq 3$ in which lines carry $q+1$ points.

The proofs of the above three statements are identical to the proofs of Propositions 3.5, 3.6, and 3.7 of [7].

Lemma 2.10. If $\left\{x_{1}, x_{2}, \cdots, x_{i}\right\}$ is an i-clique, then $R\left(x_{1} x_{2} \cdots x_{i}\right)$ is a Shult subspace of X.

Proof. In the proof the intersections are taken from $j=1$ to i.
Let $d, e \in R\left(x_{1} x_{2} \cdots x_{i}\right)$. By definition of i-clique, $x_{k} \in \cap x_{\partial}^{\perp}$ for $1 \leqq k \leqq j$ and so by definition of " i-space" and by Lemma 2.3 (i) it follows that

$$
d \in R\left(x_{1} x_{2} \cdots x_{i}\right) \subseteq \cap x_{\dot{j}}^{\perp} \subseteq e^{\perp}
$$

Thus any two points of $R\left(x_{1} x_{2} \cdots x_{i}\right)$ are adjacent. Let the line $R(x y)$ meet $R\left(x_{1} x_{2} \cdots x_{i}\right)$ in $\{u, v\}$. Then $R(x y)=R(u v)$ and $x^{\perp} \cap y^{\perp}=$ $u^{\perp} \cap v^{\perp}$. If $z \in R(x y)$, then

$$
z^{\perp} \supseteqq x^{\perp} \cap y^{\perp}=u^{\perp} \cap v^{\perp} \supseteqq \cap x_{j}^{\perp}
$$

since $u, v \in R\left(x_{1} x_{2} \cdots x_{i}\right)$ by Lemma 2.3. Thus $z \in R\left(x_{1} x_{2} \cdots x_{i}\right)$ and $R(x y) \subseteq R\left(x_{1} x_{2} \cdots x_{i}\right)$. Therefore $R\left(x_{1} x_{2} \cdots x_{i}\right)$ is a Shult subspace of X, as desired.

Proposition 2.11. (i) q is a prime power and r is even.
(ii) Either X is isomorphic to the polar space S associated with an alternating form f defined on a projective space P of dimension $r-1$ over $G F(q)$ or X is isomorphic to the polar space S associated with a symmetric form f defined on a projective space P of dimension r over $G F(q)$ for q odd.

For the proof see Proposition 3.9 of [7].

Since r is even and $r \geqq 5$, there exists a natural number $m \geqq 3$ such that $r=2 m$.

Proposition 2.12. (i) G is isomorphic to a subgroup of PГU(f), the group of collineations of P which preserve the form f.
(ii) For $x \in X, \phi\left(x^{\perp}\right)=\{w \in P: f(w, w)=0, f(w, \phi(x))=0\}$ where $\dot{\phi}: X \rightarrow S$ is a polar space isomorphism.
(iii) For an i-clique, $\left|R\left(x_{1} x_{2} \cdots x_{i}\right)\right|=v_{i}$ and $\left|\cap\left\{x_{\dot{j}}^{\perp}: 1 \leqq j \leqq i\right\}\right|=$ v_{r-i}.
(iv) X contains m-cliques but does not contain $(m+1)$-cliques.

Proof. For (i) and (ii) see Proposition 3.10 (i) and (ii) of [7]. (iii) From (ii) it follows that

$$
\phi\left(R\left(x_{1} x_{2} \cdots x_{i}\right)\right)=\cap\left\{\phi(z)^{\perp}: \phi\left(x_{1}\right), \phi\left(x_{2}\right), \cdots, \phi\left(x_{i}\right) \in \phi\left(z^{\perp}\right\}\right)
$$

which equals the set of singular points in the intersection of all the hyperplanes containing $\phi\left(x_{1}\right), \phi\left(x_{2}\right), \cdots, \phi\left(x_{i}\right)$. But this set is the projective subspace generated by $\phi\left(x_{1}\right), \phi\left(x_{2}\right), \cdots, \phi\left(x_{i}\right)$ since $\phi\left(x_{k}\right) \perp$ $\phi\left(x_{j}\right)$ for all k, j. Thus $\left|R\left(x_{1} x_{2} \cdots x_{i}\right)\right|=v_{i}$.

From (ii) $\left|\cap\left\{x_{j}^{\perp}: 1 \leqq j \leqq i\right\}\right|=v_{r-i}$.
(iv) Since $r=2 m$, (iv) follows from (iii).

Now let $\left\{x_{1}, x_{2}, \cdots, x_{m}\right\}$ be a fixed m-clique of X. Then

$$
x_{1} \subset R\left(x_{1} x_{2}\right) \subset R\left(x_{1} x_{2} x_{3}\right) \subset \cdots \subset R\left(x_{1} x_{2} \cdots x_{m}\right)
$$

is a chain of Shult subspaces of X of length $m \geqq 3$. Define subgroups K_{i} of K as follows:

$$
\begin{aligned}
& K_{1}=K \\
& \left.K_{i}=K_{i-1} \cap K_{R\left(x_{1} x_{2}\right.} \cdots \otimes_{x_{i-1}}\right) \quad \text { for } \quad 2 \leqq i \leqq m+1
\end{aligned}
$$

Note the choice of the fixed i-clique is arbitrary since K is transitive on i-cliques.

Proposition 2.13. (i) K_{i} is transitive on the set of " i-spaces" containing $R\left(x_{1} x_{2} \cdots x_{i-1}\right)$, for $2 \leqq i \leqq m$.
(ii) $\left|K: K_{m+1}\right|=\prod_{\jmath=1}^{m} v_{2 j}$.

Proof. (i) Let $R\left(x_{1} x_{2} \cdots x_{i-1} d\right)$ and $R\left(x_{1} x_{2} \cdots x_{i-1} e\right)$ be " i-spaces" containing $R\left(x_{1} x_{9} \cdots x_{i-1}\right)$. Then

$$
d, e \in \bigcap_{j=1}^{i-1} x_{j}^{l}-R\left(x_{1} x_{3} \cdots x_{i-1}\right)
$$

a set on which $K_{x_{1} x_{2} \cdots x_{i-1}}$ is transitive by Proposition 2.5. There exists $k \in K_{x_{1} x_{2} \cdots x_{i-1}}$ such that $k(d)=e$. By Lemma 2.3 (iii), it follows that

$$
k\left(R\left(x_{1} x_{2} \cdots x_{i-1} d\right)\right)=R\left(x_{1} x_{2} \cdots x_{1-i} e\right)
$$

and that $k \in K_{i}$.
(ii) For $2 \leqq i \leqq m$ the number of " i-spaces" containing $R\left(x_{1} x_{2} \cdots x_{i-1}\right)$ is

$$
\begin{aligned}
& \left(\left|\bigcap_{j=1}^{i-1} x_{j}^{\perp}\right|-\left|R\left(x_{1} x_{2} \cdots x_{i-1}\right)\right|\right) /\left(\left|R\left(x_{1} x_{2} \cdots x_{i}\right)\right|-\left|R\left(x_{1} x_{2} \cdots x_{i-1}\right)\right|\right) \\
& \quad=\left(v_{2 m-(i-1)}-v_{i-1}\right) /\left(v_{i}-v_{i-1}\right)=v_{2(m-(i-1))}
\end{aligned}
$$

So $\left|K_{i}: K_{i+1}\right|=v_{2(m-(i-1))}$ by (i). Since K is a normal subgroup of the primitive group G, K is transitive and $\left|K_{1}: K_{2}\right|=v_{2 m}$. Now (ii) follows.

Proposition 2.14. (i) $\psi(K)$ is a flag-transitive subgroup of $\operatorname{PGU}(f)$, the group of projective transformations of P which preserve f.
(ii) If X is symplectic, then $\psi(K) \geqq P S p(2 m, q)$.
(iii) If X is orthogonal, then $\psi(K) \geqq P \Omega(2 m+1, q)$.

Proof. Let $x, y \in X$ with $y \in C(x)$. Since $T(x y)$ is the pointwise stabilizer in G of $x^{\perp} \cap y^{\perp}$, it follows that $\psi(T(x y))$ is the pointwise stabilizer in $\psi(G)$ of $\phi(x)^{\perp} \cap \phi(y)^{\perp}$. If t is a nontrivial element of $T(x y)$, then $\psi(t) \in P \Gamma U(f)$ and fixes $\phi(x)^{\perp} \cap \phi(y)^{\perp}$ pointwise. This implies that $\psi(t) \in P G U(f)$ and so $\psi(K) \leqq P G U(f)$.

Now $\psi\left(K_{m+1}\right)$ fixes the flag

$$
\left\{\phi\left(x_{1}\right),\left\langle\phi\left(x_{1}\right), \phi\left(x_{2}\right)\right\rangle, \cdots,\left\langle\phi\left(x_{1}\right), \phi\left(x_{2}\right), \cdots, \phi\left(x_{m}\right)\right\rangle\right\} .
$$

If B is the subgroup of $P G U(f)$ which fixes the above flag, then B is a Borel subgroup of $P G U(f)$ and $B \cap \psi(K)=\psi\left(K_{m+1}\right)$. Therefore by Proposition 2.13 (ii)

$$
\begin{aligned}
|B \psi(K)| & =|B| \cdot\left|\psi(K): \psi\left(K_{m+1}\right)\right| \\
& =q^{m^{2}}(q-1)^{m} \cdot \prod_{i=1}^{m} v_{2 i}=|P G U(f)|
\end{aligned}
$$

Thus $B \psi(K)=P G U(f)$ and $\psi(K)$ is a flag-transitive subgroup of $P G U(f)$. By a theorem of Seitz [6], it follows that

$$
\psi(K) \geqq P S p(2 m, q)
$$

if X is symplectic and

$$
\psi(K) \geqq P \Omega(2 m+1, q)
$$

if X is orthogonal, as desired.

References

1. F. Buekenhout and E. Shult, On the foundations of polar geometry, Geometriae Dedicata, 3 (1974), 155-170.
2. D. G. Higman, Finite permutation groups of rank 3, Math. Z., 86 (1964), 145-156.
3. D. G. Higman and J. McLaughlin, Rank 3 subgroups of finite symplectic and unitary groups, J. Reine Angew Math., 218 (1965), 174-189.
4. W. Kantor, Rank 3 characterizations of classical geometries, J. Algebra, 36 (1975), 309-313
5. D. Perin, On collineation groups of finite projective spaces, Math. Z., 126 (1972), 135-142.
6. G. Seitz, Flag-transitive subgroups of Chevalley groups, Ann. of Math., (2) 97 (1973), 27-56.
7. A. Yanushka, A characterization of the symplectic groups $P S_{p}(2 m, q)$ as rank 3 permutation groups, Pacific J. Math., 59 (1975) 611-621.

Received July 17, 1975 and in revised form July 9, 1976.
Southern Illinois University
Carbondale, IL 62901

