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FIXED ELEMENTS OF JORDAN AUTOMORPHISMS OF
ASSOCIATIVE RINGS

W. S. MARTINDALE, III AND SUSAN MONTGOMERY

Let R be an associative ring, and let G be a group of
Jordan automorphisms of R. Let R? be the set of elements
in R fixed by all g€@G; that is, R° = {xe R|2’ = z, all g€ G}.
Although R¢ is not necessarily a subring of R, it is a Jordan
subring of R. In this paper, we will study the relationship
between the structure of K¢ as a Jordan ring and the structure
of R, where G will usually be a finite group of order |G|
and the ring R has no additive |G |-torsion.

More specifically, under the above hypothesis, we show that the
prime radical of R? is the contraction of the prime radical of R,
that if RS satisfies a polynomial identity then so does R, and if R¢
is nil of bounded index then so is . With the additional assumption
that |G|R = R, we show that the Jacobson radical of R¢ is the
contraction of the Jacobson radical of R. We also obtain various
relationships between ideals of R¢ and ideals of R.

Many of these results were already known in two major special
cases of Jordan automorphisms: the case of ordinary (associative) auto-
morphisms of R, and the case when R has an involution. Moreover,
our hypothesis that R has no additive |G |-torsion is necessary because
of existing counterexamples in these two cases. The known results
and examples will be discussed in the relevant section, as each topic
arises.

We now establish our terminology. By an automorphism of R
we will mean an ordinary automorphism of R as an associative ring;
we let Aut (R) denote the group of automorphisms R. If A is an
additive subgroup of R, A is a (quadratic) Jordan subring of R if
A is closed under squares (that is, 2°c¢ A if € A4) and under the
quadratic operator zU, = yxy (as is well known, if 2R = R this
definition is equivalent to A being closed under the single linear
operation ¢-b = 1/2(ab + ba). When we wish to consider R itself as
a Jordan ring, we will denote it by R*. A mapping ¢: R— R’ of
the rings R and R’ is a Jordan homomorphism if ¢ preserves the
structure of A as a Jordan ring; that is, ¢ is additive, ¢(2?) = 4(x)%,
all xe R, and ¢(yxy) = ¢(y)d(x)é(y), all x, yc R. A Jordan automor-
phism of R is simply a Jordan homomorphism which is also one-to-one
and onto; we let Aut; (R) denote the group of all Jordan automor-
phisms of R. If G is a subgroup of Aut; (R), then clearly R¢ is a
Jordan subring of R.
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Now say that G is finite with |G| = n. For z ¢ R, the trace of
2 is trg (@) = D e 2° If there is no ambiguity about which group
is involved, we simply write try(z) = tr (x). Note that tr (z)e RE.
When R has an involution %, and G = {e, *x}, we say that G is gen-
erated by the involution. In this situation, R ={zxe R|z* =2}= Sz,

the symmetric elements in R.
If I is an ideal of R, we say that I is G-imvarient if I* < I,

for all ge G. When I is G-invariant, R = R/I has an induced group
of automorphisms, given as follows: for g€ G, define g by (v + I ) =
2 + I. Let K be the kernel of the mapping g — 7, and let G = G/K.
Then G is a group of automorphisms of R. Clearly R® < R?, where

R? denotes the image of Rf in R.
We remark that more can be said when G is finite: namely,

if |G| = m, then nR® < tr (R) < R, For, choose # € R. Then n% =
[K||G17 = K| e ® =S| K|T° =,,.0%° since each coset of K in
G has precisely | K| elements. Thus »% = tr (z) ¢ R°. Finally, if » is
a bijection on R (that is, R = R and R has no additive n-torsion),

equality will hold: R = RF, .

1. Herstein’s theorem and its consequences. Of fundamental
importance in what follows is the following theorem of I. N. Herstein

[4, p. 50].

THEOREM 1.1. Let ¢: R— R’ be a Jordan homomorphism of R
onto a prime ring R'. Then ¢ is either a homomorphism or an

anti-homomorphism.

Even when R is not prime, Herstein’s theorem has the following
consequence for prime ideals:

COROLLARY 1.2. Let ¢ be a Jordan automorphism of R and let
P be a prime ideal of R. Then P? is a prime ideal of B. Moreover,
the prime rings R/P and R/P? are either isomorphic or anti-

1somorphic.

Proof. Let f:R— R/P be the usual quotient map. Then, since
67! is also a Jordan automorphism of R, the composition fo¢™': R— R/P
is a Jordan homomorphism onto a prime ring, so by Herstein’s
theorem is either a homomorphism or an anti-homomorphism. Now
Pé = (fop™9)7(0), the inverse image of (0) under a homomorphism
or anti-homomorphism, and so P¢ is a prime ideal.

Now, R/P? is a prime ring by the above, and the mapping
or: RIP— R/P? given by (& + P) = «? + P? is a Jordan isomorphism
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of R/P and R/P?. Thus, 4 is an isomorphism or anti-isomorphism
by Herstein’s theorem.

The next corollary will enable us, when R is prime, to reduce
to the cases of automorphisms and involutions.

COROLLARY 1.3. Let R be a prime ring, and G a group of Jordan
automorphisms of R. Let H be the subgroup of G consisting of all
automorphisms. If H=+G, then [G: H] = 2. Moreover, G/H induces
an tnvolution * on the associative ring RE, as follows: choose g € G,
g ¢ H, and let x* = x°, for any x € RE. The involution is independent
of the choice of g, and the set of symmetric elements Sz of R¥ under
* 4s precisely the set RS,

Proof. By Herstein’s theorem, every element of G is an auto-
morphism or anti-automorphism, so if H # G, clearly [G: H] = 2.
The rest is straightforward.

Thus, when R is prime, the class of Jordan rings arising as
fixed elements of Jordan automorphisms is simply the class of sym-
metric elements in rings with involution. It is not known whether
this is true in general, and we state it formally:

Question 1.4. For any ring R, and G a group of Jordan auto-
morphisms of R does there exist a ring R’ with involution such that
R¢ = Sp?

A question closely related to Question 1.4 is the following: to
what extent can Herstein’s theorem be generalized to semi-prime rings?
One might hope that if ¢ were a Jordan automorphism of a semi-
prime ring R, then ¢ could be written as a sum ¢ = ¢, + ¢,, Where
¢, is a homomorphism and ¢, is an anti-homomorphism of R to itself,
and such that ¢,(R) N ¢y(RK) = (0). Assume for the moment that this
were true, and let 4, = ¢7%(4,(R)) and A, = ¢ *(¢,(R)). Then one can
check that R = A4, @ A,, that A, is ¢-invariant, and that ¢ restricted
to A, is just ¢,. That is, the ring R could be decomposed as a direct
sum in such a way that ¢ acts as an automorphism on one component
and as an anti-automorphism on the other.

That this is false can be seen from the following example: Let
T be any simple, noncommutative ring with an involution *, and let
R, =32, 6T, where T, = T, for each positive integer n. Define
¢n: Rn '—)R‘n bY ¢'»(au %y an) = (a'::9 Qyy ** an—l)' Then [ is a Jordan
automorphism of R, which is neither a homomorphism nor an anti-
homomorphism, and R, cannot be written as a direct sum as desired
since it has no nontrivial ¢,-invariant ideals. Moreover, if we let
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R =TI R., and let ¢ be given componentwise by ¢, on R,, then
R is semi-prime but no power of ¢ is an automorphism. Thus, if it
exists, an appropriate extension of Herstein’s theorem would have
to take some other form.

2. The prime radical. The main result of this section is that
the prime radical of R¢ is the contraction to R¢ of the prime radical
of R. If A is a Jordan ring, an ideal P of A is prime if whenever
VU, € P, V, W ideals of A, then either V< Por W < P. The prime
radical of A, which we shall denote by P(A4), is defined as the inter-
section of the prime ideals of A, and A is semi-prime if P(4) = (0)
[11]. We shall also denote the prime radical of R as an associative
ring by P(R); there is no ambiguity in this notation, for P(R) =
P(R*) by a theorem of Erickson and Montgomery [3].

When G is generated by an involution, and R? = S;, it was also
proved by Erickson and Montgomery that P(Sz;) = P(R)N Sz [3],
which is a special case of what we prove here. We will assume
throughout this section that the group G of Jordan automorphisms is
finite, with |G| = n, and that R has no additive n-torsion. Without
this hypothesis, our desired result that P(Rf) = P(R)N R¢ is false
(see the example in [10]).

LEMMA 2.1. Let R be n-torsion free. Then

(1) R/P(R) is n-torsion free.

(2) P(R) = N P., where the P, are all prime ideals of R such
that R/P, is m-torsion free.

Proof. (1) We use the characterization of P(R) as the set of
elements b€ R such that every m-sequence beginning with b contains
0 [5, p. 196]. To show that R/P(R) is n-torsion free, it will suffice to
show that if nbe P(R), then be P(R). Choose any m-sequence {a;}
beginning with b = a,. Then {nziai} is an m-sequence beginning with
nbe P(R), so must contain 0. Since R is n-torsion free, n*a, =0
implies @, = 0, and thus b€ P(R).

(2) Clearly P(R) = (N« P.) N (N; Ps) where {P,} are prime ideals
with R/P, m-torsion free and {P;} are prime ideals with nR & P;.
Thus if €. P,., then nze . P also, and so nxe P(R). By (1),
x € P(R) and so N, P, = P(R).

LEMMA 2.2. Let A be a Jordan subring of B. Then P(R)N
A C P(4).

Proof. The proof proceeds exactly as in [3, Lemma 1]. We
provide it for completeness.
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Let # = {ideals M of R{MNA< P(A)}. By Zorn’s lemma, we
may choose a maximal element Ne_~Z We claim that N is a semi-
prime ideal. For, say that (J/N)? = (0) in R/N; then J°< N. Thus
NAUyon S AUy S ANRU, S ANJ*S ANN S P(A). This
implies that JN A < P(A), since P(A) is a semi-prime ideal, and hence
Je _#. By the maximality of N, J = N, and thus N is a semi-prime
ideal. It follows that P(R) S N, and so P(R)N A S NN A< P(4).

We are now able to prove our desired result when G consists
of automorphisms. The proof uses a theorem of Bergman and
Isaacs [2], which asserts that if R is |G|-torsion free and tr(R)
is nilpotent, then R is nilpotent. A consequence of this theorem is
that if R is semi-prime, with no additive |G|-torsion, then RS is also
semi-prime [10].

PROPOSITION 2.8. If G ts a finite group of automorphisms of
R such that R ts |G|-torsion free, then P(R%) = P(R) N R°.

Proof. Using A = R°%in Lemma 2.2, we have P(R) N R® < P(R°).
Thus we need only show that P(R¢) £ P(R). Assume this is false.
Then in R = R/P(R), P(R%) # (0). It is straightforward to check that
P(R°) < P(RY). )

Since P(R) is G-invariant, we have an induced group G acting
on R. R is m-torsion free by Lemma 2.1, so by the consequence of
Bergman and Isaacs’ theorem mentioned above, R? is semi-prime since
R is. Let N be a nonzero nilpotent ideal of RY and let M =
{x € R°|n*T e N, for some k = 0}, Clearly M is nilpotent, and I is
an ideal of R? since nR® = R®. Since M 2 N = (0), this contradicts
R? being semi-prime. Thus, P(R) < P(R) and we are done.

LEMMA 2.4. Let R be prime, and let (0) = I be a G-invariant
ideal of R. If ae€ R® such that al®a = 0, then a = 0.

Proof. As in Corollary 1.3, let H be the subgroup of automor-
phisms in G. By Proposition 2.3, R? is semi-prime since P(R¥) =
P(R)N R” = (0). Also, I” is an ideal of R%. It will suffice to show
that aI” = (0), for then since a e R%, try (al) = a try(I) < al? = (0).
Thus al is a ring with no fixed elements under H, so by Bergman
and Isaacs’ theorem [2], ol is nilpotent. Since R is prime, al = (0),
and we then have a = 0.

If H= G, then al = (0) = al?a implies that ¢I? is a nilpotent
right ideal of R¥, which contradicts R” semi-prime, unless aI? = (0),
and we are done by the above. We may therefore assume that
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[G: H] = 2, and that R¥ has an involution * with R% = Szzx = S.
Now for any xz < I?, we have zax*e SN I# = I°. Thus azaz*a = 0,
and also a(x + z*)e = 0. Then axe = —ax*e, and so azaza = 0.
This implies (az)® = 0, and thus al¥ is a nil right ideal of R¥ of
bounded index. By Levitzki’s theorem [4, p. 1], R¥ has a nilpotent
ideal, a controdiction unless aI? = (0). We are done.

THEOREM 2.5. Let R be semi-prime, and let I be a G-invariant
ideal of R such that for some a € R%, al°a = 0. Then ala = (0).

Proof. We proceed by induction on |G|. If |G| =1, there is
nothing to prove. So, assume true for all groups K with |K| < |G|.
Since R is semi-prime and n-torsion free, (0) = M. P., Where the P,
are prime ideals such that R/P, is m-torsion free, for each «, by
Lemma 2.1. To show that ela = (0), it will suffice to show that
ele C P,, for all a.

First consider the case when P, = P is G-invariant. Then R =
R/P is prime, with induced group G, and @I°@ = (0). Since nI°Z I,
we have @I°G = (0). Now by Lemma 2.4, either T = (0) or @ = (0),
and so either IS P or ac P. In any event, ala < P.

Now say that P, = P is not G-invariant, and let J = (),cs P°.
Each P? is a prime ideal of R by Corollary 1.2, and so R = R/J is
a semi-prime ring, with an induced group G since J is G-invariant.
As above, we have that @I°G = (0) in R, and so without loss of
generality we may simply assume that (,.¢ P’ = (0).

Let orb P = {P?|g e G}. Let m be the smallest integer such that,
for any choice of m distinct members of orb P, say P, ---, P,, we
havea(INP,NP,N+--NP,a=(0). Since PN ---N P,=(0), clearly
mZn. If m =1, then a(I N P)a = 0. Choose P,corb P, P, = P, and
pass to B = R/P,. Then @(IP)@ = (0) in R, a prime ring. Now if
@ # 0, then IP = (0). Since R is prime and P+ (0), it must be that
I=(0). Thus, either acP, or I < P,. But then, since ac¢ R¢, if
a€ P, then ae€N,e¢ Pf = (0), and if IS P, then 1< N,eq PF = (0).
That is either « =0 or I = (0). In either case, ala = (0), and we
are done.

We may therefore assume that m > 1. By the minimality of
m, there exist m — 1 distinct members P, P,, --+, P,_, in orb P such
that if V=P, N--- NP,_, then a(INV)a # (0). Let K={geG|g
permutes the m — 1 Pis}. If K = G, we have a contradiction since
@G is transitive on orb P, and m —1 < n. Therefore K is a proper
subgroup of G. Since | K| divides |G|, R is | K|-torsion free and INV
is a K-invariant ideal of R with o € R*. Now choose z,ycINV.
Then a trg (x)a € a(l N V)fa = (0), and
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0= a(Z x")a + 3 ax’e = a trg ()a + ac(z)a ,
oceK cg K

where ¢(2) = D,,.x2°. If o¢ K, then for some P,, P/ ¢{P, -+, P,_}.
Thus «° € P7, and so yax’ay € (I N V)N P;{. Letting P/ = P,, it follows
that ayaz’ayaca(INP,N-++-N P,)a = (0). Then (az’ay)® = 0, for all
yelInV, and so ax’a(I N V) is a nil right ideal of bounded index in
R. Since R is semi-prime, we must haue az’a(IN V) = (0). Thus,
ac(x)a(I NV) = (0). It follows that a try (x)a(I N V) = (0), also. Now
atrg(@)aecINV, and since INV is itself a semi-prime ring (being
an ideal in R), we must have a trg(z)ea = 0, for all zeINV.

Since n(IN V)X S trx (INV), we have shown that a(I N V)*e =
(0). We may now apply induction on the order of K to see that
e(INV)a = (0). This is a contradiction.

If A is a Jordan ring, we say that an element a € A is an absolute
zero divisor in A if AU, = (0). It is known that if A has no absolute
zero divisors, then A is semi-prime [12].

COROLLARY 2.6. If R is semi-prime, then R® is semi-prime.
Moreover, R® has mo absolute zero divisors.

Proof. Using I = R in Theorem 2.5, we see that R¢ has no
absolute zero divisors. By the above, R® is semi-prime.

COROLLARY 2.7. If I is a semi-prime ideal of R such that R/I
18 n-torsion free, then I N R is a semi-prime (Jordan) ideal of R°.

Proof. Let J = Neee I°. J is G-invariant, and is an ideal of R
since each I’ is an intersection of prime ideals by Corollary 1.2. Then
R = R/J is a semi-prime ring with induced group G, and R is n-
torsion free since R/I° is m-torsion free, for all ¢. By Corollary 2.6,
R? is semi-prime. As in the proof of Proposition 2.3, it follows that
RF is semi-prime. But, R = R® + J/J = R%/R°NJ = R°/R°N I, where
= indicates an isomorphism as Jordan+rings. Thus RN is a semi-

I;rime ideal of RS.

THEOREM 2.8. Let G be a finite group of Jordan automorphisms
of & ring R, such that R has no additive |G|-torsion. Then P(R)N R¢=
P(RS).

Proof. That P(R)N R® < P(Rf) is just Lemma 2.2. To see
P(R?) < P(R), use the fact that P(R) = . I,, where the I, are prime
ideals of R such that R/I, is n-torsion free. By Corollary 2.7, I, N R®
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is a semi-prime ideal of R?, for all such «. Thus P(R%)S N.([[.N RS
(N. I.) C P(R).

3. The Jacobson radical. In this section we show that the
Jacobson radical of R¢ is the intersection with R of the Jacobson
radical of R. When G consists of an involution, this has already
been proved by K. McCrimmon [9], and when G is a finite group of
automorphisms of R, this has been proved by Montgomery [10]. An
additional assumption will be needed concerning = = |G| and the
additive group of R; that is nR = R. Together with our previous
assumption that nz = 0 implies 2 = 0, this says that = is a bijection
on R. Such a hypothesis is needed, since by an example of Martindale
[8], the theorem is false for automorphisms if one only assumes that R
has no wm-torsion. Moreover, the hypothesis that » is a bijection is
used in the proof of Montgomery’s result, which we shall need here.

In a Jordan ring A, the Jacobson radical J(A) is defined as the
maximal quasi-regular ideal, where an element z € A is quasi-regular
if 1 — 2 is invertible (if 1 ¢ A, the inverse is formal). When 4 is a
special Jordan ring, say A € R*, where R is an associative ring, then
being invertible in the Jordan sense is the same as being invertible
in the associative sense. Thus z is quasi-regular in A if and only
if there exists y€ A such that x +y + 2y =0, and zy = yz. We
also denote the Jacobson radical of R by J(R); since J(R) = J(R)
by a theorem of McCrimmon [9], there will be no ambiguity in this
notation.

We first note that Jordan automorphisms preserve primitive ideals.

LEMMA 3.1. Let ¢ be a Jordan automorphism of R, and let P
be a (right) primitive ideal of R. Then P? is a (right or left)
primitive tdeal of R.

Proof. Since P is prime, we may apply Corollary 1.2 to see
that R/P and R/P?¢ are either isomorphic or anti-isomorphic.

As a consequence of this lemma, when G is a group .of Jordan
automorphisms and P is a primitive ideal, we seethat I = [,..P° is
a semi-simple ideal of R.

The first two parts of the next lemma are actually a special
case of [6; Lemma 1, p. 3.3], where it is proved that if I is an
inner ideal of a Jordan ring, and we I is quasi-regular, then w is
quasi-regular in I. However, as the proof in our case is very ele-
mentary, we include it for the sake of completeness.

LEMMA 3.2. Let A be o Jordan subring of a ring R.
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(1) Let I be a Jordan ideals of A. If wel is quasi-regular
wn A, it is quasi-regular in I.

(2) Let acA. If weada is quasi-regular in A, it is quasi-
regualr in clda.

(38) Let acR. If azacaRa is quasi-regular, then a*x is quast-
regular.

Proof. (1) Say that z€ A is the quasi-inverse for w. Then
1—w(@—-2@1—w)=@0— w). Thisgives1l — w + w* + wz + 2w —
w—2z2—ww=1—w, and s0 2 = w* + wz + 2w — w — wzw e I.

(2) Say that w = axa, for some x € A, and that z is the quasi-
inverse for w. Then aza + z + axaz = 0, and araz = zaxza. One can
check that

z = —axa — arvaz = a(—x + ra’x + rawaex)e € aha .

(3) By part (2), the quasi-inverse of aza is z = aya € aRa. Thus
aze + aye + ave*ya = 0. Multiplying on the left by «, we see that
(a’z + o’y + a*za’y)a = 0. Letting z = a’x + a’*y + a*ra’y, we see that
2? =0. Thus 2z is quasi-regular, with quasi-inverse —z. Writing
w+ 2+ wz = woz, we see that

a’wo(a’yo(—2)) = (a®xoa’y)o(—2) = z°(—2) =0.

Thus e’z is right quasi-regular. Similarly, a*x is left quasi-regular.

Before proceeding, we observe several consequences of our hy-
pothesis that |G| is a bijection. First, if P is any proper prime
ideal of R, then |G| is a bijection on R = R/P. For, nR = R since
nR = R, and if R has any n-torsion, then nR = 0 since R is prime.
This says that nR < P, but then R < P, a contradiction. Now if
R is any semi-prime homomorphic image of R, |G| will be a bijection
on R. If R = R/I where I is G-invariant, so that R has the induced
group of automorphisms G, it follows that R = R? (see the discussion
at the end of the introduction).

We are now able to finish the case of radical rings.

LEmMMA 8.3. Assume that |G| is a bijection on R, and that
J(R®) = R®. Then J(R) = R.

Proof. We proceed by induction on n = |G|. If n =1, then
R = R® and there is nothing to prove. Thus, assume that for any
group K of Jordan automorphisms with |K| < |G| and R* a radical
ring, it follows that J(R) = R.

To show that J(R) = R, we show that R has no proper primitive
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ideals. Say that P is such an ideal. If P is G-invariant, then
R = R/P has induced group G, and R® = R? by the remarks above.
Thus R® = J(R®). We may therefore reduce to the case when R is
primitive. Apply Corollary 1.3, with H the subgroup of automor-
phisms. Now J(R¥) = J(R) N R¥ by Montgomery’s theorem [10], and
J(R®) = J(Szz) = J(RF) N R® by MecCrimmon’s theorem [9]. Since
J(R) = (0), it follows that R¢ = J(R) = (0). This contradicts the
theorem of Bergman and Isaacs [2], since R is primitive and so
cannot be nilpotent.

We may therefore assume that P is not G-invariant. By Lemma
3.1, I =,e¢ P? is a semi-simple ideal of R. As in the previous
case, we may pass to R = R/I, and so assume that R is semi-simple
with N, P? = (0).

Let orb P = {P?|g € G}, and let m be the smallest positive integer
such that, for any choice of m distinet members of orb P, say P,, P,
«++, P,, we have i, P, = (0). Clearly m <n. If m =1, then P=
(0). This says that P is G-invariant, a contradiction. We may
therefore assume that m > 1. We proceed as in the proof of Theorem
2.5: by the minimality of m, there exist m — 1 distinct members
P, P, «++, P,_, of orb P such that V = N~ P, = (0), and we let K
be the set of g € G which permute {P,,---, P,,_.}. If K=G, we have
a contradiction since G is transitive on orb Pand m — 1 < n. Thus,
K is a proper subgroup of G. Since | K| divides |G|, | K| is a bijection
on R. In fact, | K| is a Dbijection on V. For, clearly V has no | K|-
torsion, and since R/V is semi-prime, | K| is a bijection on R/V. In
particular, R/V is | K|-torsion free, from which it follows that | K|V =
V. Now V is a K-invariant ideal of R, so if we can show that
J(VE) =V~ it will follow by induction on |K|, using the ring V,
that J(V)=V. Since R is a semi-simple ring, it can have no quasi-
regular ideals, and thus V = (0), a contradiction. Thus, the theorem
will be proved if we can show that J(V%) = VX,

Choose € V. Then tr (2) = trg (x) + ¢(x), where ¢(z) = >,z 2°.
One can check that tr (V) = {tr(x)|xz e V} is a Jordan ideal of RS,
and thus by Lemma 3.2, (1), the quasi-inverse of tr(x) also lies in
tr (V). Say that tr (y), for y € V, is the quasi-inverse of tr (). Now
tr (y) = trx(y) + ¢(y), and so

0 = tr (z) + tr (y) + tr (z) tr (y)
= trg (%) + trx (¥) + trg (®) trg (y) + c(@) + c(y) + c(@)e(y)
+ tre(@)e(y) + c(@) tre(y) .
If g¢ K, then for some P, P/ ¢{P,,+++, P,,_;}. Thusa’ePfand 2°V =

Va? = (0) since 2*VC P/ N(P,N-++-NP,_,) = (0) by the mimimality
of m. Similarly 4’V =Vy’ = (0). Multiplying the above expression
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on the right by any weV, we get (0) =0-V = [trg (¥) + trx (¥) +
tre () trg (y)]V. Since V is a semi-simple ring, it has no absolute
zero-divisors, and thus trg(x)otr,(y) = 0. Thus, every element of V*
is quasi-regular, so J(V¥) = V¥, which is what was needed.

LEMMA 3.4. Let I be o (Jordan) ideal of the special Jordan ring
A such that o* = 0, for all acI. If A has no absolute zero-divisors,
then I = (0).

Proof. If z€ A, and acl, then ax + 2za €I, and so (ax + za): =
0. This gives axax + ax’e + zaza = 0 since a? = 0. Multiplying by
a, exaxa = (0). Linearizing on z and then multiplying on the right
by za, we have axayaxa = (0), for all z, ye A. Since A has no
absolute zero-divisors, we see that awe = 0, all € 4, and thus ¢ = 0.
Thus, I = (0).

THEOREM 3.5. Assume that |G| ¢s a bijection on R, and that
R is semi-simple. Then R¢ is semi-simple.

Proof. Choose any a € J(R% and consider the ring aRa, which
is G-invariant. (aRa)® = aR° = J(R®), so every element of aRfq is
quasi-regular. By Lemma 3.2, (2), aR% = J(aR%) so we may apply
Lemma 3.3 to the ring aRa to see that J(aRa) = aRa. But now,
by Lemma 8.2, part (3), a’R is a quasi-regular right ideal of R, a
contradiction unless a* = (0). Thus a® = (0) for all a € J(R%).

But R¢ has no absolute zero-divisors, by Corollary 2.6. Applying
Lemma 8.4 with A = R¢ we see that J(R®) = (0).

COROLLARY 3.6. When |G| 1s a bijection on R, J(R®) = J(R) N R°.

Proof. Using Theorem 2.5, the proof now follows exactly as in
the associative situation [10].

4. Polynomial identities. In this section we prove that if R¢
satisfies a polynomial identity (PI), then R also satisfies a PI. When
G consists of an involution, this has been proved by Amitsur [1],
and when G consists of automorphisms, this has been proved by
V. K. Kharchenko [7] under the assumption that R has no |G|-torsion.
When R is semi-prime, both Amitsur and Kharchenko obtained a
bound on the degree of the identity satisfied by R: namely, if n =
|G| and R¢ satisfies and identity of degree d, then R satisfies the
standard identity S,;x] of degree nd. We will show that the same
conclusion holds when G is a finite group of Jordan automorphisms.

We assume throughout that R hasno |G|-torsion. This assumption
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is necessary, for Bergman and Isaacs have produced an example
when G is a finite group of automorphisms, R¢ = (0) but R satisfies
no identity at all, when |G|R = (0) [2]. We will also assume, for
the sake of simplicity, that all identities have integer coefficients,
and at least one monomial of highest degree has coefficient =+1.
With care, more general coefficients may be allowed.

LEMMA 4.1. Let R be prime, and say that R® satisfies a PI of
degree d. Then R satisfies S,q[«].

Proof. As in previous sections, we use Corollary 1.3 to see that
R¢ = Sz, where R¥ is the subring of R fixed by the subgroup H
of automorphisms of G. Since R¥ is semi-prime, it will satisfy S,i[«]
by Amitsur’s theorem (simply S,[z] if H = G) and thus R will satisfy
S,.[z] by using Kharchenko’s theorem.

THEOREM 4.2. Let R be semi-prime, with no |G|-torsion. If
RE satisfies & PI of degree d, then R satisfies the standard identity
S.iz] of degree nd, where n = |G]|.

Proof. Without loss of generality, we may assume that the
identity satisfied by R¢ is multilinear [5, p. 225]. We proceed by
induction on ». When n =1, R = R® and we are done. So assume
the result is true for all groups K with | K| < |G|. By Lemma 2.1,
0) = P(R) = N P., where the P, are prime ideals of R such that
R/P, is n-torsion free. Since R is a subdirect product of the R/P,,
it suffices to show that each R/P, satisfies S,z]. If P=P, is G-
invariant, we may as usual pass to R = R/P, and the result then
follows from Lemma 4.1 and the fact that nR¢ < RC.

We therefore may assume that P, is not G-invariant, and by
considering R=R/N P2, we may reduce to the case where (,.,P’=(0).
As before, let orb P = {P?|g € G} and let m be the smallest positive
integer such that the intersection of any m distinct members of
orbPis 0. If m =1, then P = (0), which says that P is G-invariant,
a contradiction. Thus 1 < m < n.

By the minimality of m, there exist m — 1 distinct members of
orb P, say P, P,, -+, P,_,, such that V=P N---UP,_, # (0). Let
K ={geG|g permutes the m — 1 P;s}. As before, K is a proper
subgroup of G. Regarding V as a semi-prime ring, K acts on V and
V has no additive | K|-torsion.

Now choose a,, +++, a;, y € V. As before, we write tr (z)=tr,(z) =
tre (x) + c(®), where c¢(x) = >, .z, for any 2. Write the identity
as f(®y + ) Ba) = Dresy Mlzwlze *** Tag» Substitute @, = tr (a) € RF,
and premultiply by y:
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0= yf(tr (a/l)’ cee, tr (ad))
= yzg;d)"z“rzc (@z) + €(@rwy)) ==+ (BT (@) + €(@ria))

= Y 20 M Wk (Grw) Bk (i) =2+ B0 (@r) + 3y,

where each u,; is a product of terms, at least one of which is of the
form a°, where a € V and o¢ K. Since o ¢ K, there exists P, such
that P/ ¢{P, +-+, P,_,}. Now a°€ P}, and so yu, € (P,N---NP,_)N
P; = (0) by the choice of m. Thus V-.f(trx (a,), «--, trx (ay)) = (0).
Since V has no absolute zero-divisors, and n V% C tr (V), it follows
that f(d,, ---, b;) = 0 for all choices of b, VX. That is, V¥ satisfies
a PI of degree d. We may now apply induction to K acting on V,
and conclude that V satisfies the standard identity of degree d| K| <
a|G|.

To complete the proof, we note that since V = (0), V & P?, for
some ge(@G. The prime ring R/P’ thus contains a nonzero ideal
V + P?/P¢* which satisfies the standard identity of degree dn. Since
an ideal in a prime ring has the same ring of quotients as the prime
ring, when the ideal satisfies a PI, it follows that R/P? also satisfies
Si[2]. Now for any other h e, R/P* is either isomorphic or anti-
isomorphic to R/P° by Corollary 1.2, and thus R/P" also satisfies
S; [2z]. In particular, R/P satisfies S,;.[«], and we are done.

COROLLARY 4.3. Assume that R¢ satisfies a PI of degree d, and
that R has no |Gl|-torsion. Then for some positive integer k, R
satisfies (S qax])®.

Proof. Follow exactly the argument given by Amitsur for the
case of an involution [1, proof of Theorem 6], using the complete
direct product of copies of R and Theorem 4.2 above.

5. Nil ideals of bounded index. We have two major objectives
in this section: to show that if R¢ is nil of bounded index, then so
is R, and to show that if R‘ is semi-prime, then it has no nonzero
(Jordan) ideals which are nil of bounded index. The proof of the
first statement follows the same general outline as our previous
arguments.

LEMMA 5.1. If R is prime, then RS canmnot be mil of bounded
ndex.

Proof. As in Corollary 1.3, let H be the subgroup of automor-
phisms of G and consider R¥. By Proposition 2.3, R¥ is semi-prime,
so cannot have any ideals which are nil of bounded index. Thus,
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we are done if H=G. When H # G, we have R = Szz. But then,
if R¢ is nil of bounded index m, choose @< R¢ with a* = (0). For
any xe€ R”, za + ax* e R® so (xa + ax*)” = 0. Using a®*= (0) and
premultiplying by @, we see a(xa)™ = 0. Thus RZq is a nil left ideal
of bounded index of R¥, a contradiction unless ¢ = 0. But then
R¢ = (0), which also contradicts R¥ being semi-prime.

THEOREM 5.2. If R® is nil of bounded index, and R has no
|G |-torsion, then R is mil of bounded imdex.

Proof. We will first show that R = P(R). To show this, we
will show that R has no prime ideals. As before, by Lemma 2.1,
it will suffice to look at prime ideals P such that R/P is n-torsion
free. If P is G-invariant, we may pass to R = R/P and apply
Lemma 5.1 to get a contradiction. We may therefore assume that
P is not G-invariant. The rest of the argument follows closely
that of Theorem 4.2: assume [),., P’ = (0), let V=P N-:-- NP,
where m is minimal such that the intersection of m members of orb P
is zero, define K as before, show that V¥ is nil of bounded index,
and apply the induction hypothesis on | K| to conclnde that V is nil
of bounded index. This contradicts the assumption that R is semi-
prime. Thus R has no prime ideals, so R = P(R).

We now use a variation of Amitsur’s argument. Let R, =
Tlec; R., where each R, = R and the index set I is just R itself.
Extend G to G,, acting on R, componentwise. Then R is nil of
bounded index, so by the previous argument we have P(R) = R,.
In particular, R, is nil. Consider the element f ¢ R, given by f(a) =
acR. Then for some k&, f* = 0. But this says that a* = 0, all e R.
That is R is nil of bounded index.

When G is generated by an involution, M. Rich [11] has obtained
an explicit bound on the nil index of BR. He has proved that if R
is an algebra over a field F, where F has at least d* elements, and
Sz is nil of index d, then R is nil of index < 2d. Hopefully a similar
bound can be obtained for any finite group of Jordan autmorphisms.

With a stronger assumption on the characteristic of R, more
can be said:

COROLLARY 5.8. Let R be an algebra over o fild of characteristic
0, and assume that R is nil of bounded index. Then R is nilpotent.

Proof. By Theorem 5.2, R is nil of bounded index. The con-
clusion now follows by applying the Nagata-Higman theorem [5,
p. 274].
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When G consists of automorphisms, Bergman and Isaacs’ theorem
(mentioned earlier) asserts that if R®is nilpotent, then R is nilpotent,
provided R is m-torsion free. We raise the analogous question for
groups of Jordan automorphisms:

Question 5.4. Let G be a finite group of Jordan automorphisms
of a ring R, such that R has no additive |G|-torsion. If R¢is (Jordan)
nilpotent, must R be (Jordan) nilpotent?

A Jordan ring A is nilpotent if for some positive integer m, and
any &, -, v,€4,2,U,U,, ---U, =0. Rich [11] has shown that if
a ring R is Jordan nilpotent then it is actually nilpotent in the
associative sense; thus, if Question 5.4 can be answered affirmatively,
R must actually be nilpotent. The answer to this question is not
known even when G consists of an involution *.

We remark, however, that the answer is false when R has |G|-
torsion. When G consists of automorphisms, one may use the example
of Bergman and Isaacs mentioned at the beginning of §4.

We now proceed to ideals of RS,

THEOREM 5.5. Assume that R is |G|-torsion free and that RS
1s semiprime. Then R® has mo monzero (Jordan) ideals which are
nil of bounded index. .

Proof. By Theorem 2.8, P(R) N R° = P(R°) = (0), and thus in
R = R/P(R), R* = R° + P(R)/P(R) = R°. Since nR? < R? it follows
that Rf is also semi-prime. Let I be a nil ideal of R? of bounded
index, and let I be the image of I in B. Let I, = {xcR°|n*zcl,
for some integer k¥ = 0}. Then I, is a Jordan ideal of R? which is
nil of bounded index, since R is n-torsion free. Since [, 2 I = I, I, +
(0). Thus, without loss of generality, we may assume that R is
semi-prime.

Choose any a €I, and consider the ring aRa. Since a € R aRa
is G-invariant, and (aRa)® = aR%% < I. Thus eR is nil of bounded
index. By Theorem 5.2, aRa is nil of bounded index. But then a*R
is a nil right ideal of bounded index in R. Since R is semi-prime,
this is impossible by Levitzki’s theorem, unless ¢* = 0. Thus &¢* = 0,
for all ¢cl. By Lemma 3.4, I = (0), and we are done.
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