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ON THE INTEGRAL MEANS OF UNIVALENT,
MEROMORPHIC FUNCTIONS

ALBERT E. LIVINGSTON

We consider two classes of functions, univalent and
meromorphic in the unit disk Δ. The first class is normalized
by requiring that the functions be nonzero in Δ with /(0) = 1
and a pole at a fixed point, p, 0 < p < 1. In the second class
the functions are allowed to have a zero with fixed magni-
tude. Theorems concerning the integral means of functions
in both classes are proven and consequences of these
theorems are considered.

1* Introduction* Let Σ(p), 0 < p < 1, be the class of functions
f(z)9 univalent and meromorphic in A = {z: \z\ < 1}, with a simple
pole at z = p and such that f(z) Φ 0 for z in A and /(0) = 1. Also,
if 0 < p < 1 and 0 < q < 1, we let Σ(p, q) be the class of functions
f(z), univalent and meromorphic in Δ, with a simple pole at z = p
such that f(z0) — 0 for some z0 with \zo\ — q and /(0) = 1. Recently
Libera and the author [4] and the author [5] have studied a sub-
class of Σ(p), namely the class of weakly starlike meromorphic func-
tions A*(p) which have the representation

- pz)

where g(z) is in 2**, the class of normalized meromorphic starlike
functions. In this paper we will extend many of the results obtained
for Λ*(p) to the class Σ{p). In particular it was proven in [5] that
if / is in Λ*(p) and F(z) = (1 + z)2/(l - z/p)(l - pz), then

Γ \ f ( r e ί 0 ) \ λ d θ ^[π \ F ( r e ί θ ) \ λ d θ

for 0 < r < 1 and λ > 0. Using a powerful method of Baernstein
[1], we will extend and generalize this result to the class Σ(p).
Similar results are also obtained for the class Σ(p, q).

2. The class Σ(p). The proof of the theorem concerning the
integral means of a function in Σ(p) follows the proof given by
Kir wan and Schober [3] who consider the class S(p) of functions
f(z), univalent and meromorphic in Δ, with a simple pole at z = p
and such that /(0) = 0 and /'(0) = 1. The proof relies on results of
Baernstein [1] which we now state.
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For this purpose we need to introduce some notation. If g is
a measurable, extended real valued function on [ — π, π], then we
define

flr*(0) = sup ( g{θ)dθ
E JE

where the supremum is taken over all Lebesque measurable sets
Ea[ — π, π] with measure m{E) = 20. In particular, if u(reίθ) is
defined in an annulus rγ < \z\ < r2 and the * operation is performed
in the θ variable, then u*(reίθ) is defined in {reiθ: r1 < r < r2, 0 ^ θ ̂  π).
Baernstein [1] has proven the following.

PROPOSITION 1 ([1, Theorems A and A' and Proposition 5]).
(i ) Let D be a domain containing r0 > 0 and having a clas-

sical Green's function. Let u be the Green's function of D with
pole at r0. (It is assumed here that u is defined on the extended
plane by defining it to be zero on the complement of 2λ) Then

u\reίθ) = u*(reiβ) + 2π log+ —
r0

is subharmonic in the upper half-plane.
(ii) Let D and u be as in (i) and suppose further that D is

circularly symmetric. Let D+ = D Π {z: Im z > 0}. Then u\reiθ) is
harmonic in D+.

PROPOSITION 2 ([1, Proposition 2]). For g^Lι[—πfπ\9

g*(θ) = [' G(x)dx , 0 ^ θ ^ π ,

where G(x) is the symmetric nonincreasing rearrangement of g.
(For the definition of G(x) see [1] and [2].)

PROPOSITION 3 ([1, Proposition 3]). For g,heLι[—π,π) the
following are equivalent.

(a) For every convex nondecreasing function Φ on ( — 00,00),

Γ Φ(g(β))dθ ^ Γ Φ{h{θ))dθ .

(b) For every ί e ( — «, oo),

\*_ [g{θ) - t]+dθ ^ Γ [h(θ) - t]+dθ .

( c ) g*(θ) ^ h*(θ), O^θ^π.
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We can now state and prove the following theorem.

THEOREM 1. Let Φ be a convex nondecreasing function on
(—00, oo). Then for all fe Σ(p) and 0 < r < 1,

\'χΦ(± l o g \f(reίΘ)\)dθ ^ \* χΦ(± \og\Fp(reiθ)\)dθ

where

Proof. We first consider the inequality.

(2.1) Γ Φ(log \f(reiθ)\)dθ ^ Γ Φ(log \Fp(reiθ)\)dθ .

With Γι

(2.2)

and

denoting the

u(w) =

v(w) -

inverse function of

r-iog\r\w) ,

"I o

Γ-\og\F;\w)\,

"\ 0

/ we define

wef(Δ)

otherwise

weFv{Δ)

otherwise .

According to Proposition l(i) the function n\reίθ) = u*(reiθ) + 2π log+ r
is subharmonic in the upper half-plane and by ([1, Theorem A']) is
continuous on the real line with 0 deleted. The function Fp maps
Δ onto the extended plane slit along the interval [ — 4p/(l — pf, 0],
Thus FP(Δ) is circularly symmetric and according to Proposition l(ii)
the function v\reίθ) = v*(reίθ) + 2π log+ r is harmonic in the upper
half-plane and by [1, Theorem A'] is continuous on the real line with
0 deleted. It follows then that u* — v* = u* — v# is subharmonic in
the upper half-plane and continuous on the real line with 0 deleted.

The inequality (2.1) will follow from Proposition 3(b ==> a) if it
can be proven that for fe Σ(p), 0 < r < 1 and 0 < p < °o,

<Ξ r log-

At this point we have need of a lemma analogous to Proposition 4
in [1] and one which appears in [3].

LEMMA. Let feΣ(p), 0 < r < 1 and 0 < p < oo.
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log+ \I^Άdφ + 2π log+ — = Γ M/oβ'*) + log r]+d0 + 2π log+ — .

Because of this Lemma, we see that (2.4) is equivalent to the
inequality

(2.5) j * ^ Mpe") + log r]+dφ ^ Γ [v(pe*') + log r]+dφ .

However, applying Proposition 3(c => b) we see that (2.5) will hold
provided

(2.6) (u* - v*)(peiφ) ^ 0 , 0 < / o < o o , 0 ^ 0 ^ TΓ .

As we have already noted u* — v* is subharmonic in the upper
half-plane and continuous on the real line with 0 deleted. In a
neighborhood of w = 0 both u(w) and v(w) are continuous with
u(0) = v(0) = 0. Thus given ε > 0 there exists δ > 0 such that
Iu(w)I < ε/2π if \w\ <d. Thus if | w | < δ, w = ,0^(0 ̂  ^ ^ TT) and
m(J5) = 2^ we have

( u{peiθ)dθ < —m(E) £ a .
J^ 2ττ2ττ

Therefore

u (ρeίφ) = sup f u(ρeίθ)dθ ^ ε .

It follows then that w*(w) approaches 0 as w approaches 0. A
similar statement holds for v*(w). Thus

(2.7) lim (u* - v*)(w) = 0 .

We also have

lim u(w) — lim v(w) = —log p .
W—*oo w-*oo

Thus given ε > 0 there exists δ > 0 such that | u(w) + log p \ < ε/2π
a n d \v(w) + logp\ < e/2π if \w\ > δ. T h u s if \w\> δ, w =
Φ ̂ π) and m(J&) = 20,

I (u(ρeiθ) + log p)cϊ0

It follows that

- e ^ u*(peίφ) + 20 log-p ^ ε .

Similarly, we have

< Λ-m(E) ^ ε .
^ 7 Γ
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— ε <; v*(peίφ) + 2φlogp ^ ε .

Thus

-2ε ^ (u* - v*)(ρe") £ 2ε .

It follows then that

(2.8) lim (u* - v*)(w) = 0 .
W—κx>

From (2.8) and previous remarks it follows that the subharmonic
function u* — v* is bounded in the upper half-plane. Thus, by the
maximum principle, it is enough to prove that (u* — v*)(s) ^ 0 for
s on the real axis R.

For this purpose we let

Df = sup I w

and divide the real line into 3 intervals,

E = (-oo, -Df)\J[-Df,0)\J[0, +oo) .

Case ( i ). s 6 [0, +©o). Because of (2.7) we need only consider
s e ( 0 + oo). But then u*(s) = t7*(β) = 0 by definition, if s > 0.

Case (ii). se(—co, —Df). We first note that u(w) is harmonic
for max {1, Df} < \ w \ <; <̂  and i (n ) is subharmonic in the same
region. Thus (u — v)(w) is superharmonic in max{l, Df) < \w\ ^ ©o.
In general, w(w) + log |w — 11 is harmonic in \w\> Df and v{w) +
log I w — 11 is subharmonic in | w \ > Df. It follows that (u — v)(w)
is superharmonic for Df < | w \ ̂  ^o. Thus we have

(u* - v*)(8) = [" (w - t;)(|8|β<β)eW ^ 2ττ(^ - v)(oo) = 0 .

Case (iii). se[—D/, 0). Following Kirwan and Schober [3], for
a given ε > 0 we introduce the subharmonic function

Q(peιη = (u* - v*){pe**) - eφ (0 ̂  p < oo, 0 ̂  ^ ̂  π) .

From previous cases we have,

(2.9) lim sup Q(w) ^ 0
W—*8

for all se{R - [-Df, 0)} U H } . Suppose sup I m w > 0 Q(w) = M > 0.
Then as in [3] we have by the maximum principle and (2.9) the
existence of some se[—Df, 0) such that

(2.10) Q(s) ^ Q ( | s \eίφ) , 0 £ φ ^ π .
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Thus,

— π
= lim "*(!?! * ")-«*($) _ {[m v*(\$\e'*) - v*($) _

£ ̂φ — 7Γ

From Proposition 2 and the definition of G(x) [1] it follows that

(2.12) lim « * ( | g | ^ ) - ^ ( g ) = 2 m i n uQ§iβ*> .
φ-*π φ — 7Γ OSψ^π

A similar equality holds for v*. Combining (2.11) and (2.12) we
obtain

(2.13) 0 ^ 2 m i n u(\s\eίφ) - 2 m i n v(\s\eiφ) - e ^ - ε .

Inequality (2.13) follows since the circle \w\ = \s\ intersects the

complement of f(Δ) and t h u s u(\s\eiφ) — 0 for some φ and since

v(\s\eίφ) ^ 0 for all φ.

However (2.13) is obviously contradictory and thus we must have
supimw>0Q(w) ^ 0. Letting ε—>0 we obtain (w* — v*)(s) ̂  0 for all

se[-Dft o). This then completes the proof of (2.6) and hence (2.1).
The proof that

Φ(-log\f(reiβ)\)dθ£ j * Φ(-log\F9(reiθ)\)dθ

follows the proofs given in [1] and [3]. The only difference is that
(52) of [1] is replaced by

(p \f(reiθ) \)dθ = 2π(log p - log+ -L) + J ^ log+

This then completes the proof of Theorem 1.
We have the following theorem as an immediate consequence of

Theorem 1.

T H E O R E M 2 . L e t feΣ(p), then for all λ , — oo < λ < o o , and

0 < r < 1,

(2.14) \'r \f{reίθ)\λdθ ^

3* Applications of Theorem 2*

THEOREM 3. Let fe Σ(p) and 0 < r < 1, then for \z\ — r .

(3.1) Fp(-r)£\
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REMARK. Inequality (3.1) was obtained earlier by Libera and
the author [4] for the class A*(p) a Σ(p).

Proof. The right side of (3.1) follows upon taking the λth root
of both sides of (2.14) and letting λ —> +oo. To obtain the left side
of (3.1) we note that 2.1 gives for λ > 0

dθ .
Fp(reiθ)

Taking the λth root in the last inequality and letting λ —• + °° we
obtain

^ max max

2L)(1 + pτ)
pi

I f(z) I ~ ~ ί 7 I f(z) I ~ 17,=;-1 Fp(z) I (1 - r) 2 Fp(-r)

The last inequality is equivalent to the left side of (3.1).

Let feΣ(p) and f(z) = 1 + Σ ί = 1 α ^ % for \z\ < p. It has been
proven [4] that if feA*(p) c Σ(p), then

(1 ~ Pf
p

(1 + pf
p

The inequality | ax \ ̂  (1 + p)2/p can be obtained for the class Σ(p)
by considering the case λ = 2 in Theorem 2 and letting r —> 0. How-
ever, making use of some results of Kirwan and Schober [3] we
can obtain both the upper and lower bounds on | α j .

THEOREM 4. Let feΣ(p) and f(z) = 1 + M <
then

(3.2)
p V

The inequalities are sharp.

Proof. It is easily seen that if feΣ(p) with /'(0) = α i ? then we
can write f(z) = αiflr(«) + 1 where ^ eS(p). According to Kirwan and
Schober [3], g{Δ) contains {w: \w\< p/(l + p)2} and {w: \w\>
It follows that f(Δ) contains

{w: \w - p)2}

and

{w: \w
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Since Ogf(A) we must have 1 ^ p|e&i|/(l + pf and 1 <; plαj/ίl — p)2,
which gives (3.2).

The function Fp(z) = (1 + 2)7(1 — z/p)(l — pz) gives equality on
the right side of (3 2) and f(z) = (1 - z)7(l - z/p)(l - pz) gives
equality on the left side of (3.2).

REMARK. Using Theorem 4 and the representation f(z) —
^iQ(z) + 1 where geS(p), estimates \an\ similar to those given in
[3] may be obtained. Estimates may also be obtained by using
Theorem 2 directly.

In [4] sharp estimates on the quantity \f'(z)/f(z)\ were obtained
for feΛ*(p). Making use of Theorem 4, we can now extend the
results to the class Σ(p).

THEOREM 5. Let feΣ(p) and we A, w Φ p, then

(3.3) ( l - M)
- | w I2)

f\w)
f(w)

(1 + \a\Y
\a\

where a — (p — w)/(l — pw).

Moreover, given we A, w Φ p, there exists a function feΣ(p)
for which equality is obtained on the right side o/(3.3) and similarly
for the left side of (3.3).

Proof. Let / e Σ(p) and we A, w Φ p9 and let

0(Z) = -TΓΓ-TJ

/(w)

where θ = arg (p — w)/(l — pw). Obviously g is univalent in A with
g(0) = 1 and letting α = (p — w)/(l — pw) we see that g has a simple
pole at z = |α | . Thus flr e^( |α |) . Therefore by Theorem 4 we have

α|

A straightforward computation now gives (3.3).

Suppose we are given we A, w Φ p. Let a = (p — w)/(l — pw)
and θ = arg α. For zeA, let

ψψ)( ~ \a\A(z))
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where

A(z) = β«α -Wwz)'

The function f{z) is univalent in A, different from 0 and /(0) = 1.
Moreover, / has a pole at that value of z for which A(z) — \a\.
That is, when z — p. Thus feΣ(p) and a straightforward computa-
tion gives equality on the right side of (3.3).

To obtain sharpness on the left side of (3.3) for a given w Φ p,
we set

a\we~iθ){l - A(z)f

we
i$γ(i - 4

V \a

where α, θ, and A{z) have the same meaning as before. Again it is
easily seen that feΣ(p) and that equality is obtained on the left
side of (3.3).

4. The class Σ(pf q). In this section we extend the previous
results to the class Σ(p, q) where the functions now take on the
value 0. Here the function playing the role of Fp(z) is the function

(l + ±\l + qz)

(P,q)

It is easily seen that G{p>q) e Σ(p, q) and maps Δ onto the extended
plane slit along the interval

[—p(l + qf/qQ- — P)2, —p{l — qflqίX + p)2]

THEOREM 6. Let Φ be a convex nondecreasing function on
(-oo, oo). Then for all feΣ(p, q) and 0 < r < 1,

{reiθ)\)dθ S \π

πΦ(±log \G{p>q)(reiθ)\)dθ .

Proof. We first consider the inequality

(4.1) j^0(log \f(reiθ)\)dθ ^ ^_Φ{\og\G,v,q){reiθ)\)dθ .

Let

'-log I / " W I , wef(A)

0 , otherwise
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and

' - l o g IGrP\g)(w)I , weG{p,q)(A)
v(w) = ,

0 , otherwise .

Arguing as in Theorem 1, inequality (4.1) will be proven if we can
prove that

(4.2) (u* - v * ) ( s ) ^ 0 , seR .

For this purpose we let

df = inf \w\ and Df = sup |w\

wtf{Δ) wtf(Δ)

and

R = (-oo, -Df)U[-Df, - d / ] U ( - d / , 0 ) U [ 0 , + <*>).

Case ( i ). se[0, +°o). This case is exactly as in Theorem 1.

Case ( i i). s e ( — c°, —Df). The argument is the same as the
corresponding case in Theorem 1.

Case (iii). se( — df, 0). Since {w: \w\ < d/}c/(J), we have that
w(w) + log I w — 11 is harmonic in | w | < d> and v(w) + log | w — 11
is subharmonic in | ie; | < df. (The term log | w — 11 is only necessary
when 1 < d.) It follows that (u — v) is superharmonic for \w\ < df

and therefore

(u* - v*)(8) = \* (u - v){\s\eiθ)dθ ^ 2π(u - v)(0) = 0 .
J-7Γ

(iv). s[ — Df — d/]. The argument in this case is the same
as the argument given in case (iii) of the proof of Theorem 1.

This then proves (4.2) and hence (4.1).
The inequality

T Φ(-log\f(reiβ)\)dθ^[ Φ(-log\Gίp,g)(reiθ)\)dθ
J—π J —π

is obtained as in Theorem 1 except that (52) of [1] is now replaced
by

Γ log+ do \f(reiθ) \)dθ = 2τz:Γlog p + log+ — - log+ —
J-T L q p.

+ Γ l o g + - ^
J-^ P \f(rP\f{rei$)

dθ .
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We have the following as an immediate consequence of Theorem
6.

THEOREM 7. Let fe Σ(p, q), 0 < r < 1, — oo < λ, < oo, then

\f{reiΘ)\Hθ ^

5* Applications of Theorem 7* Arguing as in Theorem 3 we
obtain the following.

THEOREM 8. Let feΣ(p, q), then for \z\ = r.

THEOREM 9. Let feΣ(p, q) and f(z) = 1 + Σ ϊ ^ α ^ i | s | < P»

(5.1) l p ^ "^K 1 "" Pg) ^ | t t ι | ^ (P + g ) ^ + Pg) .
Pg ~~ ί>g

jBoίA inequalities are sharp.

Proof. Let feΣ(p, q) with /(z0) = 0 where | 3 0 | = 9 Let g(z) =
(/(«) — 1)/^, then # e S(p). We therefore have [3]

1 1 ^0 1 (Λ

Since #(20) = ~ 1 M I and |«0 | = q, we immediately obtain (5.1).

Equality on the right side of (5.1) is attained by the function
G(P,q)(z) and on the left side by the function

f(z) = (1 - z/q)(l - qz)/a- */p)d - P«)

REMARK. The right side of (5.1) could also be obtained by
considering the case λ — 2 of Theorem 7 and letting r approach 0.

REMARK. We may obtain estimates on \an\f n ^ 2, by either
using the case λ = 1 of Theorem 7 or by using Theorem 9 and the
fact that f(z) = a^g{z) + 1 where g e S(p) and then using the estimate
on the coefficients of a function in S(p) [3].

As an application of Theorem 9 we obtain the following analogue
of Theorem 5.

THEOREM 10. Let feΣ(p, q) with f(z0) = 0, \zo\ = q, then for
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w e z/, w Φ z0, w Φ p,

(5 2)
1 Γ | | g |

1 - Iwl L
- | 6 | | ( l - \a\\b\) Aw)

1 - Iwl

where

a = and \b\ =

left hand side of (5.2) is sharp and the right side is sharp at
least for \w\ < q.

Proof. Let fe Σ(p, q) with f(zQ) = 0, | z0 | = q. For w e Δf w Φ p,
w Φ z09 let a = (p — w)/(l — p^) and Θ = arg α. Let

w x _ 1 ΛΓ β ^ + W

The function fe is univalent and meromorphic in z/ with fe(0) — 1.
Moreover h has a pole at z — \a\ and h(z) — 0 when

Thus

» = (z0 — w)/eiθ(l — wzQ) = 6 .

αl, |6 |). By Theorem 9 we then have

ιhm\^ Qa\ + 161X1
\a\\b\

which gives (5.2).

\a\\b\

With p and q fixed let w Φ p be such that \w\ < q. Let α =
(p — w)/(l — pw) and θ = arg α. Choose #0 with | ̂ 01 — ^ such that
(z0 — w)lei0(l — wzQ) < 0. Such a choice is possible since |
With this choice of z0 let b = (z0 — w)/eiθ(l — wz0) and define

where

A{z) - - z — w
eiθ(l - wz)

The function / is univalent and meromorphic in Δ with /(0) = 1.
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Moreover, / has a pole when A(z) = \a\, that is when z = p. f has
a zero when A(z) — — | δ | . By the choice of 20,

Thus /(JS0) = 0 and feΣ(p, q). A straightforward calculation gives
equality on the right side of (5.2).

For equality on the left side of (5.2), let \w\ < q, w Φ p and a
and θ be as before. Choose zc so that (z0 — w)jeiθ(l — wzQ) > 0 and
set b = (z0 — w)/eiθ(l — wz0). With this choice of 20> let

a\we »)(l -
\

— | α | A(z))

It is easily seen that / 6 Σ(p, q) and that we get equality on the left
side of (5.2).

Suppose q <r <p. Let a = (p — r)/(l — pr) and & = (q + r)/(l + qr)
and let

- ) ( 1 + ar)(l

where

<y —— *¥*

^

The function / has a pole at z = p and a zero at z — —q. Thus
feΣ(p,q) and a straightforward computation gives equality on the
right side of (5.2) when w = r.

Let p and q be fixed and r > 0. Let a = (p + r)/(l + pr) and
δ = (g + r)/(l + gr) and

- ϋ ) ( l - αr)(l -

- — )(1 - br)(l - ^

where

A(z) = z + r .
1 + rz '

The function / has a pole at £ = p and a zero at z = q. Thus
fe Σ(p, q) and we get equality on the left side of (5.2) when w = — r.
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