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THE SECOND DUAL OF C(X)

CHRISTINE SHANNON

In this paper, we undertake a study of the order dual,
denoted M, of the radon measures of compact support on a
locally compact space X. In the case that X is realcompact,
M is the second (order) dual of the space of continuous
functions on X, C(X). We define the sublattice of semi-
continuous elements, S(X), and prove that each member of
M is dominated by a member of S(X). It follows that the
ideal generated by S(X) in M is all of M. On the other
hand, the ideal generated by C(X) in M is all of M if and
only if X is a cδ-space.

Finally, we show that S(X) and C(X) can be identified
in M as certain spaces of multiplication operators which are
continuous with respect to certain weak topologies. This
extends the work of J. Mack, who first characterized M as
the (continuous) multiplication operators on the Radon
measures.

Introduction* In [3] Kaplan considered Ck{X) — Ck, the continu-
ous functions of compact support on a locally compact space, and
its order dual Lk (the space of Radon measures). In the process,
he singled out \JL(K), the ideal of those measures having compact
support. It is the order dual of this space, denoted M, in which
we will be interested. In the case that X is realcompact, M is the
second dual of the space of continuous functions and therefore of
particular interest.

M has already been studied by Mack [5], who characterized it
as the set of (order) continuous multiplication operators on Lk. It
is our purpose to extend his work. In considering the case where
X is compact, Kaplan studied various sublattices of M including
what he called the semi-continuous elements S(X). We will extend
the study to our more general setting and show that S(X) and C(X)
can be identified in M as spaces of multiplication operators on Lk,
continuous with respect to certain weak topologies. Thus we will
relate the work of the two authors.

1* Preliminaries* The information and results summarized here
will be used frequently in the rest of the paper. We assume a
knowledge of the basic results on Riesz spaces.

1.1. A subset B of a Riesz space (vector lattice) E is called
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bounded if it is contained in some interval [a, b] = {c eE: a <: c <; b}.
Eis called (Dedekind) complete if the supremum, VB, and the infimum,
ΛJ3, exist for all bounded sets. If E and F are vector lattices, a
map from E to F is called bounded if it transforms bounded sets
into bounded sets. A linear mapping is called positive if it maps
the positive cone E+ into F+. If F is a complete vector lattice, then
a linear mapping from E into F is bounded if and only if it is the

difference of two positive mappings, and the set of all such mappings
is a complete vector lattice. The set of bounded linear functionals is
denoted Eb. If A c Eb is directed upward, that is for each ft and f2

in A, there exists /* 6 A such that /* ^ /x and /* ^ /2, then / = V A
if and only if <α, /> = V {(a, fa)\faeA} for all a in J57+. Given a
subset 5 of JE/6 one may adjoin to it all suprema of finite subsets
and the resulting set will be directed upward and have the same
supremum, if it exists, as the subset B.

1.2. Given a directed net {aa} in E, aa\ a means aa ^ aβ for
a ^ β and a = V aa; aa J, a is defined similarly. A net {aa} converges
to a if there exists a net {ba} such that ba \ 0 and | & — aa | <; 6α for
all a. We will write in this case aa—>a. A linear functional φ is
called continuous if aa—>a implies (aa, φ)—> (a, φ). Ec denotes the
space of continuous linear functionals.

1.3. A subset A is closed if {aa} c A and aa—>a imply aeA.
An ideal is a linear subspace I of E such that α e l and 161 ̂  |a
imply 6 e I. If A is a subspace of E, the ideal generated by A,
I(A) = {&e£J: |6| ^ |α | for some aeA}. If £7 = I φ e / , then α, will
denote the component of a e E in I. I will be called a band. Given
a subset A in J57, A' will be the set of elements disjoint from A:
A! — {%: \x\ A \a\ = 0 for all aeA}. A! is a closed ideal and if
E — J 0 J , J= Γ, so bands are closed ideals. In a complete space,
closed ideals are bands (Riesz). Finally, if E—I@J, then i?δ =
J1 0 1 1 where I 1 has the usual definition. It is also true that P =
Jp = ( jy = p-'. If ^ej&i, then the component of ^ in I 1 ' is given
by <£ri', μ) = V {<̂ , v> 10 ^ y ^ μ, v e J} for all μ e E+.

1.4. In this paper, X is locally compact, C = C(X) is the space
of continuous functions, Ck = CA(X) is the subset of those having
compact support. lx will denote the function identically equal to
one on X. If fe C(X)y the symbols S(f) and coz / represent respec-
tively, clx {x: f(x) Φ 0} and {x: f(x) Φ 0}. Lk(X) = Cl, the space of
Radon measures. Unless there is danger of confusion, we will not
indicate the underlying space in the above notation. If μeLk and
if sup {| (h, μ) |: h e Ck and | h \ ̂  1} exists and is finite then μ is called
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a bounded Radon measure and the supremum is defined to be \\μ\\.
All measures of compact support are bounded. For compact sets, we
follow Kaplan's notation: if if is a compact set, C(K) is the Banach
lattice of continuous functions, L(K) its dual and M(K) the bidual.

1.5. Let K be a compact subset of X. In general, C(K) cannot
be identified with an ideal in Ck. Its dual, however, is a direct
summand of Lk. Indeed, let / = {/ e Ck: f\κ = 0}. Then C(K) can be
identified with the quotient space CJI. It follows that L{K) = I 1

and since Lk is complete, Lk — L(K) 0 I 1 ' . If Mk is the (continuous)
second dual of Ck, we also have Mk = M(K)φL(K)L.

1.6. The set \JL(K) as K ranges over all compact subsets of
X is an ideal in Lk [3, (4.2)]. Let M = M{X) = (UL(iΓ))6. If
X is realcompact, M is the second dual of C. If feM and
sup{|</, μ}\:μe \JL(K), | |μ| |<;i} exists and is finite, then / is called
bounded and the supremum is denoted | | / | | . Since for each com-
pact set K,L(K) is a closed ideal in l)L(K), M(X) = M(K)®L{Ky.
For each compact set K, M(K) consists of bounded elements.

1.7. Let (Lk)0 be the closed ideal generated by X when considered
as a subset of Lk and (Lk\ its complementary ideal. Clearly, (Lk)Q

consists of the purely atomic Radon measures on X. If x e X, we
will represent the atomic measure at x by x. For any subset A c Lk,
we let Ai be the projection on (Lfc)4. Then since U L(K) = (U L(K)\Q
(UL(ί)) w we have M = ikίoφikf1 where Λf, = (Uiffl),1 ' in Λf. Mo

is lattice and ring isomorphic to the locally bounded functions on X.
[5, (5.7)]. For convenience, if x is the atomic measure at x and
feM, we will usually write </, x) as /00»).

2. The ideals Λf(#)• Since for each compact set K, M = M(K) 0
L(K)1 in ikf, the problem of identifying C(K) with an ideal in Ck is
partially alleviated. Indeed, since CaM, C(K) can be identified with

the projection of C on

PROPOSITION 2.1. C^*) = (Ck)M{κ) for every compact subset KaX.

Proof. Clearly {Ck)M{κ)aCM(κ). So let gMικ)GCM[κ)+. We show
there exists heCk+ such that hM{κ) = qMiκ) Choose heCk such that
h = g on K. This can be done since K is compact. Then gM{κ) — hMiκ).
Indeed, let μ e \JL(K)+. Since M{K) = L ( i ) 1 ' , (1, 3) gives (gM{κ), μ) =
sup {<#, v> [0 ^ v ^ ^ and v 6L(K)}. The result follows since (g, v) =
<fe, v) for every such measure y and hence

μ> = sup {<&, >̂ 10 ^ v ^ ^, v e L(K) =
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Since C(K) can be identified with CM{K), the vague topology on
L(K), σ(L(K), C(K)), is the same as σ(L(K), Cmκ)) which equals
σ{L{K), (Cκ)Miκ)) by the above. The following is easily checked.

PROPOSITION 2.2. The following topologies on L{K) are equi-
valent:

(a) σ{Lk, Ck) \LiK)
( b ) σ(L(K),Ck)
(c) σ(L(K)ACk)M{κ))
(d) σ(L(K),

3* M(X) as multiplication operators on Lk. A bounded opera-
tor on a vector lattice E is called a multiplication operator if each
closed ideal is invariant with respect to the operator. Mack has
shown each feM defines an order continuous multiplication operator
on Lk by the following definition: for μ e Lk and h e Ck, (h, f*μ} —
(f, h*μ) where h*μ is the element of U L(K) defined by (g, h*μ} =
(gh, μ) for all g e C(X). Indeed he was able to show every such
operator arises in this way.

THEOREM 3.1 (Mack [5, (4.4)]). M is lattice isomorphic with
the vector lattice of all multiplication operators on Lk.

If σ(E, F) is a weak topology on a vector lattice E, we say a
linear operator T from E to itself is σ(E, F) continuous if {μα}—>0 σ(E, F)
implies {Tμa}—»0 σ(E, F). We now determine those elements of M
for which /* is a σ(Lk, Ck) continuous operator.

THEOREM 3.2. Let feM. Then p is a σ(Lky Ck) continuous
operator on Lk if and only if feC(X).

Proof. Suppose feC(X) and assume (h, μa) —+0 for all heCk.
We must show (g, f^a) —* 0 for all g e Ck. But this is clear because
<ft f%> = <Λ g*μa> = <fg, μ«> -* 0 since fg e Ck.

For the converse we need two lemmas

LEMMA 3.3. Suppose X is compact and feM(X). If p is a
σ(L, C) continuous operator on L, then feC(X).

Proof. We show / is σ(L, C) continuous on L. Suppose {μa} c
L(X) and (h,μa)~-*Q for all heC. We show <f,μa}-+0. But
</, μa) = (f, Vμay = <1, f*μa) —* 0 since /* is a σ(L, C) continuous
operator.
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LEMMA 3.4. LetfeM. If for each compact set K9 fM{K)^C{K),
then feC(X).

Proof. We first show that fQ — gQ for some g eC. We then show
/ = g. Let peX. Since X is locally compact, p has a compact
neighborhood K. Since fmκ) e C(K), (/*<*>)<> e (CM))o so fQ is continu-
ous on a neighborhood of p. Since p was arbitrary, /0 is continuous
as a function on X. Therefore, let g be the continuous function
such that gQ = /0. We claim that f=g. Let μ 6 U L(K) and S = S(μ).
Since S is compact, fMls) e C(S). Furthermore, gM{s) e C(S) and
(fM(s))0 = (9Mis))0' Therefore, gM{s)=fM{s) [1, (5.4)]. So we have </,/*> =
</*<$>, ^> = <̂ jf(5» J"> = <#> J"> T o complete the proof of the prop-
osition:

By Lemma 3.4 it suffices to show fM{κ) e C(K) for all compact
sets K in X. By Lemma 3.3 it then suffices to show fίiκ) is a
σ(L(K), C(K)) continuous multiplication operator on L(K). So let
{μa} c L{K) and (h, μa) -»0 for all h e C(K). We must show
< Λ , / W « > - 0 for all Λ6C(ίΓ).

By Proposition 2.2 <fe, fMiκ)μa) ~> 0 for all fe 6 C(J5Γ) if and only
if (gf fmnPa) —* 0 f o r aH ^ e Cfc. Since by hypothesis p is a (7(1^, Cfc)
continuous operator, (g, f*μa} -+ 0 for all g e Ck. Now g*μa e L(JK"), SO

by (1.5) we have <sr,/^α> = < / , ^ α > = <Λ/(i,),sr%>. Thus <g,
%> -> 0 for all # 6 Cfc.

4* The semi-continuous elements* We now proceed in a man-
nar analogous to Kaplan's for the compact case and employ some
methods from integration theory. Unless otherwise indicated, all
infima and suprema will be taken in M.

DEFINITION 4.1. An element feMis use if for each real number
r there exists a subset Ar of C such that /Λ r\x = Λ Ar.

REMARK 4.2. Clearly if / e C , then / is use. Furthermore if
/ = Afa for some collection {/JcC, then / is use. If X is compact,
then this definition is equivalent to that of Kaplan.

If K is a compact space, we follow Kaplan's notation and let
S(K) be the sublattice generated by the use elements in M(K). In
our more general case we still have the result that S(K) is a subset
of M(K) for every compact set KdX. We show now that feM is
use exactly in the case that fM{κ) is a use element in M{K) for every
compact set KcX. For this we need several lemmas.

LEMMA 4.3. IfBcz C{X) and f=AB, then fM{κ) e S(K). Indeed,
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s a u s c element in M(K).

Proof. If / = ΛB, then fM{κ) = A{gM{κ]: g e B). Since C{K) is
identified with the projection of C(X) on M(K), the result follows
immediately.

We say a real valued function on X is upper semi-continuous
if {x: f{x) < r} is open for every real number r. The following is
easily proved.

LEMMA 4.4. If feM is usc, then f0 is an upper semi-continu-
ous function on X.

LEMMA 4.5. Let f: X—* R be a function such that for each com-
pact set K there exist positive upper semi-continuous function ff
so that f\κ = ff — fξ. Then f = f — f2 where each f is a positive
upper semi-continuous function.

Proof. Let f(x) = Λiu^x): f(x) = ux{x) — u2(x) on a neighborhood
of x for some positive upper semi-continuous functions uτ). Then f
is well defined, positive and upper semi-continuous. Letting f2(x) =
/I(B) — f(x) we have f2(x) = Aiu^x): f(x) = û a?) — u2(» on a neigh-
borhood of x for some positive upper semi-continuous functions ut} —
fix) = Λ{u2ix):fix) — ̂ (α;) — u2ix) on a neghborhood of x for some
positive upper semi-continuous functions wj. So /2 is also a positive
upper semi-continuous function.

LEMMA 4.6. Let f:X—+R be a locally bounded upper semi-con-
tinuous function. Then there exists a usc element g e l so that
g0 = f

Proof. For each n e N, let gn = ΛHf>% = Λ{h e C(X): h^fΛ nlx}.
Then Jϊ/>ί4 is filtering downward and to show #% is well defined, it
suffices to show (gn, μ) is finite for each μe \JL(K)+. [See 1.1 and
make appropriate changes.] This follows because / is locally bounded
and hence bounded below on compact sets. If μe Ul/(iΓ)+ and
K' = Siμ), choose a natural number r so that f\κ, ^ —rlz\κ>. Then
<fe, ^> ̂  < —rl x, /̂ > > — co for each heHf,n and the infimum exists.
Similarly, to show # = Vgn exists, we choose an arbitrary μe ULiK)+
and a compact set Kr so that Siμ) c i n t if'. Then if reN is such
that f\κ, ^ r, we claim that for n > r, (gn, μ) = <cyr, μ). Indeed it
is clear that (gn, μ) ^ (gr, μ). For the opposite inequality, let ε > 0
be given and choose hγeHf,r so that (gr, μ) ^ (/ẑ , μ) — ε. Let Λ2e
C(X) be chosen so that h2 = fej. on S(/̂ ) and h2 = n\x on X\iΓ'. If
h = h,V h2 then h ̂  f A nlx and <fe, ̂ > = </ι1? μ). Thus <gr, ^> ^
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(hl9 μ) — ε = (h, μ) — ε ̂  (gn9 μ) — ε. Thus the supremum equals

Furthermore, g is use, for if n e N, we claim g A nlx = A {̂
h ^ g Λ nlx). It suffices to show # Λ wl x ̂  A {̂  e C(X): h^g A nlx}
and consequently that for each μ e \J L(K)+, (g A nlZf μ) ^ A {(K £*>:
Λ e C(X) and h^g A nlz}. Let μ e U L(iQ+ and ε > 0. By defini-
tion of the infimum in M [1, (2.1)] there exist μι and μ2e\J L(K)+

so μ = μ, + μ2 and (g A nlx, μ) ^ (g, a,) + (nlx, μ2) - l/2ε. Let Kr

and i ϊ be compact sets such that S(μ) c l n t U c f f c l n t K'ciK'. As
above, if f\κ. ^ r, then <g, μx) = <gr, ^>. Choose fex e C(X) such that
hέϊfΛ rlz and such that (gr, μλ) ̂  <fex, μ^ — ε/2 so that (g/\nlz, μ) ^
{̂ i, //^ + <^lx, /̂ 2> — e. Let fe2 e C(X) be chosen so that h2 = hλ on
S(^i) and h2 = ̂ l x on X\Int i ϊ and let fe3 = hλV h2. We claim h3 ^
r̂ Λ ^lχ. Indeed if v e U L(ίΓ)+ and Φ e Cfc such that Φ = 1 on H and

Φ = 0 on X\Int K' then v = (Φv) + ( l x - Φ)v. Thus <fe
<fe3, (lχ - Φ)v> = (h,v). Now fe3 ̂  K implies <fe3, (Φv)> ̂  (gr,
and S((l x - Φ)v) c X\Int jff implies (K (lχ - Φ)v> ̂  <>lχ, ( l x -
Thus (K v)^(gr, {Φv)) + {nlx, {lx-Φ)v). Since S(Φv)czK\ (gr,
{g, Φv) so <Λ,, v> ̂  <sr, (Φv)> + <wlΓ> (lχ - Φ)v) ̂ (g A nlx, v). Finally
since v was arbitrary we have h3^ g A nlz and fe3 Λ nlx ^ g A nlx.
As a result,

<# Λ wlz, μ) ^ <Λlf ft> + <nlz, μ2) - e ̂  <λ8, i"i> + <^lχ, ^2> - e
^ <fe3 Λ nlx, μ) - ε ̂  A K >̂ i">: ̂

6 C(X), h^g A nlz} - e .

Since ε was arbitrary we have the desired result.
Finally, we check that gQ(x) = f(x) for each xeX. Let xeX,

Kf a compact neighborhood of x and ε > 0. Suppose f\κ, ^ r for
some natural number r. Then g{x) — go(x) = (c/r)0(^). Since /Λ r l z

is upper semi-continuous there exists h e C(X) such that h ^ / Λ r l x

and Λ(a?) < /Λ r l x 0 ) + ε. Thus (gr\(x) ^ fe(a?) ̂  /Λ rlx(α;) + ε =
f(x) + ε. Since the other inequality is clear, the proof is complete.

LEMMA 4.7. If g is use in M, then gMiκ) is use in M(K) for
every compact set KaX.

Proof. Let K be a compact set and r be an integer so that
QJHK) ^ fl* Then gM[κ) = (g A rlx)M{κ). The result now follows from
the definition of use elements Lemma (4.3).

THEOREM 4.8. Let feM. Then f is use if and only if fmκ)

is a use element in M(K) for every compact set K.

Proof. Suppose fM{κ) is a use element in M(K) for every compact
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set K. Consider /0. Since fMiκ) is bounded and use in M(K), f0 is
locally bounded and upper semi-continuous as a function on X. By
Lemma 4.6, there exists a use element g in M so that g0 = /0.
We show g = /. This follows immediately from the fact that for
each compact set iΓ, fMlκ) and ^ ( i n are wsc members of M(K)
(Lemma 4.7). Since (gM(κ))o — (/*<*>)<> it follows from the compact
case that gM{κ) = fM{κ). Since this is true for each compact set K,
it follows that / = g.

PROPOSITION 4.9. // / and g are use elements in M, then so is

f+g.

Proof. Let if be a compact set. Then (/ + g)M^κ) = /*<*> + gMικ)
is the sum of two use elements in M(K) and hence is use. The
result now follows from Theorem 4.8.

Similarly, the following propositions are easily verified using
corresponding results for the compact case.

PROPOSITION 4.10. // / and g are use elements in M, then
f Λ g and f V g are also. If a > 0, af is use.

PROPOSITION 4.11. If A is a subset of use elements in M and
f = h A, then f is use.

Let S = S(X) denote the linear subspace of M generated by the
positive use elements. It follows from (4.9) and (4.10) that each
element in S can be written as / — g where / and g are positive
use. The fact that S is a sublattice follows from the fact that
(Λ - Oi) A (Λ - g%) = {(Λ + g2) A (Λ + ffί)} - fa + g2) and (4.10).

Of course for each compact set K, S(K), the semi-continuous
elements studied by Kaplan [1] is a subset of M(K) and hence of M.
In the following we assume a knowledge of the compact case.

PROPOSITION 4.12. Ife M, then fe S if and only if fM{κ) e S(K)
for each compact set K.

Proof. If feS, then f = fλ — /2 where each /« is positive use.
But then fM{κ) = CΛW) - (/2)MIK) e S(K) by Lemma 4.7. Conversely,
if /M(K) £ S(K) for each compact set K, we need only observe that in
S(K) element can be written as the difference of positive use elements
and the proof follows as in Theorem 4.8 using Lemma 4.5.

PROPOSITION 4.13. / / / and g are members of S, then f ^ g if
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and only if f0 ^ g0.

Proof. It suffices to show fQ <: g0 implies / <; g. Let μ e \J L(K)+
and K' = S(μ). Then f0 ^ g0 implies (fMiκn)0 <; {gM{κn\. By Proposition
4.12 fM{κ>) and gM(κ>) a r e members of S(Kf) and consequently using re-
sults from the compact case, fMiκ')^gM{κ>). Thus </, μy — (fMικ>), & ^
(9inκ>)> t*) ~ <#> ̂ ) Since this is true for every μ e (J L(K)+ f tί g.

COROLLARY 4.14. // / and g are members of S, then f = g is
equivalent to f0 = ^0 ^ particular, the projection of S onto SQ is
one-to-one.

PROPOSITION 4.15. S(K) = S(X)M{K) for each compact set K.

Proof. By (4.12), S(X)M{K) c S(K). It now suffices to show that
if / is a positive use element in S(K), then / — gmκ) for some g e S(X).
Suppose {/«} c G(K) and / = Λ / β in Jlf(X). Let ga e Ck+ be such that
ga\κ = /α. Then g — A 9a exists in Λf and is use. By Lemma 4.7,
0jf<*> e

 S(JSL) Thus, since (gM{κ))o = /0 it follows from Corollary 4.14
applied to the compact case that gM{κ) — f.

Since S(X) is not an ideal, it is not obvious that projections onto
the ideals M(K) are still members of S(X). We consider this next.

LEMMA 4.16. Let K be a compact subset of X and {/«} a net in
Ck such that a ^ β implies fa(x) ^ fβ{x) for all x and fa(x) [ 0 for
all x in X\K. Then AfaeM(K).

Proof. Since M(K) = L(K)'L [see (1.3) and (1.5)], it suffices to
show <Λ /«, v> = Λ {fa, v> = 0 for all v e L(K)'. Assume the contrary
and let v e L(K)', v ^ 0 be such that </β, y> ̂  r > 0 for all a. Let
A fix - ^ That is, for

k e C(X)+ (h, μy = <h, Λfivy = A <λ, Λv> - A <hfa, v>

Now, JM is not identically zero. Indeed, \\μ\\ = <l x , ^> = A </«, ̂ > ̂  ^
Furthermore, S(μ) c iΓ, for if fe e C(X), Λ^ = 0, then fah [ 0 for all
xeXand since v has compact support, (h, μy = A <Λ/άι ^) = 0 by the
usual argument. Thus μ e L(K) and μ Λ v = 0. However, let 6 =
| | / α J | V 1 for some arbitrary a0. Then for

h e Ck+ <Λ, ]M> = A

so μ ^bv and μ /\v^ μ /\ b~ιμ = δ " 1 ^ ^ 0 which is a contradiction.
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COROLLARY 4.17. With the above hypothesis A fa e S(K) and is
positive use.

PROPOSITION 4.18. Let feC(X)+ and K be a compact subset of
X. Then fMiκ) e S(X) and indeed fmκ) is positive use.

Proof. Let {/„} - {fa e Ck+: fa \κ = f\κ}. We direct the index set
as follow a <L β if fa(x) ^ fβ(%) for all xeX. It is easy to check
that this definition satisfies the conditions for a directed set.
Furthermore, since for each x e X\K, there exists fttQ such that
faQ\κ = f\κ and fao(x) = 0 it is clear that fa(x) [ 0 for all x in X\K.
Let g = A /«• By Corollary 4.17 g e S(K) and is positive use. We
show fMiκ) = £. But this is clear, for if μeL(K)+ then (fmκ), μ) =

</, μ) = </« tf> f o r a 1 1 «• τ h u s </if(ί), i"> = A </«, A«> = <̂ , ̂
consequently /^(x) = g and is positive use.

PROPOSITION 4.19. Let feS(X), then fmκ) e S(X) for each compact
set K. In particular, if f is a positive use element, then for each
real number r, there exists a collection Br c Ck+ so that fMiκ) A τlx —
A Br.

Proof. Assume / is positive use. Then for every real number
r, there is a collection Ar c C(X)+ so that / Λ r\x — A -̂r Then

fM{κ) A rlx = fM{κ) A {rlx)mκ) = (/ Λ rlx)M{κ)

= {AAr)M{κ) = A {gMικ)' gzAr}.

If g e Ar, then by the argument in Proposition 4.18 gM{κ) is the infimum
of a collection AgaCk+. Thus we have: fM{κ)/\rlx = A {9MM- geAr} =
A{Λ Ag: g e Ar} = A{h:he\J {Ag: g e Ar}}. The result now follows
by choosing Br = \J {Ag: g e Ar}.

If / is an arbitrary element of S, then / = g — h where g and
h are positive use. Then /^ ( r ) = gM[κ) — hM{κ) e S(X).

COROLLARY 4.20. // / is positive use and K is a compact set,
then there exists a collection Aκ c Ck+ so that fM{κ) — A Λε

Proof. Since fmκ) is bounded, there exists a real number r so
that fM(κ) — fmiK) Λ rlx. The result now follows immediately from
(4.19)/

5* S(X) as multiplication operators. Let Sk(X) = {/ e S(X):
f = /af(jr) for some compact subset K). Sk(X) can also be regarded
as the union of all S(K) as K ranges over the compact subset of X.
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It is easy to see that / e Sk(X) if and only if f0 (as a function on X)
is the difference of two positive upper semi-continuous functions with
compact support. It is also clear that Sk(X) c U M(K) c Mk and
that it is a sub vector lattice containing Ck. As such, it is separating
on Lk and determines a Hausdorff weak topology on Lk, namely
σ(Lk, Sk).

We have already considered M as multiplication operators on Lk.
Indeed if / e M and μ e Lk(X)+(h, f*μ) = </, h*μ> for all heCk+. Now
consider the special case that feS(X). Suppose / is use. Choose
an integer r so that </, hιμ) — (f A rlZ9 h*μ). Since / is use there
exists a collection {fa} c C(X) such that / Λ rlz = A {/«}• Thus

</, λ'j"> = <ΛΛ, λ'i"> - A </«, ̂ > = A <ΛΛ, ̂ > = <ΛΛ/«, i«> .

Observe that Λ hfa e Sk(X).
We have already shown that S(K) = S(X)M{K). We now show

that these are the same as (Sk)M{κ).

PROPOSITION 5.1. S(X)mκ) = (Sk)M{κ).

Proof. Clearly (Sk)Miκ)aSmκ). Thus let gx{κ)eSM{κ) and g be
positive use. We show there exists heSkso that hM{κ) = flr^jf,. Let
r be a real number so that gM{κ) = (g Λ rlx)M{κ). By hypothesis,
there exists {ga} c C(X)+ so that g A rlz = A g*. Let iZ" be a com-
pact neighborhood of K and {ha} c C(X) so that halκ = ga and
S(ha) (zH. Let fe = A fc«. Clearly fe^(Λ:) = (g A rlz)mκ) = ̂ ( ^ and
since fe = feif(F) h e Sk.

This proposition and the previous remark make it easy to verify
the following:

PROPOSITION 5.2. On L(K) the following topologies are equi-
valent:

( a ) σ(Lk9 Sk)\L{κ)

(b) σ{L{K\ (Sk)mκ))
(c) σ{L{K\ S(X)mκ))
(d) σ(L(K),S(K))

LEMMA 5.3. Let Xbe compact and feM. If fι is σ(L, S) con-
tinuous on L then feS.

Proof. The proof of (3.3) carries over by replacing C with S.

THEOREM 5.4. Let feM, then fι is a σ(Lk, Sk) continuous multi-
plication operator on Lk if and only if fe S.
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Proof. Let feS and {μa}cLk such that (h, μa) —•0 for all h eSΛ.
We show </&, /*μα> —> 0 for all fe e Sfc. Without loss of generality, we
may assume / is positive and use. Since h e Sk, h = ht — h2 where
the hi are positive use elements in Sk so we may also assume h is
positive use.

By Corollary 4.20, there exists a collection {hr} c Ck+ such that
h= Ahr. Thus <Λ, / T O = Ar <fer, f*μa) - Ar </, Λ'i"«>. We may
as well assume there is a compact set K such that S(hr)cK for all
7. Choose an integer r so that

</, Mj"«> = </ Λ rlΣ, h*μa}

for all a and 7. This can be done since S(hγμa) c iL By assumption,
there exists a collection {/^}cC(I) so that f /\rlx = Afβ- τ i l u s

for each α, <Λ, /*/£„> = Λr </ Λ r l x , Λ^α> - Ar <Λ*/* Mi"«> =
Λr Λ^ <Λ, M «̂> = Ar Aβ (fβhr, μ<*} = (Arβ fβhr, i"«>. We observe that
ArβfβhrεSk and hence <fe, /*^β> = (ArβfβK μ«>-+0.

For the converse we merely adapt the proof of Theorem 3.2
replacing C{K) with S(JSL) and the references to 2.2, 3.3 and 3.4 with
5.2, 5.3 and 4.12.

6* The ideals generated by S(X) and C(X). We have now
singled out two sublattices in Λf, namely S and C. In the case that
X is compact, the constant function lx is a strong order unit in the
normed vector space M. That is, it is a positive element of unit
norm such that feM(X) and | | / | | <; 1 imply | / | ^ l x . Since l x is
a member of both S and C, it can be shown that the ideals these
sublattices generate, denoted I(C) and I(S), must be all of M. In
the more general case we are considering, however, there may not
be a strong order unit. Unless X is pseudocompact, l x is only a
weak order unit: that is, a positive element such that for each/eikf,
I /1 Λ I* = 0 implies / = 0. It can be shown that under this condition,
the closed ideals generated by S and C are all of M, although not
necessarily the ideals themselves. We give necessary and sufficient
conditions under which I(β) (respectively I(C)) is all of M.

THEOREM 6.1. I(S) = M. Indeed, eaeh element of M is dominated
by positive use element.

Proof. Let feM. Since / = / + - / - ^ / + + /- = | / | , it suf-
fices to assume / ^ 0 . For each neN, let gn = A {̂  eC(X): h ^
/ Λ wlχ}. To show g — y gn exists it suffices to show V (gn, μ) < °o
for each jM6(J L(JBΓ)+ (1.1). Let / ί e | J L(K) and ίΓ' be a compact
set so that S(μ) is contained in the interior of Kr. Assume \fM(κ>) I ^
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rlκ, for some reN. We can prove as in Lemma 4.6 that for all n >
r (gn, μ) = (gr, μ), and hence that the supremum in question is finite.
Also (g, μ) = (gr, μ} ^ </ Λ r l x , μ) = (f A rlM{κ,)9 μ) = </W0, μ> =
</, μ>. It remains to show g is use. The proof in Lemma 4.6 applies
if the condition f\κ ^ r is replaced by I/W^l ̂  τlκ,.

DEFINITION 6.2. A topological space X is called a cb-space if and
only if for each locally bounded function h, there exists feC(X) such
that |Λ| ̂ / .

THEOREM 6.3 (Mack [4, Theorem 1]). X is a cb space if and
only if each countable increasing cover of X has a countable refine-
ment by cozero sets; that is, sets of the form, coz / for some feC(X).

LEMMA 6.4. Let feM+ and 3fΓ be the collection of all open
relatively compact subsets of X. Let Un = \J{Ke^\ \\fM<κ)\\ ^ w}
Let μ 6 U L(K)+ and Ko = S(μ). If Ko c Un then </, μ) ^ (nlx, μ) =
n\\μ\\.

Proof. Since X is locally compact, J%Γ is a cover of X and the
compactness of Ko implies there exist subset Klf , Km in Un such
that KoaKx U K2 U Km. Let hi9 i = 1, , m be a partition of unity
on ίΓ0 subordinate to the cover {Kt}?=1. That is, hi eCk, 0 ̂  ht ^ 1,

,) c if, and ΣΓ *<(») = 1 for all x e Ko. Then

1 1

and since S(fe<*μ) c if* this last expression is dominated by

Σ IIΛ(zϊ,IIP*fj"ll ^ Σ^IIV^II = <̂ f (Σ W > = n||μ|| .
1 1 1

THEOREM 6.5. I(C) = M if and only if X is a cb-space.

Proof. Assume first that I(C) = M. Let h be locally bounded
and real valued on X. We must show there exists / e C(X) such
that I h I <; /. Assume h ^ 0. Since /& is locally bounded, it determines
a function g e M+ such that go(x) = h(x) for all x e X. By hypothesis
and (1.3) there exists p e C{X) such that p ^ g. Thus p0 ̂  #0 and
hence f(x) = po(x) is the required function.

For the converse, let feM+. We show there exists geC(X)
such that g^f. Let J%Γ and {?/„} be defined as in Lemma 6.4.
Then the collection {Un} is an increasing cover of X by open sets.
Since X is a c6-space and the countable union of cozero sets is again
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a cozero set, we have by Theorem (6.3) a family {gn} c C(X) such
that coz gn c Un and {coz gn) is a cover of X. Assume gt ^ 0. Define
fn = lχ — V {nlχ9i Λ l j : i ^ %}. Given a e l , there exists an i such
that gt(x) > 0. Therefore, there exists a i such that gt(y) > i " 1 for
each y in a neighborhood of x. Therefore fn vanishes on that neigh-
borhood for n ^ i V j . This implies Σ fn is locally finite and thus
g = 2 + Σfne C(X). We claim / ^ g. Indeed, let μ e U L ( ί ) + and
Ko = S(μ). Let Wn = Un Π {#: flr(a?) > w}. Since # is continuous Wn

is open. Furthermore, {Wn} is a cover. Indeed, let xeX and w0 =
A {n: x e Un}. Then gm(x) — 0 for m = 1, , w0 — 1 and a? e FΓΛo.
Since Ko is compact, there exists a natural number s such that
Ko c TFi U U Ws. For i = 1, , s, choose fe, 6 Ck such that 0 <:
^ ^ 1, S(^) c TF* and Σ ί ^(α?) = 1 for all x e Z"o. Then </, ̂ > =
<Λ (Σi Λ*)*Λ«> ̂  Σ? <i9 hfμ} by Lemma (6.4). For i = 1, • •, *, choose
wt e Ck such that 0 ̂  wt ^ 1, Wi(») = 1 for all x e Sihjμ) and S(Wt) c TF<.
So (ff μ) ^ ΣS! (wti, h^μ) and 0 ^ iwt ^ i with S(iwt) c W<. Since
^ > i on l^i, this implies iw< ^ r̂. Finally this gives </, /£> <;

Σϊ <Λ Wi"> - <g, (Σϊ λ*)^> = <Λ ;">.

APPENDIX. If one uses the definition of use element as given in
this paper, it would be natural to define an Isc element in M as one
for which —/ is use. However, bearing in mind the properties
possessed by lower semi-continuous functions, it is also natural to
define an Isc element as one for which / = V fa for some collection
{fa}(zC(X). These are not compatible definitions. In a manner
similar to that used above, we can show (using the second definition)
that the linear sublattice T formed by the positive Isc elements
consists of all those members of M which can be written as the
difference of positive Isc elements. If X is compact, then this sub-
lattice is exactly the same as S(X). In general, however, S and T
are not the same.

We say a real valued function on X is lower semi-continuous if
{x:f(x) > r) is open for each real r.

The following is easily checked:

LEMMA 7.1. If feM is Isc, the fQ is a lower semi-continuous
function on X.

PROPOSITION 7.2. Let f:X-+R be a positive lower semi-con-
tinuous function and locally bounded. Then h — V {/αeC(X):0 ^
fa ^ /} exists in M, h is Isc and ho(x) = f(x) for all x e X.

Proof. Let ^ = {fa e C(X): 0 ^ fa ^ /}. Then &~ determines
an ascending net and we may write V J^ — V /«• It suffices to
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prove that for each μe\J L(K)+, V (fa, μ) exists and is finite.
Since / is locally bounded and S(μ) is compact, sup {fix): x e S(μ)} is
some finite number r. Then for each α, </α, μ) = </α Λ r l x , μ> +
<(Λ - rl z )

+ , μ> = </β Λ r l x , μ> since (/α - r l x ) + = 0 on S(μ). So
(/«> A2) ̂  f 11 A* 11 ^ o r e a c ^ α> giving an increasing set of real numbers
which is bounded above. Hence the supremum in question exists
and is finite. By definition h is Isc and the last assertion follows
from the fact that / is lower semi-continuous.

COROLLARY 7.3. Let feM0 and / ^ 0. If as a function on X,
f is lower semi-continuous, then there exists a unique Isc element
g eM such that gQ — f.

Proof. We merely observe that the elements of MQ are locally
bounded as functions on X. (1.7). The uniqueness follows from the
fact that for Isc elements / = g if and only if f0 = g0. (Argument
follows as in [1]).

DEFINITION 7.4. A space X is countably paracompact if and
only if each countable open cover has a locally finite refinement.

THEOREM 7.5 (Mack [4, Theorem 10]). X is countably para-
compact if and only if for each locally bounded function h defined
on X there exists a locally bounded lower semi-continuous function
g such that \h\ ̂  g.

THEOREM 7.6. I(T) = M if and only if X is countably para-
compact.

Proof. Assume first that the ideal generated by T, I(T)=M. By
Theorem 7.5 it suffices to show that for each locally bounded function
h on X there exists a locally bounded lower semi-continuous function
g such that \h\ ̂  g. Now Mo is isomorphic to the locally bounded
functions on X. Therefore, \h\ determines a member of Mo. By
hypothesis and (1.3), there exists g eT0 such that 0 <̂  | h \ ̂  g. By
definition g = gx — g2 where each g{ is a positive, locally bounded Isc.
The result follows from the observation that 0 <̂  (h \ <̂  g1 — g2 5g gί9

For the converse, let feM+. By (1.3) it suffices to show that
there exists an Isc element g such that g ^ /. Let 3ίΓ and Un be
as in the Lemma 6.4 for the given /. Since X is countably para-
compact, there exists a refinement {Vn} such that Vn c Un [4, Theorem
10]. Let p(x) = inf {n: x e Vn}. Then p(x) is positive, locally bounded
and lower semi-continuous. By Proposition 7.2 p determines a member
g of T by (gf μ) = V {<ff« J">: 9a € C(X) and 0 ̂  ga ̂  p}. We claim
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f^g. Indeed, let μe\JL(K)+ and Ko = S(μ). Let Wn=UnΠ
{x: p(x) > n — 1} for n — 1, 2, . Then TF"Λ is open since p is lower
semi-continuous. If xeX and p(x) = n0, then #eTF % 0 . Thus {WJ
is a cover of X. Since JKΓ0 is compact, there exists an integer m
suclί that JKO C WΊ U U Wm. There also exist functions ht e Ck

such that 0 ^ ht ^ 1, S(Λ,) c TF, and Σ Γ &i(aθ = 1 for all x e Ko. Then
we have </, μ> = </, (ΣΓ Λ«)V> = Σ Γ </, W ^ Σ Γ <i, W since
the fact that SQi/μ) c Z7, allows us to apply Lemma 6.4. Now, for
each i, choose </* e Cfc such that 0 ^ ^ ^ 1, ^ = 1 on S(hi) and
S(Qi) c ϊΓi. Then <i, hfμ) = (sr^, Λ4*j">. Now 0 ^ g^ ^i and
jS(flTti) c TF<. But p ^ i on Wi so i^i ^ p. Thus we finally have
</, μ> ύ ΣΓ <i, λ<'/«> = ΣΓ (9ii hfμ) ^ ΣΓ sup {(ha, h/μ): KeC(X),
0£ha£p} = Σ? <Λ A**J"> - <Λ (ΣThtγμ) = <flr, j">.

This last result gives a good way to tell when the two sub-
lattices S(X) and T(X) are identical.

THEOREM 7.7. T = S if and only if X is countably para-
compact.

Proof. If T = S, then Z(Γ) = I(S) = Λf by Theorem 6.1 and thus
by Theorem 7.6, X is countably paracompact.

Assume next that X is countably paracompact. It will suffice
to show that each positive Isc element can be written as the difference
of positive use elements and that each positive use element can be
written as the difference of positive Isc elements. Suppose / is Isc.
Then by Theorem 6.1, there is a use element g so that / ^ g. It
follows that f=g — (g — f) and hence it suffices to show g — f is use.
Let {fa}aC(X) be such that / = V /«• Then g - f = g - V f« = 0 +
A (—/«) = A 9 — fa. Now g — fa is use for each a so by (4.11) g - f
is use.

Next suppose / is use. Since /0 is locally bounded on X and X
is countably paracompact, Theorem 7.5 implies there is a lower semi-
continuous function g so that f0 <; #. By Corollary 7.3, there exists
an Isc element G so that Go = g. We have already shown that the isc
elements are members of S. By Propsition 4.13 it follows that f^G.
Thus f=G-(G-f) and it will be sufficient to show that G - / =
V {h eC(X): h ^ G — /}. Again, since the other inequality is clear
it remains to show that (G~f,μ)^\f {(h, μ): h e C(X), h ^ G - /}
for each μe\J L(K)+. Let ε > 0 be given and μ e \J L(K)+. Let
KQ = S(μ) and E be a compact set so that Ko is contained in the
interior of H. Choose n so that fMUn = / Λ wl*^). Since G is isc
and / is use, there exist subsets A and 5 of C(X) such that G = \f A
and / Λ nlx = A 5. Choose fλeA so that fι^G and </t, μ> ̂>
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(G, μ) — ε and f2 e B so that /2 ^ / Λ nlx and

<Λ, μ> ^ </ Λ ^lχ, μ) + e .

Then /x - /2 ^ G - / Λ wlz. Let Φ G C , be such that Φ = 1 on I o

and S(Φ)(zH. Then if h = Φ(f1 - f2), we have &|* ^ / Ί - / a U ^
<? - / Λ wlz U = <? - /[//. Since S(Λ) c iϊ, we have h^G-f. Then
Λ|*o

 = (/i - /») l̂ o implies <Λ, /£> = <Λ - /2, ^> = <Λ, ^> - </2, μ) ^
<G, ^> - ε - </ Λ nl x , μ) - ε - <G - / Λ nl x , Λ> - 2ε = <G - / , /£> -
2ε. The result now follows.
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