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MONOTONICITY AND ALTERNATIVE METHODS
FOR NONLINEAR BOUNDARY VALUE PROBLEMS

R. KENT NAGLE

Let X be a Hubert space, E a linear operator with finite
dimensional null space, and N a nonlinear operator. In this
paper we study the nonlinear equation

(1) Ex=Nx xeX.

Equations of this form arise in the study of boundary value
problems for elliptic differential equations.

We use the alternative scheme of Bancroft, Hale, and
Sweet and results from monotone operator theory with suit-
able monotonicity assumptions on E and N to reduce equa-
tion (1) to an alternative problem. We then use results
from monotone operator theory to solve the alternative
problem, hence prove the existence of solutions to equation
(1). This extends to nonselfadjoint operators the results of
Cesari and Kannan.

1* Introduction* The reduction of equation (1) to a finite
dimensional alternative problem has been done using the contraction
mapping principle by Cesari [4] for selfadjoint operators and by
Bancroft, Hale, and Sweet [1] for nonselfadjoint operators; and
using the theory of monotone operators by Gustafson and Sather
[8] for selfadjoint operators where E may have continuous spectrum,
by Cesari and Kannan [7] for selfadjoint operators with a complete
set of eigenfunctions and eigenvalues approaching — <χ>, by Cesari
[6] for nonselfadjoint operators, and by Osborn and Sather [11] for
nonselfadjoint operators generated by a coercive bilinear form. Only
the papers of Gustafson and Sather [8] and Cesari [6] avoid using
a compactness argument such as assuming that E has a compact
resolvent (E — al)~\ For a survey of recent results see Cesari [5]
for selfadjoint problems and Cesari [6] for nonselfadjoint problems.

Since the alternative problem is now on a finite dimensional
subspace of X, it has been the practice to use either degree theory
or the implicit function theorem to solve the alternative problem.
An exception to this is the paper by Cesari and Kannan [7] which
uses monotone operator theory to solve the alternative problem
hence obtain a solution to equation (1).

In §3 of this paper we use the alternative scheme of Bancroft,
Hale, and Sweet [1] but with the theory of monotone operators to
reduce equation (1) to a finite dimensional alternative problem
(Theorem 4). This reduction is a modification of the method used
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by Cesari [6] but only requires N to be quasimonotone instead of
monotone. The results we obtain apply to nonself ad joint operators
and do not require any compactness arguments. Our assumption
that N be quasimonotone is weaker than the monotonicity assump-
tions of Osborn and Sather [11], but we must place a stronger
restriction on the domain of JV.

In § 4 we prove an existence theorem for equation (1) using
monotone operator theory which extends to nonselfadjoint operators
the results of Cesari and Kannan [7] for self ad joint operators.
Again no compactness arguement is necessary.

Finally in § 5 we apply our results to nonlinear boundary value
problems of elliptic differential equations.

We will consider the case when the linear operator E has a
continuous spectrum in a subsequent paper.

2* Basic concepts in monotone operator theory* Let H be a
real Hubert space and let 27J be the set of all subsets of H. Let
T be a map T:D(T)—>2H such that for some constant c, (u — v,
x - y) ^ c \\x — y\\2 for all x,ye D(T), u e Tx, and v e Ty. We say

T is monotone if c — 0, strongly monotone wi th constant c if e > 0,

and quasimonotone with constant — e if c < 0. The map T is
coercive if there exists xoeH such that (T°x, x — x0) H&IΓ1—• + oo
as ||α?||—*+ °° for xeD(T) where T°x is the element of Tx with
minimal norm. If T is a single-valued strongly monotone map, then
T is coercive.

In addition to the standard results for monotone operators
(See Brezis [2] and Browder [3]), we will need the following result
concerning quasimonotone operators.

THEOREM 1 (Nagle [10]). Let A:D(A)->2H and B\H->2H be
hemicontinuous. If A is strongly monotone with constant μ, A
maximal monotone, and B quasimonotone with constant η, Ύ] < μ,
then A + B is maximal monotone. Moreover, if A and B are
single-valued, then the range of A + B is all of H.

The concept of monotonicity may be extended to maps T: S—>25*
where S is a reflexive Banach space and S* is the dual of S (see
Browder [3]).

3* Reduction to an alternative problem* Let us consider the
equation

(1) Ex = Nx

where E is a linear operator whose domain D(E) is a subspace of
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a real Hubert space X and whose range R(E) lies in X. Here N is
an operator, not necessarily linear, with D(N)aX, and R(N)czX.
Moreover, we assume D{E)aD(N).

We will use the alternative scheme of Bancroft, Hale, and
Sweet [1] to split equation (1) into a system of two equations. We
assume there are bounded projection operators P: X—>Xand Q: X—>
X and a linear operator H: D(H) -> X, D(H) c X, such that for all
xeD(E):

- Q)Ex = (I - P)x

(A2) QEx = EPx

(A3) EH(I - Q)Nx = (I - Q)Nx

and where R(P)aD(E), R(H)czD(E), R(E) = D(H), and (I-Q)R(E) =

In view of (AJ and (A3), we may think of i ί a s a partial inverse
for E. It follows from (At) that ker (E)aPX. Since D{H)aR(E),
this implies (/ - Q)R(E)czR(E) Π {(I - Q)X} and since I - Q is the
identity on (J - Q)X, we must have (I~Q)R(E) = R(E) Π {(/-Q)X}

In the rest of the paper we wil] use the following notation:
Xo = PX and X, = (I - P)X hence X = Xo + Xx; Γo = QX and Y >
(7 - Q)X hence X = Yo + Γlβ

THEOREM 2. // (A1>2>3) are satisfied, then Ex = iVα; /or some
xeD(E) if and only if

( 2 ) x = PxΛ- H(I - Q)Nx

( 3 ) Q(Ex - Nx) = 0 .

Proof. For a proof see Cesari [6] or Bancroft, Hale, and Sweet

[1].
Since by (AJ PH(I — Q)Nx = 0, we may write equation (2) as

( 4 ) x - x0 + if (I - Q)Λfo

where xoeXo.
We will now show that with suitable monotonicity assumptions

on E and N and a technical assumption on P and Q, that equation
(4) is uniquely solvable for each x0 e Xo. We then reformulate equa-
tion (1) as an alternative problem in Xo.

(A4) There is a constant μ > 0 such that for xeD(E) Π X^

(-#£, x)^μ\\x\\2 or for y e ^ ; (», -Hy) ^ μ\\Hy\\*.
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(A5) Let P and Q be chosen so that (y, x) — 0 for every

y eY0 and x e Xx .

It follows from the Fredholm Alternative that if P is the pro-
jection onto the ker E and Q is the projection onto the ker E*,
then assumption (A5) is satisfied.

Assumption (A4) is often satisfied for elliptic partial (or ordinary)
differential operators. In particular, Osborn and Sather [11] prove
a stronger result for a certain class of operators generated by a
coercive bilinear form.

The next theorem is a generalization to quasimonotone operators
of a theorem due to Cesari [6]. The method of proof is a slight
modification of the proof given in Cesari [6].

THEOREM 3. Let conditions (Ax_5) be satisfied. Let N: D(N) =
X-+X be hemicontinuous and quasimonotone with constant rj > 0,
Ύ] < μ. Then equation (4) has a unique solution for each x0 e Xo.

Proof. We write equation (4) in the form x — xQ — H(I—Q)Nx = 0
and since 0 e [ — H(I ~ Q)]~Ό, we have

( 5 ) [ - # ( ! - Q)VXx-Xo) + NXBO

Conversely, by applying — H(I — Q) to both sides we get x - x0 —
H(I — Q)Nx = —JHΓ(JΓ — Q)0 — 0. So the two equations are equiva-
lent.

Equation (5) is of the form Ax + BXBO where Ax = [—H(I—
Q)]~\x — x0) and Bx = Nx. By our. assumptions on N we find that
B satisfies the hypothesis of Theorem 1. We will now show that A
is strongly monotone with monotonicity constant μ > η and A is
maximal monotone.

With assumptions (A4)5) we have for all y e X,

( 6 ) (y, -H{I - Q)y) = ((I - Q)y, -H(I - Q)y)

so —H(I—Q) is monotone. Since —H(I—Q) is bounded linear
operator defined on all of X, —H(I — Q) is continuous over X, hence
—H(I— Q) is maximal monotone. Since x0 is fixed, —H{I— Q) + x0

is maximal monotone. Now A is just the inverse of the map Ky —
—H(I — Q)y + x0 so it follows that A is maximal monotone. To
show A is strongly monotone, let x, y e D(A) — x0 + (-XΊ Π D(E)).
Then x - xQ e X1 Π D(E) and y— x0 e X1 Π D(E). For x* e Ax, x-xQ=
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— H(I — Q)x* and for y* e Ay, y — x0 = H{I — Q)y*. Using equation
(6), we have

(α>* -y*,x-y) = (x* - y\ -H(I - Q)x* + H(I - Q)y*)

= ((/ - Q)α* - (/ - Q)y* , - H(I - Q)x* + H(I - Q)y*)

^ μ || -H(I - Q)α;* + if (/ -

So A is strongly monotone with monotonicity constant μ.
To show that A + B is coercive we use the fact that —H(I—Q)

is a one to one map from Yx onto Xx Π D(E). Thus for ̂  6 Yγ there
is a unique xι e Xx Π U ( ^ ) such that α̂  = — H(I — Q ) ^ . Thus,
[- H(I - Q)]" 1 ^ = yx + Yo. Let a? = x0 + ̂ , ^ e Xx n 2?(J5), then
Aα = [ - J Ϊ ( I - Q)]- 1 ^ - α?0) = [- ί f ( I - Q)]" 1 ^ = ̂  + Γo. Let A°α;-
Vι + 2/o% 2/* e Yo (in fact since F o _L Xι we have A°α; = T/J. Using
equation (6) and condition (A3) we have (A°x, x — x0) = (A°x, xj —
(Vi + Vϊ, Xι) = (Vi, »i) + (Vo*, Xi) = (»i, »i) = (»i, -H(I-Q)yi) ^μ\\-H{I-

Q)Vi\\2 = i" I l^i 112 — i"ll^ ~~ ̂ oll2- Since #0 is fixed, this implies A is
coercive. Since B is single-valued and monotone, A + B is coercive.

Now A + B is maximal monotone and coercive thus i2(A+J?) =
X. The equation Ax + BXBQ has a solution, hence equation (4) has
a solution for each x0 e Xo.

To prove uniqueness, let xx and x9 both be solutions to equation
(4) for a fixed x0 e X09 then xt — x0 = H(I — Q)Nxί; x2 — xQ = i ϊ ( / -
Q)Nx2; and ̂  — α;2 = JET ( I — Q ) ^ ^ — H ( I — Q)Nx2. By assumption
(A5), equation (6), and the hypothesis of JV we have — η \\xx — x2\\2^
(Nx, - Nx2, x, - x2) = -(Nx, - Nx2, - H(I - Q)Nx1 + H(I- Q)Nx2) ^
- μ\\- H(I - Q)Nxt + H(I - Q)Nx2\\2 = - μ\\xt - xt\\%. That is 0 ^
(V — μ) \\Xί — x2\\2 Since μ > η, we m u s t have xγ = x2. This com-
pletes the proof of the theorem.

For each xoeXo, the unique solution to (4) can be expressed by
x = [/ — H(I — Q)N]~1x0. Substituting into equation (3) we find
that solving our original equation (1) is equivalent to solving the
alternative problem: QN[I - H(I - Q)N]'~1x0 - QEx = 0. Since
QEx = EPx = ExQ, the alternative problem becomes QN[I — H(I —
Q)iV]"1α;0 ~ Ex0 = 0, where xQ e Xo.

4* An existence theorem* The main result of this paper is
the following existence theorem which extends to nonselfadjoint
problems the results of Cesari and Kannan [7]. We will need an
additional assumption; however, the remark concerning assumption
(A5) also applies here.

(A6) (y, x) = 0 for y eYx and xeX0 .
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THEOREM 4. Let Xo and Yo be finite dimensional subspaces of
X, and assume dim Xo = dim YQ. Under assumptions (Aλ_β):

(a) If XX = X and Y, = Y, i.e., (-Ex, x) ^ μ \\x\\2 for all xe
D(E); and N: D(N) — X—>X is hemicontinuous and quasimonotone
with constant ^ 0 and η<μ, then Ex = Nx has a unique solution.

(b) If {-Ex, x) ^ -a\\x\\2 for all xeD(E), a>0, and if N:
D(N) —+ X is hemicontinuous, bounded mapping, that is strongly
monotone with constant rj > 0, then the equation Ex = Nx has at
least one solution provided f] > a\\P\\2 or η = a = 0 and N is coer-
cive.

Proof, (a) Since Yx = Xf Q is the zero operator on X, hence
equation (3) is always satisfied. Part (a) of the theorem now follows
from Theorem 3.

(b) Since the dimension of Xo and Yo are equal and finite, we
may identify Xo* with Yo. The identification may be made as
follows: let y eYQaX, for x0 e Xo let yo(xo) — (y09 %0), where on the
right hand side we view y0 as an element of X and x0 as an element
of X. This identification defines a continuous, linear mapping of
Yo into Xo*. Our identification of Yo with Xf is complete if we
can show that this map is one to one and onto. Since the dimen-
sion is finite we need only show the map is one to one or the kernel
of the map is just the zero element of YQ. For this let yQ be an
element of Yo. If (y0, x0) = 0 for all x0 e Xo then by (A5), (yQ, α?J = 0
for all xx e Xx hence (yQ, x) = 0 for all xeX hence y0 must be the
zero element of X and Yo.

Since the assumptions of Theorem 3 hold, the equation Ex — Nx
is reduced to the alternative problem QN[I — H(I— Q)]" 1 ^ — Exo=O
for xoeXo. Since QEx = EPx = Ex0, and Yo = Xo*, —E maps Xo

into Xo*f and T = QN[I - H(I - Q)N]'1 maps Xo into X*, so T-E
maps Xo into Xo*.

We will now show that T — E is monotone, continuous, and
coercive. Then, since T - E is defined on all Xo, R(T - E) = X?
and the alternative problem will be solved.

Let x, y e XQ, and let u = [I - i ϊ ( J - Q ) ^ ] - ^ , i; = [/ - H(I -
Q)N]~ιy. Then u - i f ( I - Q)JV^ = x and v - i ί ( / - Q)Nv = y. Since
P(w - iθ = α? - y, ||a? - y | | ^ | | P | | ||% - v| | . So

(Tx - Ty, x - y) = (QNu - QNvf x - y) = (Nu - Nv, x - y)
- (Nu - Nv,u-v) + (Nu - Nv, -H(I - Q)Nu + ff(/ - Q)Nv)
= (Nu - Nv, u - v) + ((I - Q)Λfa - (I - Q)JNfo, -.ff(I - Q)Nu

+ 1Γ(I - Q)Nv)

^ ( M 6 — iV'y, u — v) ^ rj \\u — v\\2

^η(\\P\\-J\\x-y\\2.
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Now by hypothesis, x, y e Xo, ( — E(x — y), x — y) ^ — a \\x — y\\\

Thus ((T - E)x - ( Γ - J&Jtf, x-y)^ 0 ? | | P | Γ 2 - a) \\x - y\\2. This

proves T — E is monotone. If ^ | | P | [ ~ 2 > α , then it follows that

T — E is also coercive since Γ and E a re single-valued maps.

If η ~ a = 0, then we m u s t show t h a t iV coercive implies that

T is coercive. Let α;0 6 XQ and a? = [ I — H(I — Q)N]~1x0; Px = x0

thus ||a;0 | | ^ [ |P | | | |a?||, and 11x0\| —» + oo implies | |α?| |—* + °° We

now have (TxQ, x0) = (QN[I - H(I - Q)N]-%, x0) = (Nx, x0) = (Nx,
x - H(I - Q)Nx) = (Nx, x) + (Nx, - H(I - Q)Nx) ^ (Nx, x). So
||α?olΓ(Γa>0, &„) ^ ll^oll~W^ ») ^ IIPII"1 \\x\\~\Nx, x). Since iSΓ is coer-

cive, T must be coercive. Since — E is linear and monotone, T — E

is coercive.

It remains to show that T — E is continuous. We begin by

showing that [I — H(I — Q)N]~1 is bounded. Let u, v be such that

u - H(I- Q)Nu = v, then μ\\u - v\\2 = μ\\-H(I-Q)Nu\\2^(-H(I-

Q)Nu, (I - Q)Nu) = ( - H(I - Q)Nu, Nu) = (v - u, Nu) = (v - u,

Nu — Nv + Nv) = — (u — v, Nu — Nv) + (v — u, Nv) ^ (v — u, Nv) ^

\\v-u\\\\Nv\\ hence \\u - v\\ ^ μ-^NvW. Thus if \\v\\ <, R, then

\\Nv\\ < R' for some Rf depending only on R since JV is bounded,
and \\u\\<,\\v\\ +μ~γ\\Nv\\<,R +μ-γR'. Thus [I - H(I - Q)N\~ι

is bounded. For x, y in X we have \\x + y\\2 + \\y\\2 ^ l/4| |α; | | 2 . To

prove this consider the two cases | | # | | ^l/2\\y\\ and | | ^ | | ^ l / 2 \\y\\.

To show [I - H(I - Q W Γ 1 is continuous let u - H(I - Q)iVw = u*

and v - iϊ(/ - Q)Nv - v* then u* - v* = u - v - H(I - Q)Nu +
H(I - Q)Nv. Now 1̂1 -H(I - Q)iNΓu + ί ί ( / - Q)Nv\\2 ^ (ΛΓ̂  - Nv,

u - v) + (Nu - Nv, -H(I - Q)Λ^ + jff(/ - Q) JVi;) - (Nu - Nv,
u-H(I- Q)Nu -v + H(I- Q)Nv) = (Nu - Nv, u* - v*) ^\\Nu~
Nv\\ \\u* — v*\\. Now let x = v — u and /̂ = u* — v* in the equa-

tion \\x + y\\2+ | | ? / | | 2 ^ l / 4 | | α ; | | 2 , then ϊ/4\\u - v\\2 - \\u* ~ v*\\2 ^

\\u* -v* + v - u\\2 = II -H(I- Q)Nu + H(I - Q)Nv\\2 £ μ-'WNu-

Nv\\ \\u* - v*\\. If \\u*\\, \\v*\\<R, then since [ I - H(I - Q)N]-'

is bounded, we have | | u | | , | | v | | ^ R' and \\Nu\\, \\Nv\\ ^ R" since N

is bounded. Thus \\u - ^ | | 2 ^ 4| |w* - v*| | 2 + 4^-1 | |iSΓ^ - Nv\\ | | ^ * ~

v* || ^ (8R + &μ-ιR") \\u* -v*\\. Hence [I - H(I - Q)N]~ι is conti-

nuous.

Before proving the continuity of T, recall a map S is demicon-
tinuous if x%—*x strongly in X implies Sxn—+Sx weakly in X*.
Kato [9] has shown that for monotone operators defined on a
Banach space X with range in X*, then hemicontinuity and demi-
continuity agree. Hence, since [/ — H(I — Q)N]~~1 is continuous,
N[I - H(I - QW]-1 is demicontinuous and QN[I - H(I - Q)N]~" is
demicontinuous. Since the dimension of Xo* is finite, weak conver-
gence in Xo* is the same as strong convergence. Hence T=QN[I—
H(I— Q)N]~1 is continuous. This completes the proof of Theorem 4.
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5* Applications* In this section we demonstrate how Theorem
4 applies to boundary value problems for nonlinear elliptic differen-
tial equations.

EXAMPLE 1. Let us consider the existence of solutions to the
partial differential equation

Au + aux + buy — g(x, y)u = /(a?, y) + Sin (u)

for x, y in D with Dirichlet boundary conditions u — 0 on 3D, where
D = [0, π] x [0, π], a and 6 are constants, g e C(D), #(#, 2/) ^ 0, and

Let Eu = Au + α ^ + Zm̂  — #(#, y)w, and let D(E) = {%eL2(Z>):
e L2(D) and w = 0 on 3D}. Now E is a one to one, invertible,

nonselfadjoint operator so let H be the bounded inverse for E. Let
p = Q be the zero, operator. It is easy to show that assumptions
(A âBβ) are all satisfied. To prove (A4) is satisfied, let ueD(E).

\ d/dx(u2/2)dxdy = 0 since u = 0 on 3D. Simi-
o j o

larly ( — buy, u) = 0. It is easy to show that (gu, u) ^ 0. Now — An
has a series of eigenvalues increasing from 2 toward + oo. So by
the spectral theorem, ( — Δu> u) ^ 2 | |^ | | 2 . Hence (— Eu, u) ^2\\u\\2

so (A4) is satisfied with μ = 2.
Since feL2(D) and Sin(u) is a bounded function, then Nu—f +

Sin (w) is a continuous map from X = L2(D) into X. Using the
Mean Value Theorem it is easy to show that (Nu — Nv, u — v) ^ —
||u — v\\z so iV is quasimonotone with constant η = 1.

Since all the assumptions of Theorem 4 part (a) are satisfied, it
follows that our problem has a unique solution for each feL2(D).

EXAMPLE 2. Let us now consider the partial differential equa-
tion

( 7) An + aux + buy = f(x, y) + u3/(l + u2)

for (x, y) in J9 = [0, 2π] x [0, 2π\ where a and & are constants and
feL2(D). We want solutions to equation (7) which are doubly
periodic; i.e., u 2π-periodic in both x and y. We assume also that
/ is doubly periodic.

Let X be the Hubert space of functions in L2(D) which are
doubly periodic. Let Eu = Au + aux + buy and let D(E) = {ueX:
Eu 6 X}. Now E is a nonselfadjoint elliptic operator whose kernel
consists of only the constant functions. Let P be the projection
onto the constants and let Q = P. On (keri?)1, E has a bounded
right inverse H. The adjoint of E is E*u •= Δu — aux — buy with

= D(E). It now follows from the Fredholm Alternative
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Theorem that D(H) = R(E) = (I - P)X = (I - ζ>)X It is easy to
show that (Â β.β.β) a r e satisfied.

Let ueD(E), since % is doubly periodic, then

S
2πΓ2π

\ ux(x, y)u(x, y)dxdy
o Jo

(aj, ?/)» = 0 .

Similarly, (- buv, u) = 0. Now (— Δu, u) = H^H'+H^JI^O. Hence
(-20M, %) ̂  0. Let a = 0.

Now the operator Lw = ΔuD(L) — D(E) has eigenvalues 0,1,
Hence by the Spectral Theorem, (Lu, u) ^ \\u\\2 for % e ( I - P ) I n
Z)(L). Now since (— aux9 u) = (— 6^, w) = 0 for all ueD(E), (A4)
is satisfied with μ = 1.

Now iVi6 = u3/(l + ^2) + /(a?, 1/) is certainly a continuous map
from X into X, and iV maps bounded sets into bounded sets. Since
the derivative of £3/(l + t2) is positive, it follows that N is a mono-
tone map. In fact, N is coercive since for ue X

S 2πΓ2π ~Λ C2πΓ2π

\ dxdy + (4π2)~1\ \ fudxdy
o Jo 1 + r Jo jo

^ (AπY^Γu'dxdy - ^ T Γ ^ Γ T *
 U* dxdy

Jo Jo Jo Jo 1 - f u2

\u\\

.. .. -11/11 Nil-
Thus all the conditions of Theorem 4 part (b) are satisfied with

μ = 1 and a — η — 0 and hence equation (7) has at least one solution
for each / e X.

EXAMPLE 3. Finally we consider the partial differential equation

( 8 ) Δu + aux + buy + —u = g(u) + F(x, y)

for (x, y) in D = [0, 2τr] x [0, 2ττ]. Again we are interested in doubly
periodic solutions. We assume a and b are constants, FeL2(D) is
doubly periodic and

g(u) = \ exp (1/(1 + t2))dt .
Jo

Let X be the Hubert space of functions in L2(D) which are
doubly periodic. Let P be the projection onto the constants and let
Q = p. With this choice of P and Q assumptions (A5)6) are satisfied.

Let Eu = Δu + αwβ + buy + (l/2)u with D(E) = {ueXiEue X}.
Now 2£*w — Δu — aux — buy + (l/2)u and D(E*) = D(E). Consider
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Lu = (E-(l/2)I)u,D(L) = D(E). The ad joint of L is L*u = (E*-(l/2)I)u
with D(L*) = D(E*) = Z>(JS7). The operator L is the operator con-
sidered in Example 2 and it follows from our calculations in Example
2 that if we choose a = 1/2 and μ = 1/2 then assumption (A4) is
satisfied. Again from the calculations in Example 2, ker (E —
(1/2)/) = ker (E-(1/2)1) -constants and R(E-(1/2)I) = R(E-(1/2)I) =
(I - P)X We now have (J57 - (1/2)I)P = Q(# - (1/2)1), and since
P = Q, JSP - (1/2)P = QE- (1/2)Q or # P - QJ0. Hence assumption
(A2) is satisfied. Now on (I — P)X, E is bounded below and if E:
(I — P)X-+(I — P)X then E has a bounded linear inverse H and
assumptions (A1>3) will be satisfied. Again from our calculations in
Example 2 we know E - (1/2)1: (I - P)X~> (I - P)X, which implies
E:(I-P)X~+ (I-P)X.

We now consider the nonlinear operator Nu = #(w) + JP(O;, 7/). iV
is a continuous map from X into X and maps bounded sets into
bounded sets. Since 1 ^ g\u) ^L e, N is strongly monotone with
constant 97 — 1.

Thus the conditions of Theorem 4 part (b) are satisfied with
μ = 1/2, a = 1/2, y} = l, and | | P | | = 1, hence equation (8) has at
least one doubly periodic solution for each F(x, y) in X.
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