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A NOTE ON THE JACOBI-PERRON ALGORITHM

THERESA P. VAUGHAN

In this paper we give a simple geometric description of
the Jacobi-Perron algorithm, based on the matrix-theoretic
approach to the algorithm. An important advantage of the
geometric description is that it may be used as an aid to
intuition as well as a practical tool. As an illustration, we
prove convergence for a special case.

The theory and procedures of the JPA have been studied from
many different viewpoints (cf. [1] and [3]). We consider here some
of the linear algebra and geometry naturally associated with the
matrix theory of the JPA.

In particular, for n = 2, 3 the procedures of the JPA may be
represented concretely in the Euclidean spaces R2 and Rz, and the
notion of convergence of the JPA takes on a fairly simple geometrical
meaning.

In § 1 we summarize briefly the JPA as described by Bernstein
in [1] (throughout, we use [1] as the standard reference). In § 2,
we restate the definitions given in § 1 in matrix-theoretic terms.
Based on this, we give a general description of the geometrical
meaning which may be attached to the notion of convergence of the
JPA. In § 3 we consider in detail the geometry associated with the
JPA for n = 3. The behavior of a JPA may be represented graph-
ically in this case. (This may be done similarly for n = 2, but the
case n = 3 is far more representative of the general case.) We
conclude with a straightforward, elementary proof of the convergence
of any JPA for a T-function whose values are positive integers, for
the case n = 3.

1* The Jacobi-Perron algorithm (JPA)* In this section, we
briefly recall the description of the JPA given in [1], and throughout
this section we use the notation of [1].

Let n be fixed, and let k be a nonnegative integer. The vector
α<*> i n βn-ι i s defined by

Λ) (k) — (n{k) π{k)

A transformation T of R"'1 to itself is defined as follows: suppose
/ is a (vector) function on Rn~ι such that

(1.2)

and suppose also that a[k) Φ b[k). Then put
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(1.8) T(a{k)) = (a[k) - •v(fc)
Λ/2

(k) Kkl19

f or k = 0,1, 2, .
A sequence <α(fc)> = <α(0), α(1), α(2), •••> of vectors in Rn'1 is called

a Jacobi-Perron algorithm of the vector α(0), provided there exists a
transformation T of iΓ"1 defined as above such that

(1.4) T(a{k)) = a{k+ί) (k = 0, 1, 2,

that is, if we have (a{k)) = (Tk(a{0))).
With a given JPA (a{k)) we have the associated functions T and /,
and also families of matrices defined as follows:

A(0) is the n x n identity matrix,

3 = 0

i = 0,' ,n-l,

v = 0,l, ")

0 0 ••• 1

1 o ••• 0 ••• bίv)

0 1 0 0 bίv)

0 0

These matrices are related by:

(v = 0, , i, j = 0,1, •••, n - 1) .

In [1] the properties of the matrices A{k) and Bik) are studied
in some detail, and it is shown how they are related to the JPA.
In the next section we consider some of the geometry which is
naturally associated with these matrices.

2. Matrix theory of the JPA* In this section we use the nota-
tion of the last section for the vectors and matrices of a JPA. We
also employ the following standard notation: If A is an n x n
matrix and v 6 Rn, then, regarding v as a column vector, Av is the
usual matrix product. For emphasis, we may write col (v), indicat-
ing that v is to be regarded as a column vector.

The formula (1.4) may be restated in matrix theoretic terms as
follows. Put

Λ,(fc) Λ Π 1 (Λ n(k) π{k) π(k) \

(k = 0,1, •••)• Then
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(2-1) vίk+1) = ,k) * b(», (g '")- 1 «'»

It is clear that we also have

" k) v(fcfl)
v{0) = Π («ίJ ) - 6iJ"}) x Bi0)B{1) B

= Π W] - b[j)) x
J = 0

The convergence of a JPA may be described in terms of the
behavior of the column vectors of the matrices A{k+1). We first
require some notation.

Let X be a vector in Rn, say X — (xlf x2, , xn). If X is pro-
jected onto the x1 — xt plane, its image is the vector (x19 xτ), which
has polar coordinates (ri9 θt) where

It is well known that the vector X is completely determined by its
length and the n — 1 angles Θ2J θz> " ,θn. We shall refer to these
angles as the direction angles of X.

The convergence of the JPA may be viewed as convergence of
the direction angles of the column vectors of the matrices A{k) of
the given JPA. To be precise: given the sequence {Aίk)} of a JPA,
for each matrix A{k\ let X[k\ X{

2

k), — ,X{k) be its column vectors.
Let the direction angles of X^ be denoted by

and let the direction angles of v{0) be θ2, •••, θn. Then the JPA con-
verges provided that, as k—>oof we have

i = 1,2,

that is, corresponding direction angles of the column vectors of A{k)

must converge to a common value as k —* °o.
(The actual definition of convergence given in [1] uses tan/9

rather than θ; it is required that

{ tan θ{

2

kl} > t a n θ2
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and so on. This is evidently equivalent to the previous description.)
The convergence of the JPA may also be viewed in the following

way. We think of the matrices B{k) as linear transformations of
Rn. Suppose for example that all of the b{k) are nonnegative, and
put

S = {(xί9 x 2 , - - - , x n ) \ X i ^ 0 } .

Then B{k)(S) c S and we always have

If the original vector v(0) = (1, a{°\ , α ^ ) lies in S, and if it should
happen that

Π A(fc)(S) = L , a line in S,
k=0

then we must have the direction angles of L equal to the limiting
angles θ2, , θn described above for a convergent JPA, that is, the
JPA for vi0) converges and L is the line along ^(0).

Conversely, if the JPA for v{0) converges, for v{0) e S (and B{k)

as described above), then we must have Π?=o A{k)(S) = L, where L
is the line along v{0).

In the next section, we employ a slight modification of this
viewpoint to give a graphical representation of the behavior of a
convergent JPA for the case n = 3.

3* The geometry of a JPA for n = 3* When n = 2 or 3, the
situation can be pictured in R2 or Rz; Rz is the more illuminating.
To keep our pictures simple, we shall assume that the Γ-function
yields only positive integer values, and that the starting vector v{0)

has all nonnegative entries.
First define six 3 x 3 matrices {Eiά \ i Φ j ; i, j = 1, 2, 3} by:

1, r = s

{Eio)rs = • 1, r = j, s = i

0 otherwise,

that is, Eij is the result of performing the elementary operation
"add row i to row j " on the identity matrix J3. We also define
the 3 x 3 matrix T by

T =

One checks easily that the matrices B{k) factor as:

•o

1

.0

0
0

1

r
0

0.
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(where rkf sk are the positive integers b[k), b2

k)). One checks that

/ g\ i\ TTT rn ΠP TJi ΊJ1 ΊΠ ΠΠ ΊJI ΈΠ T^2 __ ΓΓI2ΈΠ TP fΎ^2 __ ΠΠ2 ΊJi
( O . I ; J2JίZl = I i^32, J&iZ-l = J- ̂ 31> -^13-* — ^ ^21> ^12-^ — -̂  i^ 2 3

and so we may write

/O O\ TΠrίΊ7iSlrΓl ΊPr2Ί7iS2rP Ί7ιr3Ί7lS3rP ΊPr\ ΊP8l ΊPr2 ΊPS2 ΊPr3 ΊT18^
\o.Δ) £jl2

LJbjιzlJiιί2JlιιzlJii12^jlzl — rjYίϊ!jιzlh2%ih2γJltzγJii%2 .

For our purposes we use, instead of the sequence {B{k)}9 the equiva-
lent sequence {B{k)} defined by: for B{lc) = EtfEUT, put

E[kE8k if k = 3m

E2B

kE8

2

k if k = 3m + 1

K?E8£ if ft = 3m + 2

f or ft = 0,1, 2, .
Let

= {(», 1,

= {(a?, ?/,

?, β ^ 1}

0} ,

so^that & is the first octant and the Ft are the three faces of the
unit cube in &.

A — E12E13

A(l, 0,0) = (1,1,1)
A(l f0,l) = (l,l,2) >(i,4,D
-4(1,1,0) = (1,2,1)—>(i, l ,4)
i4(l,l,l) = (l,2,2) > (i, 1,1)

FIGURE 1
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Since B{k) has nonnegative entries, we have B{k)(έ?)ciέ?. We
may visualize B{k)(έ?) more easily by looking at the intersection of
B{k)(έ7) with the set F ^ ^ U ^ U F3. The effect of T is just a
rotation, and for geometric simplicity we prefer to use the matrices
B{k) instead of the matrices B{k). In Figure 1 we show the effect
of E12E1Z on &\ it is a sweep towards the y — z plane (resp. for
E2lEm the x - z plane; for E91Em the x - y plane). Figures 2, 3
show the picture for Er

uE\2 according to whether r < s or r > s; if
r = s, the picture is symmetric about the line x = y = 1.

Next, put

A - Eί2Els(έ?) n .P

A - EnE2Z(έ?) n F

A = E$ίE32(έ?) n ί 7.

A(l, 0,0) = (1,0,0)
A(l,0,l) = (3,3,l)
Λ(l, 1,0) = (1,1,0)
Λ(l,l,l) = (3,4,l)
4(0,0,1) = (2,3,1)
4(0,1,1) = (2,4,1)
4(0,1,0) = (0,1,0)

FIGURE 2

• (1,1, 4)

^ (f, 1, i)
>(§,l,i)
>(i,l,i)
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A = ELEl
A(l, 0,0) = (1,0,0)
A(l, 0,1) = (5,2,1) -
A(l, 1,0) = (1,1,0)
4(1,1,1) = (5,3,1)-
A(0,0,1) = (4,2,1)-
A(0,1,1) = (4,3,1)-
A(0,1,0) = (0,1,0)
A(O,l,J) = ( l , l , i )

FIGURE 3

The sets Dt cover F and have disjoint interior.

z

A
L.1 ^ y

z

2

FIGURE 4

In Figure 4 we have sketched in the sets Dlf D2, DB. One sees in
Figure 2, that EzιE32 acting on Dx produces a plane set in F2 which
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is a good deal smaller in its plane dimensions than Dx\ similarly for
E21E2Z acting on DZJ and E12E1Z acting on D2.

This observation may be made precise, and used to yield a proof
of convergence of any JPA in this setting (starting vector v{0) in
^ T-function gives positive integers; Theorem 3.5). We indicate
below the motivation for our proof.

Referring to Figure 1 again, we have sketched in a triangle

and in fact, E12E13(D2) Π F = T3. Now E23E2l{Dz) f] F is contained in
a similar triangle T1 on F19 so that

we sketch this set in Figure 5.
If we continue to iterate this process, we expect to get nested

sets with diameter decreasing to zero.
Define sets Rk by induction on k:

Ro = βM(<g?) n F

Rk = (5 ( 0 )5 ( 1> £< f c ) (^) ) n F .

Then clearly we have

(3.3) Ro => R, Ό R2 =)

and we may state

THEOREM 3.4. The JPA which gives the sequence {B{h)} for a
vector v{0) in έ?, converges if and only if

f\Rk = {P} = K°> Π F)
fc=0

a single point in F, hence if and only if diam Rk —> 0 as k —>- oo.

Proof. The set Rk is a triangle in F whose vertices, regarded
as vectors in ^ , are multiples of the column vectors of the matrix

j?(o>... B{k) = Ά{k)

and when k = 3m we have A(&) = A{k), the fcth matrix of the JPA.
The first statement |follows from this, the second follows from the
Cantor intersection theorem.

It is possible to show geometrically that diam Rk—>0 as k—>oof
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FIGURE 5

thus proving convergence for all such JPA. We indicate briefly
here how such a proof may be carried out.

THEOREM 3.5. For the sets Rk defined above, diami2fc—>0 as
k—> oo.

Proof (Sketch). The matrix A{lc) has non-negative integer entries,
and if k ^ 1, Rk lies on one of the sets Fi9 Write

a2 b2 c2

By the construction of the JPA, Ά{k) must have the form (say k
3m + 2)

= ESETdEStBTi EltιElk-ιEr

zl

kEsi

alf c3 > α3, δ3 > a3 .

and from this we have the inequalities

c3> c2> c19 b3 > b2 > blf α3 > α2
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The column vectors of A{k) intersected with F, give a triangle on
F3, whose vertices we label α, b,c: a = (aja3, aja3, 1); b = (bjb3, bjb3, 1);

c = (cjc3, cjc3, 1).

Now A{k+1) = Ά{k)El2E
s

13 for positive integers r, s; the new triangle

has vertices 6, c, and

V —
rδ3

a2 se

FIGURE 6

The points ulf u2 are defined by:

Uι = α3 + r63 α3

sc

sc3

- . 1 ) .

One finds that the ratios of the lengths of collinear segments
are rational; we have:

(3.6)
d(b,

d(b, a)

(since 63 > α3); and

(3.7)

rb3

do

die, u2) =

d(c, a) a3

1_

2

2

a3

(since α3 < c3). Now the altitude from v to δc is less than half the
altitude from a to be .

After two more steps, the set Rk+Z is a triangle with altitudes
respectively less than half the altitudes of Rk = Δabc. Hence
diam Rk —> 0 as fc —> oo, and this completes the proof.

REMARK 1. At the kth step, the triangle Rk+1 has a common side
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with the triangle Rk; its other two sides are shorter. Thus con-
ceivably we could have diam Rk = diam Rk+1. The triangle Rk+2 has
a common side with Rk+1, but not the same as the common side of
Rk and Rk+1; it is this "turning" effect that makes things work out.
In fact, we do have diam Rk < diam Rk+2; our proof could probably
be strengthened along these lines.

In the general case, in Rn, we would have nested sets in R%~γ

with diameter converging to zero. The preceding proof would require
that the process be carried out to at least n — 1 steps before one
could say diam Rk < c diam Rk+n-1 (for some c e (0, 1)).

REMARK 2. The proof outlined above is rather tedious (and the
tedium varies directly with n). It does have the advantage over
the usual proofs given for a JPA, of being easy, elementary, and
involving only rational procedures. It also shows clearly how the
rate of convergence is affected by the exponents rk, sk (formulas (3.6)
and (3.7)).

REMARK 3. Concerning the use of integers in the T-function,
we note that a careful examination of Figures 1, 2 and 3 suggests
why a "greatest integer" type of T-function would be valuable.

For example, if we wish to write

Λ,(fc) _ τηr τπs ..(fc+i)
V — JJJ 31Xί/ 3 2V ,

it is obviously most efficient to select the "smallest" possible set like
the ones sketched in Figure 2 or 3, containing v[k). One could say
also that the triangles Rk are made as small as possible, consistent
with other requirements, by the use of a "greatest integer" T-func-
tion. (In Figure 6, the point vm Π F lies in Jabc; one selects r, s
so that the Jvbc is as small as possible and contains v{0) Π F.)
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