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THE SECOND DUAL OF C(X)

CHRISTINE SHANNON

In this paper, we undertake a study of the order dual,
denoted M, of the radon measures of compact support on a
locally compact space X. In the case that X is realcompact,
M is the second (order) dual of the space of continuous
functions on X, C(X). We define the sublattice of semi-
continuous elements, S(X), and prove that each member of
M is dominated by a member of S(X). It follows that the
ideal generated by S(X) in M is all of M. On the other
hand, the ideal generated by C(X) in M is all of M if and
only if X is a cb-space.

Finally, we show that S(X) and C(X) can be identified
in M as certain spaces of multiplication operators which are
continuous with respect to certain weak topologies. This
extends the work of J. Mack, who first characterized M as
the (continuous) multiplication operators on the Radon
measures.

Introduction. In [3] Kaplan considered C,(X) = C,, the continu-
ous functions of compact support on a locally compact space, and
its order dual L, (the space of Radon measures). In the process,
he singled out UL(K), the ideal of those measures having compact
support. It is the order dual of this space, denoted M, in which
we will be interested. In the case that X is realcompact, M is the
second dual of the space of continuous functions and therefore of
particular interest.

M has already been studied by Mack [5], who characterized it
as the set of (order) continuous multiplication operators on L,. It
is our purpose to extend his work. In considering the case where
X is compact, Kaplan studied various sublattices of M including
what he called the semi-continuous elements S(X). We will extend
the study to our more general setting and show that S(X) and C(X)
can be identified in M as spaces of multiplication operators on L,,
continuous with respect to certain weak topologies. Thus we will
relate the work of the two authors.

1. Preliminaries. The information and results summarized here
will be used frequently in the rest of the paper. We assume a
knowledge of the basic results on Riesz spaces.

1.1. A subset B of a Riesz space (vector lattice) E is called
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bounded if it is contained in some interval [a, b] = {c€ E: a < ¢ < b}.
E is called (Dedekind) complete if the supremum, \V B, and the infimum,
AB, exist for all bounded sets. If K and F are vector lattices, a
map from E to F is called bounded if it transforms bounded sets
into bounded sets. A linear mapping is called positive if it maps
the positive cone E, into F'.. If F' is a complete vector lattice, then
a linear mapping from FE into F' is bounded if and only if it is the
difference of two positive mappings, and the set of all such mappings
is a complete vector lattice. The set of bounded linear functionals is
denoted E°. If A E®is directed upward, that is for each f, and f,
in A, there exists f*e€ A such that f* = f, and f* = f,, then f= VA
if and only if (a, f> = V (e, foo|f.€ A} for all a in E,. Given a
subset B of E® one may adjoin to it all suprema of finite subsets
and the resulting set will be directed upward and have the same
supremum, if it exists, as the subset B.

1.2. Given a directed net {a,} in E, a,]a means a, = a; for
az=p and a = V @, @] a is defined similarly. A net {a,} converges
to @ if there exists a net {b,} such that b,]0 and |a@a — a,| <b, for
all «. We will write in this case a,—a. A linear functional ¢ is
called continuous if @, —a implies {a,, > — {a, ). E° denotes the
space of continuous linear functionals.

1.3. A subset A is closed if {a,)Cc A and a,—a imply acA.
An ideal is a linear subspace I of E such that ael and [b] £ |a|
imply bel. If A is a subspace of FE, the ideal generated by A,
I(A) ={beE:|b| < |a| for some acA}. If E=1I@J, then a, will
denote the component of a € F in I. I will be called a band. Given
a subset 4 in E, A’ will be the set of elements disjoint from A:
A ={x:|z] A |a] =0 for all acA}). A’ is a closed ideal and if
E=I&J, J=1TI, so bands are closed ideals. In a complete space,
closed ideals are bands (Riesz). Finally, if E=1&J, then E* =
Jt P I+ where I+ has the usual definition. It is also true that I’ =
Jt= I =TI". If ¢ K%, then the component of ¢ in I‘' is given
by (o1, > =V {{g, |0 =v < p,vel} for all pek,.

1.4. In this paper, X is locally compact, C = C(X) is the space
of continuous functions, C, = C,(X) is the subset of those having
compact support. 1, will denote the function identically equal to
one on X. If fe(C(X), the symbols S(f) and coz f represent respec-
tively, cly {x: f(®) 0} and {@: f(x) = 0}. L,(X) = Ci, the space of
Radon measures. Unless there is danger of confusion, we will not
indicate the underlying space in the above notation. If peL, and
if sup{|<h, 1 ]:heC, and |h| < 1} exists and is finite then # is called
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a bounded Radon measure and the supremum is defined to be || z].
All measures of compact support are bounded. For compact sets, we
follow Kaplan’s notation: if K is a compact set, C(K) is the Banach
lattice of continuous functions, L(K) its dual and M(K) the bidual.

1.5. Let K be a compact subset of X. In general, C(K) cannot
be identified with an ideal in C,. Its dual, however, is a direct
summand of L,. Indeed, let I={feC,: flx=0}). Then C(K) can be
identified with the quotient space C,/I. It follows that L(K) = I*
and since L, is complete, L, = L(K) @ I*'. If M, is the (continuous)
second dual of C,, we also have M, = M(K) P L(K)".

1.6. The set UL(K) as K ranges over all compact subsets of
X is an ideal in L, [3, (4.2)]. Let M= M(X)= (ULK))® If
X is realcompact, M is the second dual of C. If feM and
sup{|{f, wy]: r € UL(K), || ¢£]] £ 1} exists and is finite, then f is called
bounded and the supremum is denoted || f|]. Since for each com-
pact set K, L(K) is a closed ideal in UI(K), M(X) = M(K) P L(K)*.
For each compact set K, M(K) consists of bounded elements.

1.7. Let (L), be the closed ideal generated by X when considered
as a subset of L, and (L,), its complementary ideal. Clearly, (L),
consists of the purely atomic Radon measures on X. If xeX, we
will represent the atomic measure at # by 2. For any subset A C L,,
we let A, be the projection on (L,),. Then since U L(K) = (U L(K)), D
(UI(K)),, we have M = M,@ M, where M, = (UL(K))+ in M. M,
is lattice and ring isomorphic to the locally bounded functions on X.
[5, (5.7)]. For convenience, if x is the atomic measure at z and
feM, we will usually write {f, ) as f().

2. The ideals M(K). Since for each compact set K, M = M(K)P
L(K)* in M, the problem of identifying C(K) with an ideal in G, is
partially alleviated. Indeed, since C < M, C(K) can be identified with
Cuux), the projection of C on M(K).

PrOPOSITION 2.1. Cyx = (C)uix for every compact subset K < X.

Proof. Clearly (Cpuwux) C Cux)» S0 let gux € Cuxre. We show
there exists i€ C,. such that hy g = ¢uix. Choose ke, such that
h=gon K. This can be done since K is compact. Then ¢,z = hyx).
Indeed, let e UL(K),. Since M(K)= L(K)*', (1,3) gives {gux) L) =
sup {{g, |0 £ v < prand ve L(K)}. The result follows since (g, v) =
{h, v> for every such measure v and hence

{Guwn ) = sup {Kh, V)10 = v = ¢, ve L(K) = by, 1 -
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Since C(K) can be identified with C,,, the vague topology on
L(K), o(L(K), C(K)), is the same as o¢(L(K), Cyx) which equals
o(L(K), (Cx)ux)) by the above. The following is easily checked.

PROPOSITION 2.2. The following topologies on L(K) are equi-
valent:

(a) oLy, Coluw
(b) o(L(K), Cy)

(¢) o(L(K), (Coux)
(d) o(L(K), C(K)).

3. M(X) as multiplication operators on L,. A bounded opera-
tor on a vector lattice E is called a multiplication operator if each
closed ideal is invariant with respect to the operator. Mack has
shown each fe M defines an order continuous multiplication operator
on L, by the following definition: for pe L, and heC,, <k, fi) =
{f, h'y) where hipt is the element of UL(K) defined by (g, ') =
{gh, ¢ty for all geC(X). Indeed he was able to show every such
operator arises in this way.

THEOREM 3.1 (Mack [5, (4.4)]). M is lattice isomorphic with
the vector lattice of all multiplication operators on L.

If o(F, F') is a weak topology on a vector lattice E, we say a
linear operator T from K to itself is o(¥, F') continuous if {¢,}—0 ¢(E, F')
implies {T¢,} —0 o(&, F). We now determine those elements of M
for which f* is a o(L,, C,) continuous operator.

THEOREM 3.2. Let feM. Then f* is a o(L,, C,) continuous
operator on L, if and only if feC(X).

Proof. Suppose feC(X) and assume (h, ¢,» —0 for all heC,.
We must show (g, f'¢,> — 0 for all g€ C,. But this is clear because

{9, fitty = {f, 'ty = {fg, tt.) — 0 since fg € C,.
For the converse we need two lemmas

LEMMA 3.3. Suppose X is compact and fe M(X). If f!' is a
o(L, C) continuous operator on L, then feC(X).

Proof. We show f s o(L, C) continuous on L. Suppose {¢,}C
L(X) and <h, tt,) —0 for all heC. We show {(f, #,) —0. But
Uy ey = Sy Tty = 1, fit,y — 0 since f* is a o(L, C) continuous
operator.
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LEMMA 3.4. Let feM. If for each compact set K, fix € C(K),
then fe C(X).

Proof. We first show that f, = g, for some g € C. We then show
f=g9. Let peX. Since X is locally compact, p has a compact
neighborhood K. Since fyx € C(K), (fuu)o € (Cuixr)e 80 f, is continu-
ous on a neighborhood of p. Since p was arbitrary, f, is continuous
as a function on X. Therefore, let g be the continuous function
such that g, = f,. We claim that f=g¢g. Let e UL(K) and S = S(y).
Since S is compact, fyi €C(S). Furthermore, ¢, €C(S) and
(fM(S))OZ(gM(S))O' Therefore, g, =/fus [1, (5.4)]. So we have (f, ¢)=
sy ) = L{Gs £ = £g, tty. To complete the proof of the prop-
osition:

By Lemma 3.4 it suffices to show fyx € C(K) for all compact
sets K in X. By Lemma 3.3 it then suffices to show fi ) is a
o(L.(K), C(K)) continuous multiplication operator on L(K). So let
(.} c L(K) and <h, pt,y —0 for all heC(K). We must show
$h, fraottey — 0 for all ke C(K).

By Proposition 2.2 <{h, fixtt.y — 0 for all e C(K) if and only
if <g, fiuopt.y — 0 for all geC,. Since by hypothesis f*is a a(L,, C,)
continuous operator, {g, ftt,» — 0 for all geC,. Now g'y, e L(K), so
by (1.5) we have {g, f*tte) ={S, 9°tte) = a1, 'ty Thus (g, flrmlte) =
(S axn ey — 0 for all g eC,.

4. The semi-continuous elements. We now proceed in a man-
nar analogous to Kaplan’s for the compact case and employ some
methods from integration theory. Unless otherwise indicated, all
infima and suprema will be taken in M.

DEFINITION 4.1. An element fe M is usc if for each real number
7 there exists a subset A4, of C such that f A rly = A A,.

REMARK 4.2. Clearly if feC, then f is usc. Furthermore if
f = Af. for some collection {f,}<C, then f is usc. If X is compact,
then this definition is equivalent to that of Kaplan.

If K is a compact space, we follow Kaplan’s notation and let
S(K) be the sublattice generated by the usc elements in M(K). In
our more general case we still have the result that S(K) is a subset
of M(K) for every compact set K< X. We show now that feMis
usc exactly in the case that fyx is a usc element in M(K) for every
compact set K< X. For this we need several lemmas.

LeMMA 4.83. If BCC(X) and f = AB, then fix € S(K). Indeed,
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Suu 8 @ usc element in M(K).

Proof. If f= AB, then fyx = AN{guw:9g€B}. Since C(K) is
identified with the projection of C(X) on M(K), the result follows
immediately.

We say a real valued function on X is upper semi-continuous
if {x: flw) < 7} is open for every real number ». The following is
easily proved.

LEMMA 4.4. If fe M is usc, then f, 1s an upper semi-continu-
ous function on X.

LEMMA 4.5. Let f: X — R be a function such that for each com-
pact set K there exist positive upper semi-continuous function fF
so that flx = fE— fE. Then f = f, — f, where each f, is a positive
upper semi-continuous function.

Proof. Let fi(x) = N{u,(): f(x) = u,(x) — u,(x) on a neighborhood
of z for some positive upper semi-continuous functions %;}. Then f
is well defined, positive and upper semi-continuous. Letting f,(z) =
fiw) — flw) we have fy(x) = A{u,(x): f(x) = u,(x) — uy(®) on a neigh-
borhood of 2 for some positive upper semi-continuous functions u;} —
J@) = NMuy(@): flz) = u,(x) — uy(x) on a neghborhood of z for some
positive upper semi-continuous functions u,}. So f, is also a positive
upper semi-continuous function.

LEMMA 4.6. Let f: X — R be a locally bounded upper semi-con-
ttnuous function. Then there exists a usc element ge M so that

9o = J.

Proof. ForeachneN,letg,= ANH;,= N{heCX):h=fAnls}.
Then H,, is filtering downward and to show g, is well defined, it
suffices to show {(g,, ¢ is finite for each pe UL(K);. [See 1.1 and
make appropriate changes.] This follows because f is locally bounded
and hence bounded below on compact sets. If pge UL(K), and
K’ = S(t), choose a natural number » so that f|g, = —7ls|x. Then
Chy pty = (—7ly, ) > — = for each he H,, and the infimum exists.
Similarly, to show g = Vg, exists, we choose an arbitrary pte UL(K);
and a compact set K’ so that S(x#) Cint K'. Then if rc N is such
that f| < », we claim that for n > », {g,, 0 = {g,, ). Indeed it
is clear that {g,, > = (9., ¢t). For the opposite inequality, let ¢ > 0
be given and choose h, e H,,, so that {g,, ) = <{h,, ) —e. Let h,¢e
C(X) be chosen so that k, = h, on S(¢) and h, = nly on X\K'. If
h="h,Vh, then h = f A nly and <h, pt) = <{h,, ¢ty. Thus {g,, ¢t) =
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hy oy — e =<hy ) — e =2 {g,, ) — &. Thus the supremum equals
$Gw 18-

Furthermore, g is use, for if n ¢ N, we claim g A nly = A {h e C(X);
h =g A nly}). It suffices to show g A nly = A{heC(X):h =g A nly}
and consequently that for each pte U L(K),, {9 A nly, 1ty = A {{h, t£):
heC(X) and h = g A nly}. Let pelU L(K), and ¢ > 0. By defini-
tion of the infimum in M [1, (2.1)] there exist g, and g, L(K),
80 f1 =t + 4 and {g A nly, ) = (g, ) + {nly, i) — 1/26. Let K’
and H be compact sets such that S(#)CcInt HCHcCInt K'C K'. As
above, if f|g < 7, then {g, > = {g,, tt.>. Choose h, € C(X) such that
h, = f A rly and such that {g,, t£.> = <{h,, pt.> —¢/2 so that (g Anly, p)=
Shyy ) + {nly, t) —e. Let h,e C(X) be chosen so that h, = h, on
S(z) and h, = nly on X\Int H and let h; = h, V h,. We claim h; =
g N nly. Indeed if velJ L(K), and @€ C, such that ® = 1 on H and
© =0 on X\Int K' then v = (®v) + (1; — Q). Thus <hs, (Dv)) +
{hyy (Ly — @) = {hg,v). Now hy = h, implies <(hs, (Ov)) = {yg,, (OV))
and S((1y — ®)y)c X\Int H implies (h;, 1y — @) = (nly, (1 — O)).
Thus {(h,;, v)={g,, (@v)>+<{nly, (1,—@)w>. Since S(Pv)CK’, {g,, Dv)=
{g, ®v) so (h;, v) =g, (B)) + (nly, 1y — D) = (9 A nly, v). Finally
since v was arbitrary we have h, =g A nly and h; A nly = g A nl;.
As a result,

<g /\ an? /’l> Z <h1? #1> + <an9 )uz> — & g <h39 p’l> + <n1XI #2> — €
2 <h3 /\an’ #> — ¢ g A {<h’ /,C>Zh
eCX),h=g A nly —e¢.

Since ¢ was arbitrary we have the desired result.

Finally, we check that g,(x) = f(#) for each ze¢ X. Let z¢X,
K’ a compact neighborhood of 2 and ¢ > 0. Suppose fli < r for
some natural number . Then g(z) = g,(x) = (g,),(%). Since f A 71,
is upper semi-continuous there exists h € C(X) such that & = f A 71,
and h(z) < fA rlg®) +e.  Thus (g,)(®) = h(x) S f A rlg(®) + 6=
flx) + e. Since the other inequality is clear, the proof is complete.

Lemma 4.7. If g is usc tn M, then ¢, s usc in M(K) for
every compact set KC X.

Proof. Let K be a compact set and r be an integer so that
Oz = rlg. Then gy = (@ A 1y)mx. The result now follows from
the definition of usc elements Lemma (4.3).

THEOREM 4.8. Let feM. Then f is usc if and only if fuu
1s @ usc element in M(K) for every compact set K.

Proof. Suppose fyx) is a usc element in M(K) for every compact
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set K. Consider f,. Since fy is bounded and wusc in M(K), f, is
locally bounded and upper semi-continuous as a function on X. By
Lemma 4.6, there exists a wusc element g in M so that g, = f,.
We show g = f. This follows immediately from the fact that for
each compact set K, fyx and g¢,u are usc members of M(K)
(Lemma 4.7). Since (¢yux)e = (fux), it follows from the compact
case that ¢, = fuwx. Since this is true for each compact set K,
it follows that f = g.

PROPOSITION 4.9. If f and g are usc elements in M, then so is
f+g.

Proof. Let K be a compact set. Then (f + ¢)uw) = fuw + Gz
is the sum of two usc elements in M(K) and hence is usc. The
result now follows from Theorem 4.8.

Similarly, the following propositions are easily verified using
corresponding results for the compact case.

ProposITION 4.10. If f and g are usc elements in M, then
fANgand fV g are also. If ¢ >0, af is usc.

ProposITION 4.11. If A is a subset of usc elements in M and
f= AA, then f is usec.

Let S = S(X) denote the linear subspace of M generated by the
positive usc elements. It follows from (4.9) and (4.10) that each
element in S can be written as f— ¢g where f and g are positive
usc. The fact that S is a sublattice follows from the fact that
(fl —g) A (fo— ) = {(fi 4+ 9) A (s, + g} — (9. + 95) and (4.10).

Of course for each compact set K, S(K), the semi-continuous
elements studied by Kaplan [1] is a subset of M(K) and hence of M.
In the following we assume a knowledge of the compact case.

ProrosiTION 4.12. I fe M, then fe8S if and only of fuuw € S(K)
for each compact set K.

Proof. If fe&, then f = f, — f, where each f, is positive usc.
But then fuw = (f)uw — (Fuu € S(K) by Lemma 4.7. Conversely,
if fiyu € S(K) for each compact set K, we need only observe that in
S(K) element can be written as the difference of positive usc elements
and the proof follows as in Theorem 4.8 using Lemma 4.5.

ProPOSITION 4.13. If f and g are members of S, then f< g if
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and only if fy = g

Proof. It suffices to show f, < g, implies f < g. Let e L(K).
and K'=S(¢). Then f, =g, implies (fyx)o = (ux»)- BY Proposition
4.12 fyxn and ¢z are members of S(K') and consequently using re-
sults from the compact case, fyxn=9guwx). Thus {f, t>={Fux =

{Guwirny tby = {g, tty. Since this is true for every prclJ L(K), f < g.

COROLLARY 4.14. If f and g are members of S, then f =g 1is
equivalent to f, = 9, In particular, the projection of S onto S, is
one-to-one.

PropPOSITION 4.15. S(K) = S(X),x Sfor each compact set K.

Proof. By (4.12), S(X)yumx < S(K). It now suffices to show that
if f is a positive usc element in S(K), then f = g, for some g € S(X).
Suppose {f,} cC(K) and f = A f.in M(K). Let g,cC,. be such that
9ulx = f.- Then g = A g, exists in M and is usc. By Lemma 4.7,
9w € S(K). Thus, since (gyx), = f, it follows from Corollary 4.14
applied to the compact case that g, = f.

Since S(X) is not an ideal, it is not obvious that projections onto
the ideals M(K) are still members of S(X). We consider this next.

LEMMA 4.16. Let K be a compact subset of X and {f.} a net in
C, such that a = B implies [ (%) = fo(x) for all x and f.(x)]0 for
all x in X\K. Then A f,e M(K).

Proof. Since M(K) = L(K)'* [see (1.83) and (1.5)], it suffices to
show (A fu, ) = A {fu ) = 0 for all ye L(K)'. Assume the contrary
and let ye L(K), vy = 0 be such that {f,,v> = > 0 for all . Let
A fiv = p. That is, for

heCX): by p) = <hy N2y = A <Ry fo0) = N <foy ) .

Now, p is not identically zero. Indeed, ||¢|| = 1y, ) = A{fu ) =7.
Furthermore, S(¢) C K, for if heC(X), hlx = 0, then f,2 ]| 0 for all
# € X and since v has compact support, <k, £) = A <{hf,, v> = 0 by the
usual argument. Thus pe L(K) and £ A v =0. However, let b =
(Il V 1 for some arbitrary o, Then for

heCy by 1) = N Shfoy ¥) = (hfoyy v) = <b<h, v) = (b, bY)

sopu<bvand g AY=pAb'g=">"p+0 which is a contradiction.



246 CHRISTINE SHANNON

COROLLARY 4.17. With the above hypothesis A f,€ S(K) and ts
positive uUSC.

PrOPOSITION 4.18. Let feC(X), and K be a compact subset of
X. Then fuux € S(X) and indeed [k s positive usc.

Proof. Let{f.} = {fe€Cui:falx = flx}. We direct the index set
as follow a < B if f.(x) = fa(z) for all xe X. It is easy to check
that this definition satisfies the conditions for a directed set.
Furthermore, since for each xe X\K, there exists f, such that
Saolx = flx and fo () = 0 it is clear that f.(x) |0 for all  in X\K.
Let g = A f.. By Corollary 4.17 ge S(K) and is positive usc. We
show fyx = g. But this is clear, for if pe L(K), then {(fyux), O =
(o 8y = (o ) for all @ Thus (Fuum 12> = A (fur 12 = {g, ) and

consequently fi,x = g and is positive usc.

PROPOSITION 4.19. Let fe S(X), then fyx € S(X) for each compact
set K. In particular, if f is a positive usc element, then for each
real number r, there exists a collection B, C,, so that fyx N rly =

A B..

Proof. Assume f is positive usc. Then for every real number
r, there is a collection A, < C(X), so that f A rly = A A,. Then

Suzr AN 711y = fum A Plp)ww = (F A 71o)uwi
= (ANADuw = ANgnw: g€ 4} .

If g e A,, then by the argument in Proposition 4.18 ¢, 4, is the infimum
of a collection A,cC,,. Thus we have: fy iy A7ly = Agun:g€A,}=
AANAz:geA)=Ah:heU{4,:9¢cA,}}. The result now follows
by choosing B, = U {4,:9€4,}.

If f is an arbitrary element of S, then f=g¢ — h where g and
h are positive usc. Then fyx) = Gwix — huuw € S(X).

COROLLARY 4.20. If f ts positive usc and K is a compact set,
then there exists a collection Ay C C,, so that fyx = N Ax.

Proof. Since fy . is bounded, there exists a real number » so
that fyx = fuu A 71ly. The result now follows immediately from

(4.19).

5. S(X) as multiplication operators. Let S,(X) = {f e S(X):
f = fux for some compact subset K}. S,(X) can also be regarded
as the union of all S(K) as K ranges over the compact subset of X.
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It is easy to see that feS,(X) if and only if f, (as a function on X)
is the difference of two positive upper semi-continuous functions with
compact support. It is also clear that S, (X)c U M(K)c M, and
that it is a sub vector lattice containing C,. As such, it is separating
on L, and determines a Hausdorffi weak topology on L, namely
o(Ly, S,).

We have already considered M as multiplication operators on L,.
Indeed if fe M and pte€ L(X),<h, fir) = {f, h'pe) for all he C,.. Now
consider the special case that fe S(X). Suppose f is usc. Choose
an integer » so that (f, h'y) = (f A rly, h'¢t). Since f is usc there
exists a collection {f.}CC(X) such that fA rly = A {f.. Thus

Sy by = ANFar K1) = N (o W1 = N (o 1) = CNRE 1)

Observe that A hf.€ Sy(X).
We have already shown that S(K) = S(X)yx. We now show
that these are the same as (S,)yx)-

ProrosiTION 5.1. S(X)yie = (So)wx-

Proof. Clearly (S C Syx. Thus let gyx € Sy and g be
positive usc. We show there exists h €S, so that k) = guww. Let
7 be a real number so that gy = (@ A 7lx)wx. By hypothesis,
there exists {g.} C C(X), so that ¢ A 71y = A ¢9.. Let H be a com-
pact neighborhood of K and {h.CC(X) so that h,x = g. and
S(h.)c H. Let h= A ho. Clearly hyu = (9 A r1x)yx = 9w and
since b = Ry h €S,

This proposition and the previous remark make it easy to verify
the following:

ProrosiTION 5.2. On L(K) the following topologies are equi-
valent:

(a) o(Ly S)lux

(b) o(I(K), (S)ux)

(e) o(L(K), S(X)xu)

(d) o(L(K), S(K))

LEMMA 5.3. Let X be compact and fe M. If ft is o(L, S) con-
tinuwous on L then feS.

Proof. The proof of (3.3) carries over by replacing C with S.

THEOREM 5.4. Let fe M, then f*is a 0(Ly, S,) continuous multi-
plication operator on L, if and only if feS.
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Proof. Let feS and {¢.} C L, such that (h, g,y — 0 for all heS,.
We show <A, fitt,y — 0 for all heS,. Without loss of generality, we
may assume f is positive and usc. Since heS,, h = h, — h, where
the h, are positive wusc elements in S, so we may also assume h is
positive usc.

By Corollary 4.20, there exists a collection {k,} < C,. such that
b= Al Thus (b, fitte) = Ay <y fitte) = Ar S Bitte).  We may
as well assume there is a compact set K such that S(h,)C K for all
v. Choose an integer » so that

<f7 hifua> = <f /\ Tlx, h;/"a>

for all @ and 7. This can be done since S(hz,) — K. By assumption,
there exists a collection {f;} cC(X) so that f A rly = A f;. Thus
for each «a, (kb [y = NNy Bt = Ar (N6 S Bitte) =
Ar AN T Bitta) = Niv N6 {Fshry ) = CAis Fohiy tay. We observe that
A5 fshy €S, and hence <k, f'ttey = {Ass fohy ey — 0.

For the converse we merely adapt the proof of Theorem 3.2
replacing C(K) with S(K) and the references to 2.2, 3.3 and 3.4 with
5.2, 5.3 and 4.12.

6. The ideals generated by S(X) and C(X). We have now
singled out two sublattices in M, namely S and C. In the case that
X is compact, the constant function 1, is a strong order unit in the
normed vector space M. That is, it is a positive element of unit
norm such that fe M(X) and ||f|] <1 imply |f| <1s. Since 1y is
a member of both S and C, it can be shown that the ideals these
sublattices generate, denoted I(C) and I(S), must be all of M. In
the more general case we are considering, however, there may not
be a strong order unit. Unless X is pseudocompact, 1, is only a
weak order unit: that is, a positive element such that for each fe M,
|fIAN1l; = 0implies f = 0. It can be shown that under this condition,
the closed ideals generated by S and C are all of M, although not
necessarily the ideals themselves. We give necessary and sufficient
conditions under which I(S) (respectively I(C)) is all of M.

THEOREM 6.1. I(S) = M. Indeed, each element of M is dominated
by positive usc element.

Proof. Let feM. Since f= f*— f~ < f*+ f~=|f|, it suf-
fices to assume f=0. For each neN, let g, = A{hecCX):h =
f A nlg}. Toshow g =V g, exists it suffices to show V {g,, #) <
for each el L(K), (1.1). Let el L(K) and K’ be a compact
set so that S(y) is contained in the interior of K'. Assume |fyx)| <
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rlg. for some r€ N. We can prove as in Lemma 4.6 that for all >
7 g 1> ={g,, £, and hence that the supremum in question is finite.
AISO <g’ #> = <gw /‘t> g <f /\ T]-Xy /“> = <f /\ TlM(K’)’ /“> = <f1![(K’)r #> =
{f, . It remains to show g is usc. The proof in Lemma 4.6 applies
if the condition f|x < 7 is replaced by |fiux,| < rlg.

DEFINITION 6.2. A topological space X is called a cb-space if and
only if for each locally bounded function A, there exists f e C(X) such
that |h| < f.

THEOREM 6.3 (Mack [4, Theorem 1]). X s a cb space if and
only if each countable increasing cover of X has a countable refine-
ment by cozero sets; that s, sets of the form, coz f for some feC(X).

LEMMA 6.4. Let feM, and .27 be the collection of all open
relatively compact subsets of X. Let U, =U{Ke X | fuzl = n}.
Let peJ LK), and K, = S(t). If K, U, then {f, pt) < {(nly, p) =
nll gl

Proof. Since X is locally compact, .2 is a cover of X and the
compactness of K, implies there exist subset K,, ---, K,, in U, such
that K,CcK,UK,---UK,. Leth, i=1,---, m be a partition of unity
on K, subordinate to the cover {K,}7,. That is, h;€C,, 0 < h, <1,
S(h,)c K, and " h,(x) =1 for all z€ K,. Then

Sy 1y = <F, by = 31, higs)

and since S(h;‘¢t) C K, this last expression is dominated by

Sl hiaell < 3 nllhipl] = (n, (S ke = nll gl
THEOREM 6.5. I(C) = M if and only +f X is a cb-space.

Proof. Assume first that I(C) = M. Let h be locally bounded
and real valued on X. We must show there exists feC(X) such
that |h| < f. Assume h = 0. Since k is locally bounded, it determines
a function g ¢ M, such that g,(z) = h(z) for all € X. By hypothesis
and (1.3) there exists peC(X) such that p = g. Thus p, = g, and
hence f(x) = p,(x) is the required function.

For the converse, let feM,. We show there exists ge C(X)
such that g =f. Let % and {U,} be defined as in Lemma 6.4.
Then the collection {U,} is an increasing cover of X by open sets.
Since X is a cb-space and the countable union of cozero sets is again
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a cozero set, we have by Theorem (6.3) a family {g,} € C(X) such
that coz g, < U, and {cozg,}is a cover of X. Assume g, = 0. Define
fo=1y — YV {nlzg; A 1y:7 < n}. Given zec X, there exists an ¢ such
that g,(x) > 0. Therefore, there exists a j such that g,(y) > 5 for
each y in a neighborhood of x. Therefore f, vanishes on that neigh-
borhood for » =4V j. This implies ¥ f, is locally finite and thus
g =2+ 3f,eC(X). We claim f=<g. Indeed, let el L(K), and
K, = 8S(¢). Let W,= U, N{x:g(x) > n}. Since ¢ is continuous W,
is open. Furthermore, {W,} is a cover. Indeed, let x€ X and n, =
A{n:zeU,}. Then g,(x)=0 for m=1,---,n —1 and zecW,,.
Since K, is compact, there exists a natural number s such that
K,cw,J---UW, For i=1,---,s choose h,eC, such that 0 <
h; <1, Sth)c W, and >ih(x) =1 for all xe K, Then {(f, p) =
fy G h)iey < 353 <4, hiy) by Lemma (6.4). For 4 =1, ---, s, choose
w, € C, such that 0 = w, < 1, w,(x) = 1 for all z € S(k,’zt) and S(w,) C W..
So {f, ) = Si{wa, by and 0 < iw, < 7 with S(4w,) C W,. Since
g >1 on W, this implies 2w, < g. Finally this gives {(f, p#) <
S g, iy = (g, (S h)') = {g, ).

APPENDIX. If one uses the definition of usc element as given in
this paper, it would be natural to define an lsc element in M as one
for which —f is usc. However, bearing in mind the properties
possessed by lower semi-continuous functions, it is also natural to
define an Ilsc element as one for which f = V f, for some collection
{fadcC(X). These are not compatible definitions. In a manner
similar to that used above, we can show (using the second definition)
that the linear sublattice T formed by the positive lsc elements
consists of all those members of M which can be written as the
difference of positive lsc elements. If X is compact, then this sub-
lattice is exactly the same as S(X). In general, however, S and T
are not the same.

We say a real valued function on X is lower semi-continuous if
{x: f(®) > r} is open for each real 7.

The following is easily checked:

LEMMA 7.1. If feM is lsc, the f, is a lower semi-continuous
function on X.

PROPOSITION 7.2. Let f: X— R be a positive lower semi-con-
tinuous function and locally bounded. Then h =V {f,eC(X):0 <
f E f) exists in M, h is lsc and hy(x) = f(x) for all ze X.

Proof. Let & = {f.,eCX):0< f, =< f}. Then & determines
an ascending net and we may write V. = VY f.. It suffices to
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prove that for each pelJ L(K),, V {f 1) exists and is finite.
Since f is locally bounded and S(y) is compact, sup {f(x): & € S(p)} is
some finite number ». Then for each «, {(f., #) = {fu A 7ly, £ +
((fa—= 710", 1y = {fa A 71y, ) since (fo—rly)™ =0 on S(#). So
{fow £ < r|/p| for each e, giving an increasing set of real numbers
which is bounded above. Hence the supremum in question exists
and is finite. By definition h is Isc and the last assertion follows
from the fact that f is lower semi-continuous.

COROLLARY 7.8. Let feM, and f=0. If as a function on X,
[ is lower semi-continuous, then there exists a unique lsc element
g €M such that g, = f.

Proof. We merely observe that the elements of M, are locally
bounded as functions on X. (1.7). The uniqueness follows from the
fact that for lsc elements f = g if and only if f, = g,. (Argument
follows as in [1]).

DEFINITION 7.4. A space X 1is countably paracompact if and
only if each countable open cover has a locally finite refinement.

THEOREM 7.5 (Mack [4, Theorem 10]). X s countadbly pare-
compact if and only if for each locally bounded function h defined
on X there exists a locally bounded lower semi-continuous function
9 such that |h| < g.

THEOREM 7.6. I(T) = M if and only if X s countably para-
compact.

Proof. Assume first that the ideal generated by T, I(T)=M. By
Theorem 7.5 it suffices to show that for each locally bounded function
h on X there exists a locally bounded lower semi-continuous function
g such that |h| = g. Now M, is isomorphic to the locally bounded
functions on X. Therefore, |h| determines a member of M,. By
hypothesis and (1.3), there exists g €T, such that 0 < |h| < g. By
definition g = g, — g, where each g, is a positive, locally bounded Isc.
The result follows from the observation that 0 < || =Z g, — ¢, < g,.

For the converse, let fe M,.. By (1.3) it suffices to show that
there exists an lsc element g such that ¢ = f. Let .22 and U, be
as in the Lemma 6.4 for the given f. Since X is countably para-
compact, there exists a refinement {V,} such that V, U, [4, Theorem
10]. Let p(z) = inf {n: x € V,}. Then p(%) is positive, locally bounded
and lower semi-continuous. By Proposition 7.2 p determines a member
g of T by <g, 1) = V {{ga 1: 9.€C(X) and 0 < g. < p}. We claim
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f=g. Indeed, let reUL(K), and K,= S(r). Let W,=U,N
{w: p(x) >n — 1} forn =1,2, ---. Then W, is open since p is lower
semi-continuous. If xe¢X and p(2) = n, then ze W,,. Thus {W,}
is a cover of X. Since K, is compact, there exists an integer m
such’ that K,c W, U --- U W,. There also exist functions h,cC,
suchthat 0 < h, <1, S(h,) W, and X" h,(x) = 1 for all x€ K,. Then
we have (f, sy = (f, (Srh)'ey = S (S, hity < 3 (i, by since
the fact that S(hjt) C U, allows us to apply Lemma 6.4. Now, for
each 17, choose ¢;€C, such that 0 <¢g, <1, g,=1 on S, and
S(g;)c W,.  Then <%, hip) = (g, hi'te). Now 0=gs=<17 and
S(gi)c W,. But p=1¢ on W, so 19, < ». Thus we finally have
1y = S0 GG, bty = S (g, ity = S sup {Chay hid: he€ C(X),
0 < h, = p} = 20 <9, k') = {g, iTh)'1) = g, 1.

This last result gives a good way to tell when the two sub-
lattices S(X) and T(X) are identical.

THEOREM 7.7. T =S8 if and only if X 1is countably para-
compact.

Proof. If T =8, then I(T) = I(S) = M by Theorem 6.1 and thus
by Theorem 7.6, X is countably paracompact.

Assume next that X is countably paracompact. It will suffice
to show that each positive lsc element can be written as the difference
of positive usc elements and that each positive usc element can be
written as the difference of positive lsc elements. Suppose f is Isc.
Then by Theorem 6.1, there is a usc element g so that f<g. It
follows that f = g — (¢ — f) and hence it suffices to show g — f is usec.
Let {f.}cC(X) be such that f =V f,. Theng —f=9g—~V fa=g+
A (—=fo)= ANg— fo. Now g — f,is usc for each @ so by (4.11) g — f
is usc.

Next suppose f is usc. Since f, is locally bounded on X and X
is countably paracompact, Theorem 7.5 implies there is a lower semi-
continuous function g so that f, < g. By Corollary 7.3, there exists
an lsc element G so that G,=g. We have already shown that the ls¢
elements are members of S. By Propsition 4.13 it follows that f < G.
Thus f = G — (G — f) and it will be sufficient to show that G — f =
Vi{reCX):h =G — f}. Again, since the other inequality is clear
it remains to show that (G — f, &) < YV Kk, ): h e C(X), h = G — [}
for each el L(K);. Let ¢ >0 be given and pe L(K),. Let
K, = S(#) and H be a compact set so that K, is contained in the
interior of H. Choose 7 so that fyu = f A nlye. Since G is Isc
and f is usc, there exist subsets A and B of C(X) suchthat G =V A
and fAnly= A B. Choose f,eA so that f,<G and {(f, ) =
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(G, 1) — ¢ and f,€ B so that f, = f A nl, and
<f2’)u>§<f/\’nlx,#>+€.

Then f, — , <G —f A nly. Let ®eC, be such that @ =1 on K,
and S(®)c H. Then if h = @(f, — f,), we have h|z =< f, — folua =
G —fAnlylyg =G — flg. Since S(h) C H, we have h < G — f. Then
h|K0 = (fl - fz)IKO implies <A, /"> = <f1 — Ja uy = <fv #> - <f2; )a> =
(G, 1) —e = ANy ) —e={G —F A nly, p) —2e={(G—f, 1) —
2¢. The result now follows.
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