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FIXED ELEMENTS OF JORDAN AUTOMORPHISMS OF
ASSOCIATIVE RINGS

W. S. MARTINDALE, III AND SUSAN MONTGOMERY

Let R be an associative ring, and let G be a group of
Jordan automorphisms of R. Let RG be the set of elements
in R fixed by all geG; that is, RG = {xeR\xg = χ9 all geG}.
Although RG is not necessarily a subring of R, it is a Jordan
subring of R. In this paper, we will study the relationship
between the structure of R° as a Jordan ring and the structure
of R, where G will usually be a finite group of order | G |
and the ring R has no additive |G|-torsion.

More specifically, under the above hypothesis, we show that the
prime radical of RG is the contraction of the prime radical of R,
that if RG satisfies a polynomial identity then so does R, and if RG

is nil of bounded index then so is R. With the additional assumption
that \G\R •= R, ,we show that the Jacobson radical of RG is the
contraction of the Jacobson radical of R. We also obtain various
relationships between ideals of RG and ideals of R.

Many of these results were already known in two major special
cases of Jordan automorphisms: the case of ordinary (associative) auto-
morphisms of R, and the case when R has an involution. Moreover,
our hypothesis that R has no additive |(?|-torsion is necessary because
of existing counterexamples in these two cases. The known results
and examples will be discussed in the relevant section, as each topic
arises.

We now establish our terminology. By an automorphism of R
we will mean an ordinary automorphism of R as an associative ring;
we let Aut (It) denote the group of automorphisms R. If A is an
additive subgroup of R, A is a (quadratic) Jordan subring of R if
A is closed under squares (that is, x2 eA if xeA) and under the
quadratic operator xUy = yxy (as is well known, if 2R = R this
definition is equivalent to A being closed under the single linear
operation a-b = l/2(ab + ba). When we wish to consider R itself as
a Jordan ring, we will denote it by R+. A mapping φ:R—>Rr of
the rings R and R' is a Jordan homomorphism if φ preserves the
structure of A as a Jordan ring; that is, φ is additive, φ(x2) = φ(x)2,
all xeR, and Φ(yxy) = Φ(y)Φ(x)Φ(y), all x,yeR. A Jordan automor-
phism of R is simply a Jordan homomorphism which is also one-to-one
and onto; we let Autj (R) denote the group of all Jordan automor-
phisms of R. If G is a subgroup of Autj (R), then clearly RG is a
Jordan subring of R.
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Now say that G is finite with \G\ — n. For xeR, the trace of
x is trG(x) — Σί/eG^. If there is no ambiguity about which group
is involved, we simply write trG(x) = tr (a?). Note that tr(x)eRG.
When JR has an involution *, and G = {e, *}, we say that G is gen-
erated by the involution. In this situation, RG = {xeR\x* = x} = SRr

the symmetric elements in R.
If I is an ideal of R, we say that I is G-ίnvariant if P £ /,

for all g e G. When Z is G-invariant, R = #// has an induced group
of automorphisms, given as follows: for g e G, define # by (a? + I)*" =
x9 + J. Let i£ be the kernel of the mapping g-+g, and let G = G/K.
Then G is a group of automorphisms of R. Clearly W Q W, where
W denotes the image of RG in R.

We remark that more can be said when G is finite: namely,
if \G\ = n, then nΨ Q tr (R) £ ϊtG. For, choose x e β̂ ". Then m =
|JSΓ| |G|» = |JBΓ| Σαββ«J = Σireβl-KΊ^ = Σ^βG^ since each coset of K in
G has precisely \K\ elements. Thus nx = tr(x)eRG. Finally, if n is
a bisection on R (that is, wj? = R and β has no additive w-torsion),
equality will hold: RG = W.

1* Herstein^s theorem and its consequences* Of fundamental
importance in what follows is the following theorem of I. N. Her stein
[4, p. 50].

THEOREM 1.1. Let φ:R—>R' be a Jordan homomorphism of R
onto a prime ring Rr. Then φ is either a homomorphism or an
anti-homomorphism.

Even when R is not prime, Herstein's theorem has the following
consequence for prime ideals:

COROLLARY 1.2. Let ό be a Jordan automorphism of R and let
P be a prime ideal of R. Then Pφ is a prime ideal of R. Moreover,
the prime rings R/P and R/Pφ are either isomorphic or anti-
isomorphic.

Proof. Let f:R—+R/P be the usual quotient map. Then, since
φ~ι is also a Jordan automorphism of R, the composition foφ~u.R—>R/P
is a Jordan homomorphism onto a prime ring, so by Herstein's
theorem is either a homomorphism or an anti-homomorphism. Now
pφ z= (/ o ^"1)~1(6), the inverse image of (0) under a homomorphism
or anti-homomorphism, and so Pφ is a prime ideal.

Now, R/Pφ is a prime ring by the above, and the mapping
ψ:R/P-+R/Pφ given by ψ(x + P) = xφ + Pφ is a Jordan isomorphism
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of R/P and R/P*. Thus, ψ is an isomorphism or anti-isomorphism
by Her stein's theorem.

The next corollary will enable us, when R is prime, to reduce
to the cases of automorphisms and involutions.

COROLLARY 1.3. Let R be a prime ring, and G a group of Jordan
automorphisms of R. Let H be the subgroup of G consisting of all
automorphisms. If HΦG, then [G: H] = 2. Moreover, G/H induces
an involution * on the associative ring RH, as follows: choose geG,
g &H, and let #* = x9, for any x e RH. The involution is independent
of the choice of g, and the set of symmetric elements SBH of RH under
* is precisely the set RG.

Proof. By Herstein's theorem, every element of G is an auto-
morphism or anti-automorphism, so if H Φ G, clearly [G: H] — 2.
The rest is straightforward.

Thus, when R is prime, the class of Jordan rings arising as
fixed elements of Jordan automorphisms is simply the class of sym-
metric elements in rings with involution. It is not known whether
this is true in general, and we state it formally:

Question 1.4. For any ring R, and G a group of Jordan auto-
morphisms of R does there exist a ring Rf with involution such that
RG = SS.Ί

A question closely related to Question 1.4 is the following: to
what extent can Herstein's theorem be generalized to semi-prime rings?
One might hope that if ψ were a Jordan automorphism of a semi-
prime ring R, then φ could be written as a sum φ = φt + φ2, where
φt is a homomorphism and φ2 is an anti-homomorphism of R to itself,
and such that ΦΛ(J&) Π Φt(R) = (0). Assume for the moment that this
were true, and let A^ = Φ'KΦ^R)) and A2 = Φ~\Φ2(R)). Then one can
check that R — A10 A2, that At is ^-invariant, and that φ restricted
to At is just φί. That is, the ring R could be decomposed as a direct
sum in such a way that φ acts as an automorphism on one component
and as an anti-automorphism on the other.

That this is false can be seen from the following example: Let
T be any simple, noncommutative ring with an involution *, and let
Rn = Σ?=i Θ Tif where Tt = T, for each positive integer n. Define
φn: Rn -»R n by φn(aίf , an) = (αjj, alf , an_,). Then φn is a Jordan
automorphism of Rn which is neither a homomorphism nor an anti-
homomorphism, and Rn cannot be written as a direct sum as desired
since it has no nontrivial ^-invariant ideals. Moreover, if we let
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R = Π£=î «> a n ( i ^ Φ be given componentwise by φn on Rnt then
R is semi-prime but no power of φ is an automorphism. Thus, if it
exists, an appropriate extension of Herstein's theorem would have
to take some other form.

2 The prime radical* The main result of this section is that
the prime radical of RG is the contraction to RG of the prime radical
of R. If A is a Jordan ring, an ideal P of A is prime if whenever
VUW QP, V,W ideals of A, then either V £ P or W £ P. The prime
radical of A, which we shall denote by P(A), is defined as the inter-
section of the prime ideals of A, and A is semi-prime if P(A) = (0)
[11]. We shall also denote the prime radical of R as an associative
ring by P(Ry, there is no ambiguity in this notation, for P(R) ==
P(R+) by a theorem of Erickson and Montgomery [3].

When G is generated by an involution, and RG — SR, it was also
proved by Erickson and Montgomery that P(SB) = P(R) Π SB [3],
which is a special case of what we prove here. We will assume
throughout this section that the group G of Jordan automorphisms is
finite, with | G \ = n, and that R has no additive n-torsion. Without
this hypothesis, our desired result that P(RG) = P(R) Π RG is false
(see the example in [10]).

LEMMA 2.1. Let R be n-torsion free. Then
(1) R/P(R) is n-torsion free.
(2) P(R) = Γϊa Pa, where the Pa are all prime ideals of R such

that R/Pa is n-torsion free.

Proof. (1) We use the characterization of P(R) as the set of
elements beR such that every m-sequence beginning with b contains
0 [5, p. 196]. To show that R/P(B) is n-torsion free, it will suffice to
show that if nb e P(R), then b e P(R). Choose any m-sequence {αj
beginning with b = a0. Then {n^a^ is an m-sequence beginning with
nb 6 P{R), so must contain 0. Since R is n-torsion free, n*kak — 0
implies ak = 0, and thus b e P(R).

(2) Clearly P(R) = (Πα Pa) Π (Γb Pβ) where {Pa} are prime ideals
with RjPa n-torsion free and {Pβ} are prime ideals with nR Q Pβ.
Thus if xeΓlaPa, then nxef\aPB also, and so nxeP(R). By (1),
xeP(R) and so Γlα-Pα

LEMMA 2.2. Let A be a Jordan subring of R. Then P(R) Π
A Q P(A).

Proof. The proof proceeds exactly as in [3, Lemma 1], We
provide it for completeness.
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Let Λ = {ideals M of R\Mf) AQP(A)}. By Zorn's lemma, we
may choose a maximal element N 6 κy£'. We claim that N is a semi-
prime ideal. For, say that (J/N)2 = (0) in R/N; then J2QN. Thus
(J n A)U{JΠA) £ AUiJnA) Q An RUj QAf]J2QAf]NQ P(A). This
implies that J Π A £ P(A), since P(A) is a semi-prime ideal, and hence
J e ^£. By the maximality of N, J = iSΓ, and thus iV is a semi-prime
ideal. It follows that P(R) Q N, and so P(R) C\AQNf)AQ P(A).

We are now able to prove our desired result when G consists
of automorphisms. The proof uses a theorem of Bergman and
Isaacs [2], which asserts that if R is |G|-torsion free and tr(iϋ)
is nilpotent, then R is nilpotent. A consequence of this theorem is
that if R is semi-prime, with no additive | G |-torsion, then RG is also
semi-prime [10].

PROPOSITION 2.3. If G is a finite group of automorphisms of
R such that R is \G\-torsion free, then P(RG) = P{R) n RG.

Proof. Using A = Rσ in Lemma 2.2, we have P(R) Π RG £ P(RG).
Thus we need only show that P(RG) Q P(R). Assume this is false.
Then in R = R/P(R), P{W) Φ (0). It is straightforward to check that

Since P(R) is G-invariant, we have an induced group G acting
on R. R is ^-torsion free by Lemma 2.1, so by the consequence of
Bergman and Isaacs' theorem mentioned above, RG is semi-prime since
R is. Let N be a nonzero nilpotent ideal of W, and let M =
{xeRG\nkxeN, for some k ^ 0}. Clearly M is nilpotent, and M is
an ideal of RG since nRG £ W. Since Λf 2 N' Φ (0), this contradicts
Rδ being semi-prime. Thus, P(RG) £ P(R) and we are done.

LEMMA 2.4. Let R be prime, and let (0) Φ I be a G-invariant
ideal of R. If ae RG such that aIGa = 0, then a — 0.

Proof. As in Corollary 1.3, let H be the subgroup of automor-
phisms in G. By Proposition 2.3, RH is semi-prime since P(RH) —
P(R) n RH = (0). Also, .F is an ideal of RH. It will suffice to show
that aIH - (0), for then since a e RH, tτH (al) = a trH(I) Q aIH = (0).
Thus αl is a ring with no fixed elements under H, so by Bergman
and Isaacs' theorem [2], al is nilpotent. Since R is prime, α/ = (0),
and we then have a = 0.

If if = G, then α/^α = (0) = aIHa implies that aIH is a nilpotent
right ideal of RH, which contradicts RH semi-prime, unless aIH = (0),
and we are done by the above. We may therefore assume that
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[G: H] = 2, and that RH has an involution * with R° = SRH = S.
Now for any x e IH, we have xax* eS Γ\ IH = IG. Thus α#α#*α = 0,
and also a(x + x*)a = 0. Then αα α = — a,x*a, and so αa αa α = 0.
This implies (axf = 0, and thus aIH is a nil right ideal of RH of
bounded index. By Levitzki's theorem [4, p. 1], RH has a nilpotent
ideal, a controdiction unless &Iff = (0). We are done.

THEOREM 2.5. Let R be semi-prime, and let I be a G-invariant
ideal of R such that for some a e RG, aIGa = 0. Then ala = (0).

Proof. We proceed by induction on |G|. If \G\ = 1, there is
nothing to prove. So, assume true for all groups K with \K\ < \G\.
Since R is semi-prime and ^-torsion free, (0) = Πα Pa, where the Pa

are prime ideals such that R/Pa is w-torsion free, for each a, by
Lemma 2.1. To show that ala = (0), it will suffice to show that
ala Q Pα, for all a.

First consider the case when Pa = P is G-invariant. Then R =
iZ/P is prime, with induced group G, and aΐGά = (0). Since ^J^£ IG,
we have α/^α = (0). Now by Lemma 2.4, either I = (0) or α = (0),
and so either I £ P or α 6 P. In any event, ala Q P.

Now say that Pa = P is not G-invariant, and let J = C\gBGP
9.

Each Pff is a prime ideal of R by Corollary 1.2, and so R = J?/J is
a semi-prime ring, with an induced group G since / is G-invariant.
As above, we have that aϊGa = (0) in JB, and so without loss of
generality we may simply assume that Γ\g&GP

g = (0).
Let orb P = {P9 \ g e G}. Let m be the smallest integer such that,

for any choice of m distinct members of orb P, say P19 , Pm9 we
have α(/ n Λ Π P2 Π Π Pm)α = (0). Since P t Π Π P» = (0), clearly
m^n. If m = 1, then α(J n P)α = 0. Choose P, 6 orb P, P, ^ P, and
pass to R = -B/P*. Then a(ΪP)a — (0) in .B, a prime ring. Now if
α ^ 0 , then I P = (0). Since R is prime and Pφ(ϋ), it must be that
I = (0). Thus, either a e P< or I £ P<# But then, since a e 72°, if
aeP, then αe f|9eG P/ = (0), and if IQ P< then IQ ΓiaeGPf = (0).
That is either α = 0 or I = (0). In either case, αlα = (0), and we
are done.

We may therefore assume that m > 1. By the minimality of
m, there exist m — 1 distinct members Px, P2, , Pw_i in orb P such
that if V = Px Π Π Pw_!, then a(Jn F)α ^ (0). Let iΓ = {̂  e G\g
permutes the m — 1 P s}. If i ί = G, we have a contradiction since
G is transitive on orb P, and m — 1 < n. Therefore K is a proper
subgroup of G. Since |15Γ| divides |G|, R is |i£|-torsion free and /Π F
is a iί-invariant ideal of R with α e Rκ. Now choose α?, y e IΠ V.
Then a trff (a?)α e a(I Π V)ffα = (0), and
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0 = a( Σ %)& + Σ aχσ<^ — a t*K {%)a + ac(x)a ,

where c(x) = Σoe* ^σ If o$K9 then for some P<, P* ί {Plf , Pm-X}.
Thus α;σ e Pϊ, and so s/αα'αj/ e (I Π F) Π P/. Letting Pi = Pm, it follows
that ayaxσaya e a(I Π Pi Π Π P»)α = (0). Then {axσayf = 0, for all
2/ e J Π F, and so axσa(I Π F) is a nil right ideal of bounded index in
R. Since R is semi-prime, we must haue ax°a{I Π V) = (0). Thus,
αφ)α(J Π F) = (0). It follows that α tr* (a?)α(J Π F) = (0), also. Now
α tr^ (#)α e / n F, and since IΠ F is itself a semi-prime ring (being
an ideal in R), we must have a tτκ(x)a = 0, for all xeIΓ\V.

Since w(J n V)κ C tr* (J n F), we have shown that a(I f] V)κa =
(0). We may now apply induction on the order of K to see that
a(I Π V)a = (0). This is a contradiction.

If A is a Jordan ring, we say that an element a e A is an absolute
zero divisor in AΊί AUa = (0). It is known that if A has no absolute
zero divisors, then A is semi-prime [12].

COROLLARY 2.6. 7/ R is semi-prime, then RG is semi-prime.
Moreover, RG has no absolute zero divisors.

Proof. Using I = R in Theorem 2.5, we see that RG has no
absolute zero divisors. By the above, RG is semi-prime.

COROLLARY 2.7. If I is a semi-prime ideal of R such that R/I
is n-torsion free, then I (Ί RG is a semi-prime (Jordan) ideal of RG.

Proof. Let / = Γ\σeolσ J is G-invariant, and is an ideal of R
since each Iσ is an intersection of prime ideals by Corollary 1.2. Then
R — R/J is a semi-prime ring with induced group G, and R is n-
torsion free since R/Iσ is ^-torsion free, for all σ. By Corollary 2.6,
RG is semi-prime. As in the proof of Proposition 2.3, it follows that
W is semi-prime. But, W = RG + J/J = RG/RG f]J= RG/RG Π I, where
= indicates an isomorphism as Jordan rings. Thus RGΠl is a semi-
prime ideal of iϋ^.

THEOREM 2.8. Let G be a finite group of Jordan automorphisms
of a ring R, such that R has no additive \G\-torsion. Then P{R) Γ\RG—
P(RG).

Proof. That P(R) Π RG £ P{RG) is just Lemma 2.2. To see
P(RG) S P(R), use the fact that P(R) = fl* /«, where the Iα are prime
ideals of R such that R\Ia is n-torsion free. By Corollary 2.7, 7α Π RG
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is a semi-prime ideal of Rσ

f for all such a. Thus P(Rσ)Q f|« (L Π RG)

3. The Jacobson radical. In this section we show that the
Jacobson radical of RG is the intersection with RG of the Jacobson
radical of R. When G consists of an involution, this has already
been proved by K. McCrimmon [9], and when G is a finite group of
automorphisms of R, this has been proved by Montgomery [10]. An
additional assumption will be needed concerning n = | G | and the
additive group of R; that is nR = R. Together with our previous
assumption that nx = 0 implies x = 0, this says that n is a bisection
on R. Such a hypothesis is needed, since by an example of Martindale
[8], the theorem is false for automorphisms if one only assumes that R
has no ^-torsion. Moreover, the hypothesis that n is a bisection is
used in the proof of Montgomery's result, which we shall need here.

In a Jordan ring A, the Jacobson radical J(A) is defined as the
maximal quasi-regular ideal, where an element x e A is quasi-regular
if 1 — x is invertible (if 1 g A, the inverse is formal). When A is a
special Jordan ring", say A Q R+, where R is an associative ring, then
being invertible in the Jordan sense is the same as being invertible
in the associative sense. Thus x is quasi-regular in A if and only
if there exists y eA such that x + y + xy — 0, and xy = yx. We
also denote the Jacobson radical of R by J(R); since J(R) = J(R+)
by a theorem of McGrimmon [9], there will be no ambiguity in this
notation.

We first note that Jordan automorphisms preserve primitive ideals.

LEMMA 3.1. Let φ be a Jordan automorphism of R, and let P
be a (right) primitive ideal of R. Then Pφ is a (right or left)
primitive ideal of R.

Proof. Since P is prime, we may apply Corollary 1.2 to see
that R/P and R/Pφ are either isomorphic or anti-isomorphic.

As a consequence of this lemma, when G is a group of Jordan
automorphisms and P is a primitive ideal, we see that I = f\aeGP

σ is
a semi-simple ideal of R.

The first two parts of the next lemma are actually a special
case of [6; Lemma 1, p. 3.3], where it is proved that if I is an
inner ideal of a Jordan ring, and w el is quasi-regular, then w is
quasi-regular in I. However, as the proof in our case is very ele-
mentary, we include it for the sake of completeness.

LEMMA 3.2. Let A be a Jordan subring of a ring R.
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(1) Let I be a Jordan ideals of A. If w el is quasi-regular
in A, it is quasi-regular in I.

(2) Let aeA. If w e aAa is quasi-regular in A, it is quasi-
regualr in aAa.

(3) Let ae R. If α#α e aRa is quasi-regular, then a2x is quasi-
regular.

Proof. (1) Say that z e A is the quasi-inverse for w. Then
(1 — w)(l — z)(l — w) — (1 — w). This gives 1 — w + w2 + wz + zw —

w — z — wzw = 1 — w, and so z = w2 + wz + zw — w — wzw e J.

(2) Say that w = axa, for some xeA, and that z is the quasi-
inverse for w. Then αα α + z + αa αz = 0, and axaz = zaxa. One can
check that

z = — α#α — αα αz = a( — x + #α2α? + xawax)a e aAa .

( 3) By part (2), the quasi-inverse of am is z = â /a 6 aita. Thus
+ aya + axa2ya = 0. Multiplying on the left by a, we see that

(a2x + a2y + a2xa2y)a = 0. Letting 2 = a2x + α2^ + a2xa2y, we see that
22 = 0. Thus z is quasi-regular, with quasi-inverse —z. Writing
w + z + wz = woz, we see that

a2χo(a2yo( — z)) = ( α ^ o ^ ) o ( - a ) = # o ( — 3) = 0 .

Thus a2x is right quasi-regular. Similarly, a2x is left quasi-regular.

Before proceeding, we observe several consequences of our hy-
pothesis that \G\ is a bijection. First, if P is any proper prime
ideal of R, then | G \ is a bijection on R = R/P. For, nR = R since
nR = R, and if R has any w-torsion, then nR = 0 since 5 is prime.
This says that nR Q P, but then R £ P, a contradiction. Now if
.β is any semi-prime homomorphic image of R, \G\ will be a bijection
on R. lΐ R = R/I where I is G-invariant, so that R has the induced
group of automorphisms G, it follows that R& = 5^ (see the discussion
at the end of the introduction).

We are now able to finish the case of radical rings.

LEMMA 3.3. Assume that \G\ is a bijection on R, and that
J(RG) = RG. Then J(R) = R.

Proof. We proceed by induction on n = \G\. If % = 1, then
R = RG and there is nothing to prove. Thus, assume that for any
group K of Jordan automorphisms with \K\ < \G\ and Rκ a radical
ring, it follows that J(R) — R.

To show that J(R) = R, we show that R has no proper primitive
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ideals. Say that P is such an ideal. If P is G-invariant, then
R = RIP has induced group G, and RG = R° by the remarks above.
Thus RG = J(RG). We may therefore reduce to the case when J? is
primitive. Apply Corollary 1.3, with H the subgroup of automor-
phisms. Now J(RH) = J(R) Π RH by Montgomery's theorem [10], and
J(RG) = J (S Λ H) = J(RH) Π 22ff by McCrimmon's theorem [9]. Since
J(R) = (0), it follows that RG = </(#*) = (0). This contradicts the
theorem of Bergman and Isaacs [2], since R is primitive and so
cannot be nilpotent.

We may therefore assume that P is not G-invariant. By Lemma
3.1, 1 = ΓigeGP

9 is a semi-simple ideal of R. As in the previous
case, we may pass to R = R/I, and so assume that R is semi-simple
with Γ U * P * = (0).

Let orb P = {P*71 # e G}, and let m be the smallest positive integer
such that, for any choice of m distinct members of orb P, say Plf P2,
• , Pw, we have ΓlΓ=i Pi = (0). Clearly m ̂  w. If m = 1, then P =
(0). This says that P is G-invariant, a contradiction. We may
therefore assume that m > 1. We proceed as in the proof of Theorem
2.5: by the minimality of m, there exist m — 1 distinct members
Pi, P» , P—i of orb P such that F = flΓ-i1 P< ̂  (0), and we let if
be the set of g e G which permute {P19 , Pm_J. If K=G, we have
a contradiction since G is transitive on orb P and m — 1 < n. Thus,
K is a proper subgroup of G. Since | JBΓI divides |G|, | JSΓ| is a bijection
on R. In fact, \K\ is a bijection on V. For, clearly V has no |i£|-
torsion, and since R/V is semi-prime, | JKΓ| is a bijection on RjV. In
particular, iϋ/Fis |if|-torsion free, from which it follows that \K\V —
V. Now V is a iΓ-invariant ideal of R, so if we can show that
J(VK) =VK, it will follow by induction on \K\, using the ring V,
that J(V) = V. Since R is a semi-simple ring, it can have no quasi-
regular ideals, and thus V = (0), a contradiction. Thus, the theorem
will be proved if we can show that J( Vκ) = V*.

Choose xeV. Then tr (a?) = tr* (x) + c(x), where c{x) = Σ ^ ^ ^
One can check that tr (F) = {tr (x)\xe V} is a Jordan ideal of RG,
and thus by Lemma 3.2, (1), the quasi-inverse of tr (x) also lies in
tr (F). Say that tr (y), for y e V, is the quasi-inverse of tr (x). Now
tr (#) = trκ(y) + c(y), and so

0 = tr (x) + tr (y) + tr (x) tr (y)

= tΓjf (x) + tΓjf (j/) + t r* (a?) t r* (#) + c(x) + c(y)

+ tτκ(x)c(y) + c

If gίK, then for some Pif Pf $ {Pίf , Pm_J. Thus x9 e Pf and xaV =
Vx9 = (0) since a ' F £ P," n (Pi Π Γ) P—i) = (0) by the mimimality
of m. Similarly ygV — Vy9 = (0). Multiplying the above expression
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on the right by any weV, we get (0) = O V = [tr^ (x) + t r x (y) +
trκ (x) trκ (y)\ V. Since V is a semi-simple ring, it has no absolute
zero-divisors, and thus tτκ(x)<>tγκ(y) = 0. Thus, every element of Vκ

is quasi-regular, so J(VK) — Vκ, which is what was needed.

LEMMA 3.4. Let I be a (Jordan) ideal of the special Jordan ring
A such that a2 = 0, for all a e I. If A has no absolute zero-divisors,
then I = (0).

Proof. If xeA, and a el, then ax + xaeI, and so (ax + xa)2 —
0. This gives axax + ax2a + α αa α = 0 since a2 — 0. Multiplying by
a, axaxa — (0). Linearizing on x and then multiplying on the right
by xa, we have axayaxa = (0), for all #, y e A. Since A has no
absolute zero-divisors, we see that axa — 0, all xeA, and thus a = 0.
Thus, I - (0).

THEOREM 3.5. Assume £λ,α£ \G\ is a bisection on R, and that
R is semi-simple. Then Rσ is semi-simple.

Proof. Choose any aeJ(RG) and consider the ring aRa, which
is Cr-invariant. (aRaψ = aRGa S J(RG), so every element of aRGa is
quasi-regular. By Lemma 3.2, (2), aRGa = J(aRGa) so we may apply
Lemma 3.3 to the ring aRa to see that J{aRa) = αϋ?α. But now,
by Lemma 3.2, part (3), cΛK is a quasi-regular right ideal of R, a
contradiction unless a2 = (0). Thus α2 = (0) for all aeJ(RG).

But RG has no absolute zero-divisors, by Corollary 2.6. Applying
Lemma 3.4 with A = #*, we see that /(#*) = (0).

COROLLARY 3.6. When \G\ is a bisection on R, J(RG) = J(R) Π iϋσ.

Proof. Using Theorem 2.5, the proof now follows exactly as in
the associative situation [10].

4* Polynomial identities* In this section we prove that if RG

satisfies a polynomial identity (PI), then R also satisfies a PI. When
G consists of an involution, this has been proved by Amitsur [1],
and when G consists of automorphisms, this has been proved by
V. K. Kharchenko [7] under the assumption that R has no |G|-torsion.
When R is semi-prime, both Amitsur and Kharchenko obtained a
bound on the degree of the identity satisfied by R: namely, if n =
\G\ and RG satisfies and identity of degree d, then R satisfies the
standard identity Snd[x] of degree nd. We will show that the same
conclusion holds when G is a finite group of Jordan automorphisms.

We assume throughout that R has no | G |-torsion. This assumption
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is necessary, for Bergman and Isaacs have produced an example
when G is a finite group of automorphisms, RG = (0) but R satisfies
no identity at all, when |G|JR = (0) [2]. We will also assume, for
the sake of simplicity, that all identities have integer coefficients,
and at least one monomial of highest degree has coefficient ± 1 .
With care, more general coefficients may be allowed.

LEMMA 4.1. Let R be prime, and say that RG satisfies β PI of
degree d. Then R satisfies Snd[x].

Proof. As in previous sections, we use Corollary 1.3 to see that
RG = SRn, where RH is the subring of R fixed by the subgroup H
of automorphisms of G. Since RH is semi-prime, it will satisfy S2d[x]
by Amitsur's theorem (simply Sd[x] if H — G) and thus R will satisfy
Snd[%] by using Kharchenko's theorem.

THEOREM 4.2. Let R be semi-prime, with no \G\-torsion. If
RG satisfies a PI of degree d, then R satisfies the standard identity
Snd[x] of degree nd, where n = \G\.

Proof. Without loss of generality, we may assume that the
identity satisfied by RG is multilinear [5, p. 225]. We proceed by
induction on n. When n — 1, R = RG and we are done. So assume
the result is true for all groups K with \K\ < \G\. By Lemma 2.1,
(0) = P{R) = Π« Pa, where the Pa are prime ideals of R such that
R/Pa is w-torsion free. Since R is a subdirect product of the R/Pa,
it suffices to show that each R\Pa satisfies Snd[x]. If P — Pa is G-
invariant, we may as usual pass to R — R/P, and the result then
follows from Lemma 4.1 and the fact that nRG Q RG.

We therefore may assume that Pa is not G-invariant, and by
considering R=R/f)P°, we may reduce to the case where f}geGP

β=(0).
As before, let orb P — {P9 \ g e G) and let m be the smallest positive
integer such that the intersection of any m distinct members of
orb P is 0. If m = 1, then P = (0), which says that P is G-invariant,
a contradiction. Thus 1 < m <̂  n.

By the minimality of m, there exist m — 1 distinct members of
orb P, say P19 P2, , Pm_x, such that V = P, Π U Pm-t Φ (0). Let
K = {geG\g permutes the m — 1 Pis}. As before, K is a proper
subgroup of G. Regarding V as a semi-prime ring, K acts on V and
V has no additive |ίΓ|-torsion.

Now choose alf , ad, y e V. As before, we write tr (x) = trG(x) =
tvκ(x) + c{x), where c(x) = 'ΣiβtK&t f° r a n y χ Write the identity
as f(xlf , xd) = Σ*esd Kv*ωV*ω x*w Substitute xt — tr (α<) e RG,
and premultiply by y:
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0 - yfiir (αx), . . . , t r ( α * ) )

= 2/ Σ Mtrκ (aπil)) + c(aπω)) (tr* (aπ{d)) + c(aπ{d)))
πeSd

= y Σ ** tr* (αx(1)) tr* (απ(2)) - - tr* (aπ{d)) + Σ 2/^ ,

where each i^ is a product of terms, at least one of which is of the
form aσ, where a e V and σ g K. Since σ g K, there exists P< such
that P* g {Pw , Pm_J. Now aσ e Pf, and so yux e (P, n Π P—i) Π
p- = (0) by the choice of m. Thus F /Ctr* (αj, •••, tr^ (αj) = (0).
Since V has no absolute zero-divisors, and nVκ ^ tr^(F), it follows
that /(6X, , bd) = 0 for all choices of b, e Vκ. That is, Vκ satisfies
a P I of degree d. We may now apply induction to K acting on V,
and conclude that V satisfies the standard identity of degree d\K\ <
d\G\.

To complete the proof, we note that since V Φ (0), V £ P9, for
some g eG. The prime ring R/P9 thus contains a nonzero ideal
V + P9/Pg which satisfies the standard identity of degree dn. Since
an ideal in a prime ring has the same ring of quotients as the prime
ring, when the ideal satisfies a PI, it follows that R/P9 also satisfies
Sdn[x]. Now for any other heG,R/Ph is either isomorphic or anti-
isomorphic to R/P9 by Corollary 1.2, and thus R/Ph also satisfies
Sdn[x]. In particular, R/P satisfies Sdn[x], and we are done.

COROLLARY 4.3. Assume that RG satisfies a PI of degree d, and
that R has no \G\-torsion. Then for some positive integer k, R
satisfies (SlGld[x])k.

Proof. Follow exactly the argument given by Amitsur for the
case of an involution [1, proof of Theorem 6], using the complete
direct product of copies of R and Theorem 4.2 above.

5* Nil ideals of bounded index* We have two major objectives
in this section: to show that if RG is nil of bounded index, then so
is R, and to show that if R9 is semi-prime, then it has no nonzero
(Jordan) ideals which are nil of bounded index. The proof of the
first statement follows the same general outline as our previous
arguments.

LEMMA 5.1. // R is prime, then RG cannot be nil of bounded
index.

Proof. As in Corollary 1.3, let H be the subgroup of automor-
phisms of G and consider RH. By Proposition 2.3, RH is semi-prime,
so cannot have any ideals which are nil of bounded index. Thus,
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we are done if H = G. When H Φ G, we have RG = SRH. But then,
if RG is nil of bounded index m, choose aeRG with a2 = (0). For
any x e JR*, a α + α£* 6 iί* so (xa + α&*)m = 0. Using a2 = (0) and
premultiplying by α, we see a{xa)m = 0. Thus i?^α is a nil left ideal
of bounded index of RH, a contradiction unless a = 0. But then
i?* = (0), which also contradicts RH being semi-prime.

THEOREM 5.2. // RG is nil of bounded index, and R has no
G\-torsion, then R is nil of bounded index.

Proof. We will first show that R = P(R). To show this, we
will show that R has no prime ideals. As before, by Lemma 2.1,
it will suffice to look at prime ideals P such that R/P is ^-torsion
free. If P is (x-invariant, we may pass to R = R/P and apply
Lemma 5.1 to get a contradiction. We may therefore assume that
P is not G-invariant. The rest of the argument follows closely
that of Theorem 4.2: assume Γ\g6GP

g = (0), let V = P1 Π Π Pn-19

where m is minimal such that the intersection of m members of orb P
is zero, define K as before, show that Vκ is nil of bounded index,
and apply the induction hypothesis on \K\ to conclnde that V is nil
of bounded index. This contradicts the assumption that R is semi-
prime. Thus R has no prime ideals, so R = P(R)

We now use a variation of Amitsur's argument. Let Rt =
UaeiRcc, where each Ra — R and the index set / is just R itself.
Extend G to Glf acting on Rt componentwise. Then RGι is nil of
bounded index, so by the previous argument we have P(i2L) = Rx.
In particular, Rγ is nil. Consider the element / GR1 given by f(a) =
aeR. Then for some k, fk = 0. But this says that ak = 0, all a e R.
That is R is nil of bounded index.

When G is generated by an involution, M. Rich [11] has obtained
an explicit bound on the nil index of R. He has proved that if R
is an algebra over a field F> where F has at least d2 elements, and
SB is nil of index d, then R is nil of index ^ 2d. Hopefully a similar
bound can be obtained for any finite group of Jordan autmorphisms.

With a stronger assumption on the characteristic of R, more
can be said:

COROLLARY 5.3. Let R be an algebra over a fild of characteristic
0, and assume that RG is nil of bounded index. Then R is nilpotent.

Proof. By Theorem 5.2, R is nil of bounded index. The con-
clusion now follows by applying the Nagata-Higman theorem [5,
p. 274].
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When G consists of automorphisms, Bergman and Isaacs' theorem
(mentioned earlier) asserts that if RG is nilpotent, then R is nilpotent,
provided R is ^-torsion free. We raise the analogous question for
groups of Jordan automorphisms:

Question 5.4. Let G be a finite group of Jordan automorphisms
of a ring R, such that R has no additive |G|-torsion. If Rσ is (Jordan)
nilpotent, must R be (Jordan) nilpotent?

A Jordan ring A is nilpotent if for some positive integer m, and
any x19 , xm e A, xJJ^U^ UXm = 0. Rich [11] has shown that if
a ring R is Jordan nilpotent then it is actually nilpotent in the
associative sense; thus, if Question 5.4 can be answered affirmatively,
R must actually be nilpotent. The answer to this question is not
known even when G consists of an involution *.

We remark, however, that the answer is false when R has |G|-
torsion. When G consists of automorphisms, one may use the example
of Bergman and Isaacs mentioned at the beginning of §4.

We now proceed to ideals of RG.

THEOREM 5.5. Assume that R is \G\-torsion free and that RG

is semiprime. Then Rσ has no nonzero (Jordan) ideals which are
nil of bounded index.

Proof. By Theorem 2.8, P(R) Π RG = P(RG) = (0), and thus in

R - R/P(R), W - RG + P(R)/P(R) = RG. Since nRG Q W, it follows
that RG is also semi-prime. Let I be a nil ideal of RG of bounded
index, and let I be the image of I in R. Let ϊ1 = {x eRG\nhxeϊ,
for some integer k ^ 0}. Then T± is a Jordan ideal of RG which is
nil of bounded index, since R is ^-torsion free. Since ^ 2 J = IyΊ1Φ
(0). Thus, without loss of generality, we may assume that R is
semi-prime.

Choose any ae I, and consider the ring aRa. Since a e RG, aRa
is G-invariant, and (aRa)G = aRGa £ I. Thus aRGa is nil of bounded
index. By Theorem 5.2, aRa is nil of bounded index. But then a2R
is a nil right ideal of bounded index in R. Since R is semi-prime,
this is impossible by Levitzki's theorem, unless a2 — 0. Thus a2 = 0,
for all a el. By Lemma 3.4, I— (0), and we are done.
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