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A CHARACTERIZATION OF PSp{2m,q) AND PΩ(2m+l,q)
AS RANK 3 PERMUTATION GROUPS

ARTHUR YANUSHKA

This paper characterizes the projective symplectic groups
PSp(2m, q) and the projective orthogonal groups PJ2(2m+l, q)
as the only transitive rank 3 permutation groups G of a set
X for which the pointwise stabilizer of G has orbit lengths
1, q(q2m~2—l)/(q—1) and qlm~γ under a relatively weak hypo-
thesis about the pointwise stabilizer of a certain subset of
X. A precise statement is

THEOREM. Let G be a transitive rank 3 group of permu-
tations of a set X such that the orbit lengths for the point-
wise stabilizer are 1, q(qr~2—l)/(q—l) and q1"1 for integers
q>l and r>4. Let x1 denote the union of the orbits of
length 1 and q(qr-2—l)/(q—l). Let R(xy) denote Π {zL: x,ye z1}.
Assume R(xy)Φ{x, y} for yex1— {x}. Assume that the point-
wise stabilizer of x1 Π yL for y g xL does not fix R(xy) point-
wise. Then r is even, q is a prime power and G is isomor-
phic to either a group of symplectic collineations of projective
(r—1) space over GF(q) containing PSp(r, q) or a group of
orthogonal collineations of projective r space over GF(q)
containing PΩ(r+l, q).

1* Introduction* The projective classical groups of symplectic

type PSp(2m, q) for m ̂  2 are transitive permutation groups of
rank 3 when considered as groups of permutations of the absolute
points of the corresponding projective space. Indeed the pointwise
stabilizer of PSp(2m, q) has 3 orbits of lengths 1, q(q2m~2 - ΐ)/(q - 1)
and q2m~\ In a recent paper [7], the author characterized the
symplectic groups PSp(2m, q) for m ^ 3 as rank 3 permutation
groups.

THEOREM A. Let G be a transitive rank 3 group of permuta-
tions of a set X such that Gx, the stabilizer of a point x e X, has
orbit lengths 1, q(qr~2 — l)/(q — 1) and qr~x for integers q ^ 2 and
r ^ 5. Let xL denote the union of the Gx-orbits of lengths 1 and
Q(Qr~2 — 1)/((Z — 1) Let R(xy) denote P[{zL: x,yezλ}. Assume
R(χy) Φ {x, y}. Assume that the pointwise stabilizer of x1 is tran-
sitive on the points unequal to x of R(xy) for ygx1. Then r is
even, q is a prime power and G is isomorphic to a group of sym-
plectic collineations of projective (r — 1) space over the field of q
elements, which contains PSp(rf q).
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We note that the orthogonal group PΩ(2m + 1, q) for m ^ 2
acts on the singular points of the orthogonal geometry of a projec-
tive 2m-space over the field of q elements as a rank 3 permutation
group in which its pointwise stabilizer has the same orbit lengths
of 1, q(q9m~2 - ΐ)/(q - 1) and q2™~1 as PSp(2m, q) in its action on the
absolute points of the symplectic geometry. In the proof of Theo-
rem A, the possibility that G was an orthogonal group was elimi-
nated because of the hypothesis that a hyperbolic line R(xy) for
y ίx1 carried at least 3 points. It seems reasonable to expect that
with a change of hypothesis a characterization of the rank 3 groups
G in which the pointwise stabilizer has orbit lengths 1, q(qr~2 — 1)/
(q — 1) and q2r~ι is possible and that these groups will be subgroups
of the collineation groups of the symplectic geometry or of the
orthogonal geometry. We establish a result of this nature in the
following form.

THEOREM B. Let G be a transitive rank 3 group of permuta-
tions of a set X such that the orbit lengths for Gx, the stabilizer
of a point x in X, are 1, q(qr~2 — ϊ)/(q — 1) and qr~ι for integers
q>l and r > 4. Let x1 denote the union of the Gx-orbits of length
1 and q(qr~2 — ϊ)/(q — 1). Let R(xy) denote (λ{zL: x, yez1}. Assume
R(xy)Φ{x, y) for yex1 — {x}. Assume that the pointwise stabilizer
of xL Π y1 for y$xL does not fix R{xy) pointwise. Then r is even,
q is a prime power and G = H where either H is a group of
symplectic collineations of protective (r —1) space over GF(q) such
that H ^ PSp(r, q) or H is a group of orthogonal collineations of
protective r space over GF(q) such that Hξ^PΩ(r + 1, q).

The proof of Theorem B actually yields the following corollary
which distinguishes between the two cases.

COROLLARY. Assume the hypotheses of Theorem B.
(i) Assume that the pointwise stabilizer of x1 is nontrivial.

Then r is even, q is a prime power and G = H where H is a
group of symplectic collineations of protective (r — 1) space over
GF(q) such that H\^PSp(r, q).

(ii) Assume that the pointwise stabilizer of x1 is trivial and
that the pointwise stabilizer of xL Π y1 for y£x[ does not fix R{xy)
pointwise. Then r is even, q is a prime power and G = H where
H is a group of orthogonal collineations of protective r space over
GF(q) such that H^PΩ{r + 1, q).

Note that Corollary B(i) is a stronger result than Theorem A.
We consider this paper a continuation of [7] and note that the
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proof of Theorem B is similar to that of Theorem A. In § 2 we
will prove Theorem B. At times we will refer the reader to [7] for
the proofs of several statements. There are other characterizations
of the rank 3 classical groups, due to D. Higman, W. Kantor and
D. Perin [3, 4, 5].

2* The proof of Theorem B* In this section assume that G
is a rank 3 permutation group on X which satisfies the hypotheses
of Theorem B. Let D(b) denote the Gδ-orbit of length q(qr~2 - 1)/
(q — 1) and let C(b) denote the (?6-orbit of length qr~\ Let vr denote

LEMMA 2.1. (i) G is primitive of even order.
(ii) μ = λ + 2 == vr_2.
(iii) a1 Π bL Φ R(ab) for b e D(a).

Note that 2.1 (iii) eliminates problems with generalized qua-
drangles.

LEMMA 2.2. ( i ) | a1 Π C(b) \ = qr~2 for b e D(a).

(ii) Gab is transitive on the points of aL Π C(b) for beD(a).

For the proofs, see Lemmas 3.1 and 3.2 of [7].

NOTATION. If {x19 x2, , xτ) is a set of i ^ 2 distinct points of
X, then let R(x19 %2, , xt) denote

Π {z1: xί9 x2, , Xt e z1 for zeX} = R(x19 x29 , xt) .

LEMMA 2.3. ( i ) y ^R{xιx2- --xτ) if and only if y1 2 Π {xfi 1 ^
3 ^ i}.

(ii) 0(5(0102 »<)) = R(g(Pι)gfa) 0(3i)) /or ^ G .
(iii) jRί̂ αJa •»<) = R{y1y2- 2/*) i/ and only if

Π {a?/: 1 ^ i ^ i} = ΓΊ{^: 1 ^ i ^ i} .

REMARK. This lemma is valid for any permutation group G on
X and for any self-paired orbit D(x) of Gx where xL = {it;} U

Proof. In the proof the intersections are taken from i = l to i.
( i ) Assume y 6 jR^αv •»<). Let we ΐ\xj. Then α?w x2, , ^ e

^M;1 by Lemma 2.1 (vi) of [7]. Since y e Rix^ α?<) and ϋί^av «^)£
w1, it follows that yew1 and wey1.

Conversely assume f j f i a?/. Let xίf x2, , xt e wL. Then
w e f] xfQ y1. So yew1 and 2/ e iϋ^av -a?,).
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(ii) By (i) zeRWxMxJ gfri)) iff z^Πg(xjY iff (g'\z)Y^
f][xf iff g~\z)eR(xιx2'"Xι) iff zeg{R{xιx2-^x,)).

(iii) Assume i ϋ ^ α v xt) = R(yxy2- --yd- For 1 <; i ^ i, ^ G
Λ(1W« •»<). By ( i ) xf 2 Π vί for l ^ j ^ i . So n » | 2 n ϊfc1. It
follows that Π xj = ΓΊ y£.

Conversely assume |Ί xj- — n 2/j. Then z e R{xxx2' -α )̂ iff ^ 2 ίl
a J-= η ̂ /j- iff zGRiyMi yϊ). This completes the proof of the
lemma.

DEFINITION. A l-clique is a set {#} for xe X.

For i ^ 2, an i-clique is a set {α̂ , &2, , a;J of points of X
such that {xlf x29 , ̂ . J is an (i — l)-clique, xt e ΰ f e ) for 1 ̂  i <Ξ
i — 1 and ^ ί iϋίXαv •»<_!) where i?(^) = {αjj.

If {a?!, a?2> •••> ̂ } is an ί-clique, then we will call R{xιx2* --x%) an
"i-space."

Note that a "2-space" is a totally singular line of [2] and a
"3-space" is a "plane" of [7]. Eventually an "ί-space" will corres-
pond to a totally singular subspace generated by i linearly inde-
pendent singular points of a classical geometry.

NOTATION. Let T(xy) denote the pointwise stabilizer in G of
xι Πy1 for yeC(x). Thus

T(xy) = Π{Gz:zexλ ny1} .

PROPOSITION 2.4. T(xy) <2 GR{xy) and T(xy) is transitive on the
points of R{xy) for ygx1.

Proof. First we prove that GR{xy) is primitive on the points of
R(xy). Indeed if \R(xy)\>2, then GR{xy) is 2-transitive on the points
of R(xy) by a lemma in [2]. If R(xy) = {x, y}, then \G:GR{xy)\ =
nl/2 if yίx1 and \G: Gxy\ = nl. Therefore \GR{xy): GR{xy)x\ = 2 because
GR(χy)x = Gxy.

If ^ e GJJK^,, then

g{R{xy)) = R(g(x)g(y)) = R{xy)

and

g(χY n ^T/) 1 = χL ny1

by Lemma 2.3. But

T(xyY - n {Gg(z): z e a;1 Πi/1} = T(g(x)g(y))
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and so T(xy)9 = T(xy). Therefore T(xy) is a normal subgroup of
the primitive group GR{xy). Since T{xy) does not fix R{xy) pointwise
by hypothesis of the theorem, it follows that T(xy) is transitive on
the points of R{xy).

Note that GR{xy) is a doubly transitive group on the points of
R(xy) and has a normal subgroup I(xy). By familiar classification
theorems not needed here, \R(xy)\ — 1 is usually a prime power.

Note that if T{x), the pointwise stabilizer of xL, is nontrivial,
then T(xy) does not fix R{xy) pointwise for y g xL because T(x) is
semiregular off xL by a lemma in [2] and T{x) ^ T(xy).

Denote the group generated by T(xy) for all x, y e X with
y e CO) simply as K. Thus

if = (T(xy): x,yeX,ye C(x)) .

P R O P O S I T I O N 2 . 5 . ( i ) // {xί9 x 2 , « , α ; J is a set of i distinct
points of X, then KXίX2...x. is transitive on the points of
Π {xf: l ^ j ^ i } - Ripfo- .a?,)*

(i i) K is transitive on i-cliques.

Proof. ( i ) In the proof the intersections are taken from
3 = 1 to i. Let c and h be distinct points of n xf — R{xxx2* #f).
Either ceC(h) or ceD(h). If ceC(h), then S(cΛ) is a hyperbolic
line in Πa;/. Since |G | is even, ^ , a;2, •• , x i 6 c L n ^ i and so T(ch)
fixes a?!, #2, , Xt. By Proposition 2.4, there exists teT(eh)^
KXlX2 - x. such that ί(c) = h.

Assume now that ceD(h). Since c, h $ R(xtx2- •#<), there exists
by Lemma 2.3 (i) w e n a?/ Π C(c) and v e i l »/ Π C(h). There are 3
possible cases to consider:

(1) ueC(h), (2) veC(c) and (3) ueD(h) and veD(c).
( 1 ) If tten^n C(c) Π C(fc), then R(cu) is a hyperbolic line in

Πxf By Proposition 2.4, there exists t eT(cu) ^ KXlX2...x. such that
t(c) = u. The line R(uh) is hyperbolic and lies in Π xf. By Proposition
2.4, there exists s e T(wfe) ^ KXlX2...x. such that s(%) = h. Thus sί(e) = fe
and steKXlX2...x..

( 2 ) If v e ί l ^ j n C(c) Π C(fe), then a proof similar to that of
case (1) yields the desired result.

( 3) uenxfΓί C(c) Π D(h) and v e n xj Π -D(c) Π C(fe). Since ce
jD(fe), there exists weR(ch) — {c, h) because by hypothesis \R(ch)\>2.
Note weC(u), for if weuL, then ceR(ch) = R(wh)Quλ

9 a contra-
diction in case (3). Now w eR(ch) Q Π a?̂  . But w ί Rix^x^ a?t)
because % G n xf Π C(w). So % e Π a?j- Π C(c) Π C(w). By case (1)
there exists teKXίX2...x. such that t(c) = w. Note weC(v), for if
wet ; 1 , then heR(ch) = R{wh)^vλ, a contradiction. Now v e Γ\xfΓ\
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C(w)Γ\C(h). By case (1) there exists seKXlX2...x. such that s(w) — h.
So st(c) = h and ste KXlX2...x..

(ii) Let {xlfx29 •••,#,} and f̂ , ?/2, ••-,#,} be 2 i-cliques. The
proof is by induction on i. First note that K is transitive on X
because if is a normal subgroup of the primitive group G. If ΐ = l,
then there exists ί e ί such that k(x^ = ylβ Assume i > 1. By
the induction assumption there exists g eK such that g{x§) = #y for
j = 1, 2, , i — 1. From Lemma 2.3 (ii) and the definition of i-
clique, it follows that {yif y2, , yt_19 g(xx)} is an ί-clique because
{xlf x2, - , Xi-19 Xi} is an i-clique. Since

9(x<), Vi^ Π {2/j: 1 ^ j ^ ΐ - 1} - R(y1y2- -^--i) ,

by (i) there is heKVιy%..*Vi^ such that h{g(xτ)) = 2/,.. Thus hg(Xj) = yj
for i = 1, 2, , i. This completes the proof of the proposition.

Note that 3-cliques exist by Lemma 2.1 (iii).

PROPOSITION 2.6. Ga is a rank 3 permutation group on the set
of totally singular lines through a. For b e D{a), GaRίab} has non-
trivial orbits

{R(ac): c e a1 n b1 = R(ab)}

and

{R(ac):ceaA Π C(b)} .

The proof is similar to that of Proposition 3.4 of [7]. This
proposition follows from Lemmas 2.2 and 2.3 and Proposition 2.5 (i)
for i = 2 just as Proposition 3.4 of [7] follows from Lemmas 3.2
and 2.2 and Proposition 3.3 of [7].

PROPOSITION 2.7. Totally singular lines carry q + 1 points.

PROPOSITION 2.8. If beD(a), the X = u{c1: ceR(ab)}.

PROPOSITION 2.9. X together with its totally singular lines
forms a nondegenerate Shult space of finite rank ^ 3 in which
lines carry q + 1 points.

The proofs of the above three statements are identical to the
proofs of Propositions 3.5, 3.6, and 3.7 of [7].

LEMMA 2.10. / / {x19 x2, •••,#*} is an i-clique9 then R(x1x2 xi)

is a Shult subspace of X.
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Proof. In the proof the intersections are taken from j = 1 to i.
Let d, eeR{xxx2' •»<)• By definition of i-clique, ^eί l ίc , 1 for

1 ^ & ^ j and so by definition of "i-space" and by Lemma 2.3 (i) it
follows that

deRfaXi xjQ Π xjQeL .

Thus any two points of R{xιx2- -xι) are adjacent. Let the line
R{xy) meet R{x1x2- -xι) in {w, v). Then i?(α;̂ /) = jβ(ιw) and xL C]yL =
uλ Ov1. If z6J2(a?2/), then

since w, ve R{xιx2- •»<) by Lemma 2.3. Thus zeR(xtx2* - -x%) and
R{xy)ξ^R(xιx2- a?J. Therefore i2(θ/\α;2 xt) is a Shult subspace of
X, as desired.

PROPOSITION 2.11. ( i) q is a prime power and r is even.
(ii) Either X is isomorphic to the polar space S associated

with an alternating form f defined on a protective space P of
dimension r — 1 over GF(q) or X is isomorphic to the polar space
S associated with a symmetric form f defined on a protective
space P of dimension r over GF(q) for q odd.

For the proof see Proposition 3.9 of [7].
Since r is even and r ^ 5, there exists a natural number m ̂  3

such that r = 2m.

PROPOSITION 2.12. ( i ) G is isomorphic to a subgroup of
PΓU(f), the group of collineations of P which preserve the form f.

(ii) For xeX, φ(xL) = {weP: f(w, w) = 0, f{w9 φ{x)) = 0} where
φ: X—>S is a polar space isomorphism.

(iii) For an i-clique, \R(x1x2ι- -x%)\ = vt and \ Π {xj: 1 ̂  j ^i}\ =

(iv) X contains m-cliques but does not contain (m + l)-cliques.

Proof. For (i) and (ii) see Proposition 3.10 (i) and (ii) of [7].
(iii) From (ii) it follows that

φ{R(xxx2- -a?,)) - Π {φ(zY: φ{x,)9 Φ(x2), , φfa) e φiz1})

which equals the set of singular points in the intersection of all
the hyperplanes containing φ(x^, Φ&z), •••, Φ(Pi)* But this set is the
projective subspace generated by φ{x^)f Φ(x2), "*9Φ(^i) since φ(xk)±
φ(Xj) for all k, j . Thus \R{x1x2---xl)\ — vt.

From (ii) \ f) {xf:l <> j <> i}\ = vr_t.
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(iv) Since r = 2m, (iv) follows from (iii).

Now let {x19 xi9 , xm} be a fixed m-clique of X. Then

xλ c R{xιx9) a R{xιx2x^) c c R{xιx2- xm)

is a chain of Shult subspaces of X of length m ^ 3. Define sub-
groups Ki of K as follows:

!£ = if

Kt = K^ n ^(,1,2..., ί_1) for 2 ^ i ^ m + 1 .

Note the choice of the fixed ί-clique is arbitrary since K is transi-
tive on ΐ-cliques.

PROPOSITION 2.13. (i) Ki is transitive on the set of "i-spaces"
containing R{xxx2' -α^), for 2 <; i ^ m.

(ii) |JΓ: iΓm+1 | = ΠΓ=i ^ i .

Proof, (i) Let ^(α ̂  -α^jd) and ^(α ̂  • α?<_1β) be "ΐ-spaces"
containing R(xίx9 a;ί_1). Then

i —1

5 = 1

a set on which K^. . .^^ is transitive by Proposition 2.5. There
exists k e KXlXl...Xi_x such that k(d) = e. By Lemma 2.3 (iii), it follows
that

and that k e K^
(ii) For 2<^i<>m the number of "i-spaces" containing R{xix2*

is

So I JSΓ<: -BΓ<+11 = (̂m-ct-D) by (i). Since if is a normal subgroup of
the primitive group G, K is transitive and l ^ : ίΓ2| = v2m. Now (ii)
follows.

PROPOSITION 2.14. ( i) ψ(K) is a flag-transitive subgroup of
PGU(f), the group of protective transformations of P which pre-
serve /.

(ii) If X is symplectic, then ψ(K) ^ PSp(2m, q).
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(iii) If X is orthogonal, then ψ(K) ^ PΩ(2m + 1, q).

Proof. Let x, yeX with yeC(x). Since T(xy) is the pointwise
stabilizer in G of xL n y1, it follows that ψ(T(xy)) is the pointwise
stabilizer in ψ(G) of ^(X)1 Π ^(i/)1. If ί is a nontrivial element of
T(xy), then ψ(t)ePΓU(f) and fixes ^(α;)1 n Φ(y)L pointwise. This
implies that ψ(t)ePGU(f) and so ψ(K) ^ PGU(f).

Now f{Km+ι) fixes the flag

If 5 is the subgroup of PGU(f) which fixes the above flag, then
B is a Borel subgroup of PGU(f) and B f] ψ(K) = ψ(Km+ί). There-
fore by Proposition 2.13 (ii)

= \B\.\f(K):ψ(Km+1)\

Thus 5Ψ(JSL) = PGU(f) and ^(ίΓ) is a flag-transitive subgroup of
PGU(f). By a theorem of Seitz [6], it follows that

ψ(K) ^ PSp(2m, q)

if X is symplectic and

ψ(K) ^ P^(2m + 1, q)

if X is orthogonal, as desired.
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