A CHARACTERIZATION FOR COMPACT CENTRAL DOUBLE CENTRALIZERS ON C*-ALGEBRAS

SIN-EI TAKAHASI

The purpose of this note is to give a characterization for compact central double centralizers on any C^* -algebra A in view of the Dixmier's representation theorem of central double centralizers on A. The proof makes use of the Urysohn's lemma for spectra of C^* -algebras and algebraic properties of a central double centralizer.

Throughout the note, A denotes a C^* -algebra. Let Prim A denote the structure space of A, that is the set of all primitive ideals of A, with the hull-kernel topology. Let M(A) denote the double centralizer algebra of A and Z(M(A)) the center of M(A). Busby [1] has noted that the algebra $C^{b}(\operatorname{Prim} A)$ of all bounded continuous complex-valued functions on Prim A can be canonically identified with Z(M(A)), which is equivalent with a result of Dixmier ([5], Theorem 5). Moreover, we can regard the algebra Z(M(A)) as the algebra of all bounded linear operators T on A such that (Tx)y = x(Ty) for all $x, y \in A$. In its final form, this identification Φ between Z(M(A)) and $C^{b}(\operatorname{Prim} A)$ can be described as follows: If $T \in Z(M(A))$, then $Ta + P = \Phi(T)(P)(a + P)$ for all $a \in A$ and $P \in Prim A$, where a + P for $P \in Prim A$ denotes the canonical image of a in A/P (Dauns and Hofmann theorem [3] shows that every functions in $C^{\flat}(\operatorname{Prim} A)$ can be realized uniquely in this way). We will characterize the set of all compact central double centralizers on A in view of this representation theorem of Z(M(A)). Our characterization is similar to ones established by Kellogg [6] and Ching and Wong [2] for H^* -algebras, and this is also a generalization of one proved by Rowlands [7] for dual B^* -algebras.

Let $Z_c(M(A))$ denote the compact central double centralizers on A. If LC(A) is the algebra of all compact operators on A, then $Z_c(M(A)) = Z(M(A)) \cap LC(A)$, so that $Z_c(M(A))$ is a closed ideal of Z(M(A)). Let I_c be the set of all functions f in $C^b(\operatorname{Prim} A)$ such that for any closed compact subset K in $\operatorname{supp}(f)$, A/I_K is finite dimensional. Here $\operatorname{supp}(f)$ denotes the set of all $P \in \operatorname{Prim} A$ such that $f(P) \neq 0$, and I_K denotes a closed two-sided ideal of A with $\operatorname{Prim}(A/I_K) \simeq K$ (cf. [4], §3.2). Note that if K is the empty set, then A/I_K is zero-dimensional, so that I_c contains the zero function. Now I_c is a closed ideal in $C^b(\operatorname{Prim} A)$. For since $\operatorname{supp}(f) \supset$ $\operatorname{supp}(fg)$ for each f, g in $C^b(\operatorname{Prim} A)$, I_c is an ideal in $C^b(\operatorname{Prim} A)$. Let $\{f_n\}$ be a sequence of functions in I_c which converges uniformly to a function f in $C^b(\operatorname{Prim} A)$. Let K be any nonempty closed compact subset in $\operatorname{supp}(f)$. Set

$$\delta = \inf \left\{ |f(P)| : P \in K \right\}.$$

Then $\delta > 0$ and $||f_N - f|| < \delta$ for sufficiently large number N. This implies $K \subset \text{supp}(f_N)$. Then A/I_K is finite dimensional since $f_N \in I_C$. Hence $f \in I_C$ and so I_C is uniformly closed. Let $C_0(\text{Prim } A)$ be the set of all bounded continuous complex-valued functions on Prim Awhich vanish at infinity. Let $I_{C0} = I_C \cap C_0(\text{Prim } A)$. Then I_{C0} is a closed ideal of $C^b(\text{Prim } A)$.

We now show that these ideals $Z_c(M(A))$ and I_{c_0} can be canonically identified and thus obtain a characterization for $Z_c(M(A))$.

THEOREM 1. $Z_{c}(M(A))$ is isometrically *-isomorphic to $I_{c_{0}}$.

To show the above theorem, we need the following Urysohn's lemma for arbitrary C^* -algebras.

LEMMA 2 ([8], Theorem). Let \hat{A} be the spectrum of A and let S_1 , S_2 be two nonempty closed subsets in \hat{A} . Then the following two conditions are equivalent

(i) $S_1 \cap S_2 = \emptyset$.

(ii) For any element $a \ge 0$ in A there exists an element x in A such that $0 \le x \le a$, $\pi(x) = 0$ for all $\pi \in S_1$, and $\pi(x) = \pi(a)$ for all $\pi \in S_2$.

Proof of Theorem 1. Let Φ be the canonical *-isomorphism of Z(M(A)) onto $C^b(\operatorname{Prim} A)$ as be stated above. We will show that $\Phi(Z_c(M(A))) = I_{c_0}$ going through three steps.

(I) $\Phi(Z_c(M(A))) \supset I_{c_0}$. Let $f \in I_{c_0}$ and $\varepsilon > 0$ be chosen arbitrarily. Set

$$K_{\varepsilon} = \{ P \in \operatorname{Prim} A \colon |f(P)| \ge \varepsilon \}$$

and

$$F_{\varepsilon} = \{P \in \operatorname{Prim} A \colon |f(P)| \leq \varepsilon/2\}$$
 .

Let $\{u_{\lambda}\}$ be a positive approximate identity for A (in the sense of Appendice B29 in [4]). By Lemma 2, for each λ there exists an element $x_{\lambda,\varepsilon}$ in A such that $0 \leq x_{\lambda,\varepsilon} \leq u_{\lambda}$, $x_{\lambda,\varepsilon} + P = u_{\lambda} + P$ for all $P \in K_{\varepsilon}$ and $x_{\lambda,\varepsilon} + P = 0$ for all $P \in F_{\varepsilon}$. Set $T = \Phi^{-1}(f)$, so that T is a central double centralizer on A. Moreover, set

$$T_{\lambda,\epsilon}(a) = T(x_{\lambda,\epsilon}a)$$

for each λ and $a \in A$. Then $T_{\lambda,\varepsilon}$ is a bounded linear operator on A.

256

We will show that $T_{\lambda,\varepsilon}$ is an element of LC(A). Let $\operatorname{supp}(Tx_{\lambda,\varepsilon})$ be the set of all $P \in \operatorname{Prim} A$ such that $Tx_{\lambda,\varepsilon} \notin P$. Since $Tx_{\lambda,\varepsilon} \in T(P) \subset P$ for all $P \in F_{\varepsilon}$, we have F_{ε} is included $\operatorname{Prim}(A) \operatorname{supp}(Tx_{\lambda,\varepsilon})$. This implies that

$$\mathrm{cl} \ (\mathrm{supp} \ (Tx_{\lambda,arepsilon})) \subset \mathrm{cl} \ (\mathrm{Prim} \ (A) ackslash F_arepsilon) \subset K_{arepsilon/2}$$
 ,

where cl denotes closure in the hull-kernel topology. Since $K_{\epsilon/2}$ is compact, it follows that cl $(\operatorname{supp}(Tx_{\lambda,\epsilon}))$ is a closed compact subset in $\operatorname{supp}(f)$. Let $I_{\lambda,\epsilon}$ is a closed two-sided ideal of A such that $\operatorname{Prim}(A/I_{\lambda,\epsilon}) \simeq \operatorname{cl}(\operatorname{supp}(Tx_{\lambda,\epsilon}))$. Then $A/I_{\lambda,\epsilon}$ is finite dimensional since $f \in I_c$. Let $\{a_n\}$ be a sequence of A with $||a_n|| \leq 1$ for all n = $1, 2, \cdots$. Then $\{a_n + I_{\lambda,\epsilon}\}$ is also a bounded sequence in $A/I_{\lambda,\epsilon}$, so that there exists a convergent subsequence $\{a_{nj} + I_{\lambda,\epsilon}\}$. We now have

$$\begin{split} ||T_{\lambda,\varepsilon}(a_{n_j}) - T_{\lambda,\varepsilon}(a_{n_k})|| \\ &= \sup \left\{ ||(Tx_{\lambda,\varepsilon})(a_{n_j} - a_{n_k}) + P||: P \in \operatorname{Prim} A \right\} \\ &= \sup \left\{ ||(Tx_{\lambda,\varepsilon} + P)(a_{n_j} - a_{n_k} + P)||: P \in \operatorname{cl}\left(\operatorname{supp}\left(Tx_{\lambda,\varepsilon}\right)\right) \right\} \\ &\leq \sup \left\{ ||T|| ||a_{n_j} - a_{n_k} + P||: P \in \operatorname{cl}\left(\operatorname{supp}\left(Tx_{\lambda,\varepsilon}\right)\right) \right\} \\ &= ||T|| ||(a_{n_j} + I_{\lambda,\varepsilon}) - (a_{n_k} + I_{\lambda,\varepsilon})|| \end{split}$$

for all $j, k = 1, 2, \cdots$. Then $\{T_{\lambda,\varepsilon}(a_{n_j})\}$ is Cauchy and hence converges in A. Thus $T_{\lambda,\varepsilon}$ is compact for each λ . Now since $f \in I_c$ and K_{ε} is a closed compact subset in $\operatorname{supp}(f)$, it follows that $A/I_{K_{\varepsilon}}$ is finite dimensional C^* -algebra and hence $\{u_{\lambda} + I_{K_{\varepsilon}}\}$ converges to the identity 1_{ε} of $A/I_{K_{\varepsilon}}$. Then there exists a λ_{ε} such that $||1_{\varepsilon} - (u_{\lambda_{\varepsilon}} + I_{K_{\varepsilon}})|| < \varepsilon$. Set $T_{\varepsilon} = T_{\lambda_{\varepsilon},\varepsilon}$ and $x_{\varepsilon} = x_{\lambda_{\varepsilon},\varepsilon}$. For any $a \in A$ we further set

$$egin{aligned} lpha &= \sup\left\{ ||(Ta - x_{\epsilon}Ta) + P|| \colon P \in K_{\epsilon}
ight\} \ , \ eta &= \sup\left\{ ||T(a - x_{\epsilon}a) + P|| \colon P \in \operatorname{Prim}\left(A
ight) igkslash K_{\epsilon}
ight\} \ . \end{aligned}$$

Since $x_{\varepsilon} + P = u_{\lambda_{\varepsilon}} + P$ for all $P \in K_{\varepsilon}$, we have

$$\begin{split} \alpha &= \sup \left\{ \| (Ta + P) - (u_{\lambda_{\varepsilon}} + P)(Ta + P) \| : P \in K_{\varepsilon} \right\} \\ &= \| (\mathbf{1}_{\varepsilon} - (u_{\lambda_{\varepsilon}} + I_{K_{\varepsilon}}))(Ta + I_{K_{\varepsilon}}) \| \\ &\leq \| Ta \| \varepsilon . \end{split}$$

We further have

$$\begin{split} \beta &= \sup \left\{ |f(P)| ||(a - x_{\varepsilon}a) + P|| \colon P \in \operatorname{Prim}(A) \backslash K_{\varepsilon} \right\} \\ &\leq (||a|| + ||u_{\lambda_{\varepsilon}}|| ||a||)\varepsilon \\ &\leq 2 ||a|| \varepsilon . \end{split}$$

257

Therefore $||Ta - T_{\varepsilon}a|| \leq \alpha + \beta \leq (||Ta|| + 2 ||a||)\varepsilon$ for all $a \in A$, so that $||T - T_{\varepsilon}|| \leq (||T|| + 2)\varepsilon$. Since T_{ε} is compact and ε is arbitrary, T is also compact and (I) is proved.

(II) $\Phi(Z_c(M(A))) \subset I_c$. Let $f \in \Phi(Z_c(M(A)))$ and $T \in Z_c(M(A))$ with $f = \Phi(T)$. Suppose that $f \notin I_c$, so that there exists a nonempty closed compact subset K in supp (f) such that A/I_K is infinite dimensional. Then there exist elements a_n in A such that $||a_n + I_K|| = 1$ $(n = 1, 2, \cdots)$ and $||(a_n + I_K) - (a_m + I_K)|| \ge 1/2$ $(n \ne m)$. We can assume that $||a_n|| \le 2$ $(n = 1, 2, \cdots)$. Set

$$\delta = \inf \{ |f(P)| : P \in K \} .$$

Then $\delta > 0$ since K is compact and we have

$$||Ta_n - Ta_m|| \ge \sup \{|f(P)| ||(a_n - a_m) + P||: P \in K\}$$
$$\ge \sup \{||(a_n - a_m) + P||\delta: P \in K\}$$
$$= ||(a_n + I_K) - (a_m + I_K)||\delta$$
$$\ge \delta/2$$

for all distinct numbers n, m. Then $\{Ta_n\}$ contains no convergent subsequence. But this is imposible since T is compact and (II) is proved.

(III)
$$\Phi(Z_c(M(A))) \subset C_0(\operatorname{Prim} A)$$
. Let $T \in Z_c(M(A))$ and $\varepsilon > 0$. Set
 $f = \Phi(T)$ and $K_{\varepsilon} = \{P \in \operatorname{Prim} A : |f(P)| \ge \varepsilon\}$.

We only show that K_{ε} is compact. Let $I_{K_{\varepsilon}}$ be a closed two-sided ideal of A with $\operatorname{Prim}(A/I_{K_{\varepsilon}}) \simeq K_{\varepsilon}$, as be stated above. Suppose that $A/I_{K_{\varepsilon}}$ is infinite dimensional. Then, as in the proof of (II), there exist elements a_n in A such that $||a_n|| \leq 2$, $||a_n + I_{K_{\varepsilon}}|| = 1$ $(n = 1, 2, \cdots)$ and $||(a_n + I_{K_{\varepsilon}}) - (a_m + I_{K_{\varepsilon}})|| \geq 1/2$ $(n \neq m)$. By the same computation in the proof of (II), we have $||Ta_n - Ta_m|| \geq \varepsilon/2$, so that $\{Ta_n\}$ contains no convergent subsequence, which contradicts T is compact. Thus $A/I_{K_{\varepsilon}}$ is a finite dimensinal C^* -algebra. Then $A/I_{K_{\varepsilon}}$ can be canonically identified with its enveloping von Neumann algebra. Suppose that $\operatorname{Prim}(A/I_{K_{\varepsilon}})$ contains an infinite countable subset $\{P_1, P_2, \cdots\}$. Let π_i be a nonzero irreducible representation of $A/I_{K_{\varepsilon}}$ with $P_i = \operatorname{Ker} \pi_i$ and ξ_i a norm one element in the Hilbert space associated with π_i for each i. Set

$$f_i(x + I_{\kappa_{\varepsilon}}) = (\pi_i(x + I_{\kappa_{\varepsilon}})\xi_i | \xi_i) \quad (i = 1, 2, \cdots)$$

for each $x + I_{\kappa_{\epsilon}} \in A/I_{\kappa_{\epsilon}}$. Since $\pi_i \neq \pi_j$ $(i \neq j)$, it follows that $||f_i - f_j|| = 2$ $(i \neq j)$ (cf. [4], 2.12.1). Let p_i denote the support of f_i for each *i*. Then $\{p_i\}$ are mutually orthogonal (cf. [4], 12.3.1). But this is imposible since each p_i is an element in $A/I_{\kappa_{\epsilon}}$ and so

 $\operatorname{Prim}(A/I_{K_{\varepsilon}})$ is finite set. Then K_{ε} is also a finite set, so that it is compact and (III) is proved.

We will next show that a result of Rowlands ([7], Theorem 2) is a special case of Theorem 1. Let $\Omega(A)$ be the space of minimal closed two-sided ideals of A with its discrete topology, in case Ais dual. Let $\{I_{\lambda}: \lambda \in A\}$ be the family of all minimal closed two-sided ideals of A and $\Lambda_0 = \{\lambda \in A: I_{\lambda} \text{ is infinite dimensional}\}$. Let I_0 be the set of all functions f in the algebra $C^b(\Omega(A))$ of all bounded complex-valued functions on $\Omega(A)$ such that $f(I_{\lambda}) = 0$ for all $\lambda \in \Lambda_0$; if $\Lambda_0 = \emptyset$, let $I_0 = C^b(\Omega(A))$. Let $C_0(\Omega(A))$ be the subalgebra of $C^b(\Omega(A))$ which consists of functions vanishing at infinity.

COROLLARY 3 ([7], Theorem 2). If A is a dual C^{*}-algebra, then $Z_{c}(M(A))$ is isometrically *-isomorphic to $I_{0} \cap C_{0}(\Omega(A))$.

Proof. By ([4], 10.10.6), Prim A is discrete. For each $P \in$ Prim A, we define a function δ_P on Prim A by the equation: $\delta_P(P) =$ 1 and $\delta_P(Q) = 0$ if $Q \neq P$, and set $\mu(P) = \Phi^{-1}(\delta_P)(A)$. Then we can easily see that $P \to \mu(P)$ is a bijection of Prim A onto $\Omega(A)$. Let μ^* be the dual map of μ . Then μ^* is a isometric *-isomorphism of $C^b(\Omega(A))$ onto $C^b(\operatorname{Prim} A)$. By the definitions of I_C and I_0 , we see that $\mu^*(I_0 \cap C_0(\Omega(A))) = I_{C_0}$. Set $\Psi(T) = (\mu^*)^{-1}(\Phi(T))$ for each $T \in$ $Z_C(M(A))$. Then $\Psi(Z_C(M(A))) = I_0 \cap C_0(\Omega(A))$ by Theorem 1 and the corollary is proved.

The author wishes to thank the referee for his useful comments.

References

- 1. R. Busby, On structure spaces and extensions of C*-algebras, J. Functional Analysis, 1 (1967), 370-377.
- 2. W. Ching and J. Wong, *Multipliers and H*-algebras*, Pacific J. Math., **22** (1967), 387-396.
- 3. J. Dauns and K. H. Hofmann, Representations of rings by continuous sections, Mem. Amer. Math. Soc., 83 (1968).
- 4. J. Dixmier, Les C* algèbres et leurs représentations, (Cahiers Scientifique 24), Gauthier-Villars, Paris, 1964.
- 5. _____, Ideal center of a C*-algebra, Duke Math. J., 35 (1968), 375-382.
- 6. C. N. Kellogg, Centralizers and H*-algebras, Pacific J. Math., 17 (1966), 121-129.
- 7. K. Rowlands, A note on multiplier operators and dual B^* -algebras, Canad. Math. Bull., **17** (1974), 563-565.
- 8. S. Takahasi, A remark on Urysohn's lemma for spectrums of C*-algebras, Bull. Fac. Sci. Ibaraki Univ. Ser. A, 4 (1972), 33-35.

Received October 13, 1976 and in revised form March 10, 1977.

IBARAKI UNIVERSITY MITO, IBARAKI, JAPAN 259