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ON PRODUCT OF SHAPE AND A QUESTION OF SHER

Y. Kopama

In this paper the products in various shape categories
are investigated. In the weak shape category defined by
Borsuk, for arbitrary metrizable spaces X and Y there exists
always the product Sh;(X) X Shy(Y). In the shape category
in the sense of Fox, if X is a pointed FANR and Y is an
arbitrary metrizable space, there exists the product Sh;(X) X
Shz(Y) and the relation Shz(X) X Shz(Y) = Shz(X X Y) holds.
In the proper shape category in the sense of Ball and Sher,
the product does not exist generally. If X is a compactum
and Y is a locally compact metrizable space, the proper shape
of the product space X X Y is determined uniquely by the
proper shapes of X and Y.

1. Introduction. The notion of shape was introduced by Borsuk
[4] for compact metric spaces in 1968. The concept was extended
to arbitrary metrizable spaces by Borsuk [5] and by Fox [10], to
locally compact metrizable spaces by Ball and Sher [1]. These exten-
sions form different shape categories to each other. We denote by
&s (resp. €y) the strong (resp. weak) shape category in the sense
of Borsuk [6], by & the shape category in the sense of Fox [10]
and by &, the proper shape category in the sense of Ball and Sher
[1]. The shapes of a metrizable space X in &5, €y, € and &, are
denoted by Shy(X), Shy(X), Sh(X) and Sh,(X) respectively.

The purpose of this paper is to investigate the existence of the
products in the categories &%, €y, € and %,. The following was
proved essentially by Borsuk [6].

(1) If X and Y are metrizable then the product Shy(X) x
Sh,(Y) in the category C, exists and it equals Sh, (X x Y).

We shall prove that

(2) If X is a compact metric space which has the same shape
as a compact ANR, then for every metrizable space Y there exists
the product Shy(X) X Shg(Y) in &%.

It is known that the equality Shg(X) X Shg(Y) = Shy(X x Y)
does not generally hold.

(3) If X is a pointed FANR in the sense of Borsuk [6], then
for every metrizable space Y there exists the product Shp(X) x
Sh(Y) in &%.

(4) In the category %, the product does not generally exist.

(5) If X is a compactum and Y is a locally compact metrizable
space, then Sh,(X X Y) is determined uniquely by Sh,(X) and Sh,(Y).

The assertion (5) solves a question raised by R. B. Sher in the
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Winter school “Shape theory and pro-homotopy” held in Dubrovnik,
January, 1976.

Throughout this paper all spaces are metrizable and maps are
continuous. AR and ANR mean those for metric spaces.

2. Definition and notations. A familiarity with the basic
terminology and notations of Borsuk’s shape theory for metrizable
spaces [6], of Fox’s shape theory for metrizable spaces [10] and of
Ball-Sher’s proper shape theory for locally compact metrizable spaces
[1] is assumed. A number of other technical or specialized definitions
and notations are given in this section.

We denote by & the shape category defined by Borsuk [6, Chap.
VII] for compacta whose morphisms are the equivalence classes of
fundamental sequences. Namely, we take for objects of & the class
of all compacta, assign to each Xe%& a subset X' of the Hilbert
cube M homeomorphic to X, and define a morphism from X to Y in
& to be an equivalence class of fundamental sequences from X’ to
Y' in (M, M). We denote by & (resp. &) the strong (resp. weak)
shape category defined by Borsuk [6, Chap. III] for metrizable spaces
whose morphisms are the equivalence classes of strong (resp. weak)
fundamental sequences, by &, the shape category defined by Fox
[10] for metrizable spaces whose morphisms are the equivalence
classes of mutations and by &, the proper shape category of Ball
and Sher [1] for locally compact metrizable spaces whose morphisms
are the equivalence classes of proper fundamental nets. (cf. Ball
[3, p. 17].) The category & is regarded as a full subcategory of
each of the categories &%, €y, € and ¥,. The shapes of a space
X in & &5, Ew, ©r and &, are denoted by Sh(X), Shg(X), Shy(X),
Sh,(X) and Sh,(X) respectively.

A space X is said to be a strong fundamental absolute retract
(SFAR) if, for every space Y containing X as a closed subset, X
is an S-retract of Y (cf. Borsuk [6, Chap. VI, §2]). A spaces X
is said to be a strong fundamental absolute neighborhood retract
(SFANR) if, for every space Y containing X as a closed set, X is
an S-retract of some neighborhood of X in Y. For compacta, these
concepts coincide with Borsuk’s original one’s, FAR and FANR (cf.
[6, Chap. VIII]). Obviously every AR is an SFAR and every ANR
is an SFANR.

Let X,,7 =1, 2, be compacta. A product of Sh(X)) and Sh(X))
is a triple (Sh(X), p,, p,) where X is a compactum and p;: X— X,
p.: X — X, are fundamental sequences (called projections) with the
property if Z is any compactum (that is, an object of &) and
f:Z— X, f,: Z— X, are arbitrary fundamental sequences there exists
a unique fundamental sequence f: Z — X (up to the equivalence class)
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such that pf = f, and p,f = f,. The product of Sh(X,) and Sh(X,)
is denoted simply by Sh(X,) x Sh(X,) (suppressing projections). Pro-
ducts in the categories &%, &y, €» and %, are defined similarly.
We denote Shy(X,) X Shg(X,), Shy(X,) X Shy(X,), Shx(X,) x Shy(X,) and
Sh,(X,) x Sh,(X,) the products in &, €, € and &, respectively.

It is known that in the category & there exists the product
Sh(X) x Sh(Y) for arbitrary compacta X and Y. Keesling [13] has
proved that in the shape category of Mardesi¢ and Segal [16] whose
objects are compact Hausdorff spaces there exists the product for
any family of objects; namely, if {X,: a € 4} is a family of compact
Hausdorff spaces there exists the product JJ[..,Shys(X,) and the
relation [[,csShys(X,) = Shys(ITc+X.) holds, where Sh, (X) means
the shape of X in the sense of Mardesi¢ and Segal. Since Sh(X) =
Sh,(X) for a compact metric space X (we consider only metrizable
spaces), the theorem of Keesling means the existence of the product
in the category <.

Let M be a space and X a subspace of M. Throughout the
paper, by U(X, M) we mean the set of all neighborhoods X in M.

3. Products in the shape categories.

THEOREM 1. Let X be a compactum with the same shape as a
compact ANR K. Then for every space Y there exists the product
Shy(X) X Shs(Y) in the category & and Shs(X) x Shg(Y) = Shy(K x Y).

From the example given by Godlewski and Nowak [11, p. 391]
it is known that in Theorem 1 the equality

Shy(X) X Shy(Y) = Shy(X X Y)

does not hold generally and also the compactness of K is essential.

Proof of Theorem 1. Let L, M, N be AR’s containing X, K, Y
as closed sets respectively. Since Sh(X) = Sh (K), there exist funda-
mental sequences & ={a,: K— X}, , and 8={8,:X— K}, , such that

(8.1) Ba~i,, and aBf ~iy;.

(See [6, Chap. IIT and VII] for notations.) Let #: M x N— M and
t: M x N— N be the projections. Consider the S-sequences p =
arn: K xY— X and p: K XY —Y, where m: K XY — K and pu are
generated by 7w and z respectively. We shall prove that the triple
(Shs(K X Y), p, ) equals Shy(X) x She(Y). Let Z be a space and P
be an AR containing Z as a closed get. Suppose that

f={fuZ—KXY}puxy and g = {g,: Z —K X Y}p,yxx
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are S-sequences such that pf :S' pg and pf 3 tg. Let us prove f % g.

Take a map »: M — M such that for some U € U(K, M) the restriction
r|U is a retraction of U to K. For each k, consider the map ¢, =
rf, X pfi: P— M X N. Since K is compact, it is easy to know that
the sequence {¢,} forms an S-sequence which is S-homotopic to 7.
Since K is an ANR and {f,} is an S-sequence, there exist a V e U(Z, P)
and a number %, such that rzf,|V =~ rzf, |V in K for k, k' = k,. Hence

(3.2) fz {recfi, ¥ W1} -

Similarly we know that there exist a V'€ U(Z, P) and a k, such that
rrg, V' ~ rrg, V' in K for k, k' = k,. Hence

(3.3) g9 %’ {rme, X tg:} -

Since pf 5 P9, there exists a We U(Z, P), WcV NV’ such that
27fi|W = rzg, |W in K. Thus we have

(3.4) A{rzfi, X pfi} -':S,—' {rrcg,, X pfi} .
Since pf 5 19 it is proved that
(3.5) {rmg., X ttf} 3 {rmcg,, X g} .

By (3.2), (3, 3), (3.4) and (3.5) we have fg g.

Finally, suppose that S-sequences f = {f,:Z — X},, and g =
{9:: Z —»Y}py are given. If we let Bf = {p: Z — K}, (cf. (3.1)),
then it is proved by the same argument as in above that y =
{ro, X 9i: Z — K X Y}p yxy forms an S-fequence such that pyr 3 f and

J7) % g. This completes the proof.

COROLLARY 1. If X 4s an FAR, then Shy(X) X Shg(Y) = Shy(Y)
for every space Y. If, in addition, Y is an SFAR, then Shy(X) x
Shy(Y) is an SFAR.

For, an FAR has the same shape as one point space (Borsuk
[6, p. 257)).

COROLLARY 2. If a compactum X has the same shape as a
compact ANR K and Y is an SFANR, then She(X) X Shg(Y) =
.Shy(K x Y) e SFANR.

This is proved by the same argument as the proof of Theorem
1 and we omit the proof.
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ExampLE 1. Let X be the Warsaw circle. Then X is an FANR
but not an ANR. Let J be the set of positive integers. The space
X x J is not an SFANR. This is proved by the same argument as
Godlewski and Nowak [11]. Imbedd X x J in an AR as a closed set.
Suppose that there exist a Ve UX x J, M) and an S-retraction r =
{(ri:V—>X X J}yy. We can assume that V = U,,V:, ViD X X {k},
ked, and {V,} is discrete. Since X is not an ANR, for each keJ
there exists a point 2,e VN7V — X x {k}. The set W= M —
N {x;: ke J} is a neighborhood of X x J in M. However, (V)W
for each keJ. Hence 7 is not an S-retraction.

In the category & the product exists always as shown in the
following.

THEOREM 2 (Borsuk). L‘et X and Y be arbitrary spaces. Then
in the category &w the product Shy(X) X Shy(Y) exists and Shy(X) X
Sh;(Y) = Shy(X X Y).

This is proved essentially by Borsuk. The theorem is obvious
from the following lemma.

LEMMA 1. Let X, Y and Z be spaces and let M, N and L be
AR’s containing X, Y and Z as closed sets respectively. If f=
{fe: Z—> X} n and g = {g,: Z —Y}, y are W-sequences, then f X g =
{(fie X 92 Z— X XY}, uxy 18 @ W-sequence and the W-class [f x g]is
determaned uniquely by [f] and [g].

The proof follows from the definitions of W-sequences and W-
classes. (cf. Borsuk [6, Chap. IV(7.1)].)

ExaMPLE 2. Let Y be the subset of the plane as follows:
Y={@y:2=0, -1<y <LJU{® 9):y =sin(x/22), 0 <z = 1}.

Let X = {p} be one point space. Consider the maps f, g: X —Y such
that f(p) = (0, 0) and g(») = (1,1). Then f and g induce non equi-
valent morphisms in the category &5 or &, and induce equivalent
morphisms in &, or %, Next, let Z={&,9):2=0,1,2,---,
~1l=2y=s=1lU{ y:y=sinz2x—n),n<cr=n+1,n=01---},
J=1{1,2,8,.--} and R = the real line. Then Shy(J) = Shy(R X J) #
Shy(Z x J), Shy(J) = Shy(R X J) = Shy(Z X J), Shp(J) = Shp(R X J) =
Sh(Z x J) and Sh,(J) = Sh,(R x J) = Sh,(Z x J).

Next, we shall consider the product in the category &». A
compactum X is called a pointed FANR (cf. [6, pp. 254-255]) if for
each z € X (X, z) is shape dominated by a pointed finite CW complex.
Our theorem is
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THEOREM 3. If X is a pointed FANR, then for every space Y
the product Shp(X) x Shx(Y) in &, ewists and Shy(X) X Shy(Y) =
Sh(X xY).

For the proof we need a couple of lemmas. The following lemma
gives a useful characterization of a pointed FANR which is proved
by Siebenmann, Gillou and H&ahl [20, Théoréme 5.8] and Edwards
and Geoghegan [9, Theorem 1.1].

LEMMA 2. Let X be a pointed FANR lying in the Hilbert space
M. Then there exist a decreasing sequence {M,.k=0,1,2, ---} of
neighborhood of X in M and & map o: M X [0, «)— M satisfying
the following conditions.

For each r€|0, «) the map t: M — M defined by v(x) =

3.6
3:6) @@, ), ve M, is a homeomorphism onto .

8.7 {M,} forms a neighborhood basis of X in M .
3.8) o, r)==, (& r)e Mx{0}U M — M,)x[0, ©)U ;Q M,..x[0, k] .

¢(Mk X [k + n, OO))CMk+n—~1’ k= 1’ 29 cee, M= _"1’ 0) 1,

(3.9) 2, -+, where M_, = M, .

For every point (z, r) € M, x [0, =), if ¢z, r)e M, for
(3.10) some k, p(®, v') e M,_, for each v’ €[r, «), where M_, =
M_,=M,.

The proof is easily obtained by making use of [20, Théoréme
5.8] and by a simple induction.

REMARK 1. Dydak, Nowak and Strok [8, Lemma 4] have proved
that if we replace the Hilbert space by an arbitrary AR in Lemma
2 then there exist a decreasing sequence {M,} of neighborhoods and
a map o satisfying (3.7), (3.8) and (3.9). If M is an AR containing
X and X is unstable in M in the sense of Sher [18, p. 346], then
it is proved that there exist {M,} satisfying (3.7), (3.8), (3.9) and
(8.10). As seen in the proof of Theorem 8, the condition (3.6) is not
necessary to prove it. Hence it is enough for us to assume that X
is embedded unstably in an AR M.

From now on we assume that X is a pointed FANR lying in the
Hilbert space M and Y is a closed set of an AR N. We denote by
{M,,=0,1,2, --+} a decreasing sequence of neighborhoods of X in
M and by @ a map from M x [0, =) to M satisfying the conditions
(3.6)-(3.10).
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A neighborhood We U(X XY, M x N) is said to be basic if there
exist a closed neighborhood V e U(Y, N), an open covering {V,: « € 4}
of V and a collection {U,:U,c UX, M), xc A} such that W=
U.cU. X V.. The closed neighborhood V is said to be a base of W

and denoted by B(W).
From the compactness of X the following lemma is obvious.

LEMMA 3. The set of basic neighborhoods forms a cofinal sub-
system of UX XY, M X N).

LEMMA 4. For every basic meighborhood We UX XY, M X N)
there exists @ map B: B(W)—|[0, =) such that

iWf p: M, x BOW)—M x B(W) is defined by &(x, y) =
(8.11) (o=, B(W)), y) for (%, y)eM, x B(W), then P(M, X

BW)cWw,

Jor every (z, y)eM, x B(W) and every r€|[B(¥), =),

(pla, 1), ) e W.

Here M, is the neighborhood of X im M described in above and B(W)
18 the base of W.

(3.12)

Proof. There exists an open cover {V,.aed} of B(W) and a
collection {U,:U,e€ UX, M), e € A} such that W = U,,U. X V,. By
the paracompactness of B(W) and (8.7), we can find a locally finite
open cover {Vi:xe 2} of B(W) and a map 4:2—{1,2,3, ---} such
that {V;} refines {V,} and U,.o M,y X V;CW. Construet a map
B: B(W)— [0, ) such that 8(y) = 7(\) + 1 for each y € V;. To prove
that £ satisfies the lemma, let (z, y)e M, x B(W) and » = B(y). If
yeVj, then r = B(y) = i(\) + 1. By the property (3.9) of o,

P(M; X [i(N) + 1, ) C My -

Since (z, 7) e M, x [¢(\) + 1, =), we have (p(x, 7), ¥) € My, X V,CW.
This completes the proof.

Proof of Theorem 3. Let m: M X N— M and p: M x N— N be
the projections. We shall prove that the triple (Shx(X X Y), m, p) is
the product to Sh;(X) and Sh;(X) where 7= and ¢ mean the mutations
generated by 7 and p respectively.

Let Z be a space and let I be an AR containing Z as a closed
set. We must prove: Suppose that mutations f: U(Z, L)—U(X, M)
and g:U(Z, L)— U(Y, N) are given. Then there exists a mutation
hUZ,L)—-UX xY, M x N) satisfying the following conditions.
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(38.13) wh~f and ph=~g.

(3.14) If W:UZ,L)— UX xY, M x N) is a mutation such
) that wh' =~ f and ph' ~ g, then h =~ I’ .

Without loss of generality (by taking a cofinal subsystem of {M;}
if necessary), we can assume that the mutation F has the following
property.

(3.15) Let f:U—YV be any map in f. Then there exists an
) M, i =38, such that f(U)C M, ,cM,CV.

First, let us construct a mutation k. Define h as the set of all
maps & satisfying the conditions:

(3.16) hU—W,UcUZ, L), WeUX XY, Mx N);

there exists a basic neighborhood We U(XxX Y, M x N)

3.17) such that W(U)cWcCW’;

there exist fef,gecg, domain of f = domain of g,
(8.18) and a:U — [0, =) such that range of f C M; and range
of gc B(W);
(3.19) h(z) = (p(f(x), a(2)), 9()), x€ U ;
for every x € U and for every
rela@), «) (p(f(2), 7), g(®) e W ;

if wh(z)e M,,, for x € U then o(f(x), r) € M, for every
r € [a(x), ) .

(3.20)

(3.21)

Let us prove that h forms a mutation. We have to prove that
h satisfies the conditions (2.1), (2.2) and (2.3) of [10, p.49]. That &
satisfies (2.1) is obvious. Let W e UX XY, M x N). We must find
a member h of h whose range is W’. Take a basic neighborhood
W such that WcC W’ (cf. Lemma 3). By Lemma 4 there exists a
map B: B(W)— [0, «) satisfying (3.11) and (3.12). Choose maps fef
and gecg such that f:U— M; and ¢:U — B(W), where Ue U(Z, L).
Set @ = Bg: U— [0, =) and consider the map % defined on the set U
as follows:

Mz) = (p(f(2), a(@)), 9(x)) , =eU.

By (8.11) and (3.12) R(U)c W, and. for each xe U and each r =
ax) (p(f(x), ), g(®)) € W. Moreover (3.21) is satisfied by the property
(8.10) of . Hence h: U—W belongs to h. Therefore h satisfies
(2.2) of [10].
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Finally, let Ay, h: U —W’ be any maps in h. By the -definition
of h there exist f;ef, g,€g, basic neighborhoods W, and a,;:U—
[0, =) for ¢+ = 0, 1 satisfying (3.16)-(3.21). Since f and g are muta-
tions, there exist a U’'c U(Z, L), homotopies &: U’ X I— M, and
7: U’ x I— B(W,) U B(W,) such that &, 4) = f(z) and 7(z, 7) = g.(x)
for tc U and 2 = 0,1. By Lemma 4 we can find a map B: B(W,) U
B(W,) — [0, ) such that if &: M, x (B(W,) U B(W,)) — M x (B(W,) U
B(W) is defined by #(z, ) = (p(x, 8(%)), y) for (x, y) € M; X (B(W,) U
B(W))), then
P (M) x (B(W,) UB(W,)cC W', for each (z, y)e M, x
(8.22) (B(W,) U B(W))) and for each r € [B(y), ), (p(®, 7), ¥) €
W
Define a homotopy H,:U’' x I— M x N by
Hyx, t) = (p(&(x, t), BO(=, 1)), (=, 1)), (@, £)e U’ x I.
By (3.22) H(U' x I)cW’. We have

Hyz, 1) = (p(f(®), Bg(%)), 9:%)), v € U’, and for each x ¢
(3.23) U’ and for each r€[Bg,(x), ), (P(fi(x), ), g.x)) € W',
i=0,1.

Let H, ¢ = 0, 1, be the homotopies defined on the set U’ x I as follows.

Hz, t) = (p(f(2), t,(x)+ (1—1)Bg.(x)), g«(@))(®,¢) € U'x I
and 1 =0,1.

Then, by (3.24) and (3.19)

Hyz, 0) = (p(fi(x), Bg(x)), 9.)) , , .
(8.25) H, 1) = hz) zxelU and 1 =0,1.

(3.24)

Since ta,x) + (1 — t)Bg.(x) = min {«,(x), Bg.(x)} for each x2eU’, by
(8.20) and (3.22)

HU xI)cw'.

By (3.23) and (3.25) we have h,|U" = h,|U’ in W’'. Thus h forms a
mutation.

It remains to show that h satisfies (3.13) and (3.14). By (3.19),
since ph = g|U for each h € h, obviously ph ~ g. Let us show that
wh ~ f. Suppose heh, fef and wh, f: U—V, where U e U(Z, L) and
Ve UX, M). By the definition of h there exist f'ef and a:U—
[0, =) such that the range of f’'c M, and =wh(x) = ¢(f'(x), a(x)) for
xe U. Since f is a mutation, there is a U’ € U(Z, L) and a homotopy
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& U x I— M, such that &z, 0) = f(x) and (=, 1) = f'(z) for xc U'.
By (3.15) we can find M, such that f(U)C M, ,,cM,CV. Take a
map B:U’— [0, ) such that B() = a(x) and @(&(z, t), B(®)) e V for
each z ¢ U'. Define homotopies H, H and H” on the set U’ by

H(z, t) = p(¢(, 1), B(x))
H'(x, t) = o(f (@), t8(x)) , xel’.
H’(x, t) = o(f'(2), te®) + (1 — 1)B(x))

Obviously H(U' x I)cV. Also, by (3.10) and (3.21) we have
HU xIHUH'"(U xI)cM,cV. Since wh(z) = H(x,1) and f(x) =
H'(z,0) for xe U', zh|U' = f|U’ in V. Thus h satisfies (3.13).

Finally, to prove (8.14), let heh, k' e€h’ and h, h':U —W, where
UecU(Z,L) and We UX xY, M x N). By the definition of h, there
exist fef,geg and a:U—[0, ) such that h(x) = (p(f(x), a(z)),
gx)eW for xeU. Without loss of generality we can assume
that

(range of wh) U (range of =h') C M, and there exist a
collection {V,: a4} of open subsets of N and a map

(8.26) ©:4—1{3,4,5, ---} such that (range of rh)U (range of
#h') cV = UaeAV,, and h( U) U h'(U) C lJa,e 1 Mi(a)+2 X
VaCUaes Mywy x V,CW.

Since wh = f =~ nwh’ and ph ~ g ~ ph’, there exists a U’ U(Z, L)
such that 7h|U’ = zh'|U’ in M, and ph|U’ =~ ph'|U' in V. Let & U’ X
I— M; xV be a homotopy such that &(z, 0) = (zh(z), th(x)) and
&(x, 1) = (zwh/(x), p#h'(x)) = h'(x) for € U’'. Choose a map B: U’ — [0, =)
such that if a homotopy H is defined on the set U’ x I by

H(z, t) = (p(#&(=, 1), B@)), ti(x, 1)), (x,t)elU XI,
then HU' X I) CUaesa Mimsz X V.. We have

(3.27) H(z, 0) = (p(zh(2), B(x)), th(x)) vl .

H(z, 1) = (p(zh' (), B(x)), ph'()) ,
Define homotopies H' and H” on U’ x I by
H'(z, 1) = (p(wh(z), tB®), pth(x)), (z,t)elU’ X I,
and
H'(@, t) = (p(zh'(2), 1B(x)), h' (@) , (w,¢)e U’ X I.

By (8.26) and (3.10) H'(U' X I) UH" (U’ X I) C Uwes Moy x Vo, C W.
Moreover
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H'(w, 0) = (p(zh(®), 0), (%)) = h(x), H'(w, 1) = (p(h(x),
(3.28) B(x), ph(x)), H" (2, 0) = (p(zh'(%), 0), 1h'(%)) = k'(x) and
H"(z, 1) = (p(zh'(2), B(x)), th'(z)) for ze U’ .

By (3.27) and (3.28) we have h|U ~ h'|U. This completes the proof
of Theorem 3.

COROLLARY 3. Let X be o pointed FANR (resp. FAR) and let
Y be an MANR (resp. MAR) in the sense of Godlewski [12]. Then
the product Shy(X) x Sh(Y) exists and +t ©s an MANR (resp. MAR).

This follows from Theorem 3 and [16, Theorem 2].

Problem. If X is a movable compactum in the sense of Borsuk
[6, Chap. V], for every metrizable space Y does there exist the
product Shy(X) x Shy(Y)?

REMARK 2. Theorem 3 is strengthened as follows. By %, denote
the shape category in the sense of Mardesié [17] whose objects are
topological spaces and morphisms are shapings. Then it is proved:

THEOREM 3'. If X s a pointed FANR, then for every paracom-
pact space Y the product Sh,(X) X Sh,(Y) in &y exists and Sh,(X) x
Sh,(Y) = Sh,(X xY), where Sh,(Z) 1s the shape of Z in the sense
of Mardesic [17].

Let us sketch the proof. We claim that the triple (Sh,(XxY),
7, t) is the produt of Sh,(X) and Sh,(Y), where = and g are the
shapings of X XY to X and Y generated by the projections 7: X x
Y — X and p#: X x Y —7Y respectively. (See for the notations Mardesi¢
[17].) Let Z be a topological space. Suppose that any shapings
f:Z— X and g: Z —Y are given. We must find a unique shaping
h: Z — X xY such that wh = f and gh = g. Let P be a simplicial
complex with metric topology and let s: X x Y — P be a map. Since
X is compact and Y is paracompact, there exist a locally finite open
cover V of Y and a map & X X K, — P such that &o(ly X o) = s,
where K, is the nerve of V and +:Y — K, is a canonical map.
Consider X as a subset of the Hilbert space M. We use the same
notations as in the proof of Theorem 3. Since P is an ANR, there
exist a neighborhood W of X X K, in M X K, and an extension
E:W —P of &. Let i: X — M, be the inclusion. Consider the maps
f@): Z— M, and g(4): Z — K,. (We assume that M; is an ANR.)
There exists a map a: K, —[0, ) such that if »: Z— M, X K, is
defined by 7(2) = (P(f(1)(2), a(g(¥)(2))), g(¥)(2)), z € Z, then n(Z)CW.
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Let h(s) =&n:Z — P. For a given map s: X XY — P, we have
defined a map A(s): Z— P. The correspondence h is the required
shaping: Z — X x Y. That h satisfies #h = f and gh = g and the
uniqueness of h are proved by the same argument as the proof of
Theorem 3.

In the remainder of this section we discuss the product in the
category &’,. We assume that all spaces are separable. As shown
by Ball and Sher [1, 5], this does not loose the generality.

THEOREM 4. Let X be a 0-dimensional locally compact space
and let Y be a locally compact space with the same proper shape
as a locally compact AR. If the product Sh,(X) x Sh,(Y) exists,
then Sh(X) x Sh,(Y) = Sh,(X).

For the proof we need a couple of lemmas. Welet H = M — {w},
where M is the Hilbert cube and w is a point of M.

LEMMA 5. Let X and Z be locally compact spaces contained in
H as closed sets. If X is 0-dimensional, then every proper funda-
mental net (f, Z, X), where f = {f,;: e 4}, f;: H— H, is generated by
a proper map f:Z— X, Moreover f is uniquely determined by the
proper fundamental class [f].

(See Ball and Sher [1, 3] for notations and definitions.)

Proof. Since dim X = 0, there exist collections {F,: e}, ¢ =
1,2, ..., such that for each 1 =1,2, ---,
(8.29) theset F, = | {F.: ¢e 2} is a neighborhood of X in H ,

if «eQ, then F, is compact, F,NX # @ and the

(3.30) diameter of F, < 1/,
(3.31) {F,. e} is discrete in H,
(3.32) {Fs: Be ,,,} refines {F,:x€2,}.

Since f is a proper fundamental net, there exists a sequence {\;: 4% =
1,2, ---} of elements of 4 such that

(3.38) N < Ny 1= L2 ...,

if N, 2N, N, st 4, then

3.34
( ) fllZ%fFlZinFZ’ /l.':l’zy' *

Take a point z€ Z. By (3.31), for each 4 there exists a unique «; € 2,,
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such that f;(x) e F.,. By (8.33) and (3.34) F,,DF,, , for each 7. If
we put f(2) = N, F. then by (3.29) and (3.30) f(x) consists of
exactly one point of X. Consider the map f:Z —X. Obviously
S is continuous. Let xeX. Take F,, @, e2,¢=1,2, ---, such that
zeF,,. Since f(F,)Cf;(F.), we have

@ = NREHNG.

This means f~'(z) is compact. Finally, let F' be a closed set of Z.
Set H;, = U{F.:Fo,Nf3,(F)# @,2,e},1=1,2,---. Since f, is
closed, H, is closed by (3.30) and (8.831). From the equality f(F)=
2. H, the closedness of f follows. Thus f is a proper map. Itis
obvious that f generates f = {f;} and is uniquely determined by the
proper fundamental class [f]. This completes the proof.
The following lemma is proved by the same argument as the
proof of [14, Theorem 2] and we omit the proof.

LEMMA 6. Let X and Y be locally compact spaces. If there
exists a proper onto map f: X —Y such that for each ye€Y f(y)
has a trivial shape and dimY < oo, then Sh,(X) = Sh,(Y).

Proof of Theorem 4. We consider X and Y as closed subsets in
H. Suppose that Sh,(X) X Sh,(Y) exists. There exist a locally
compact space Z contained in H as a closed set, proper fundamental
nets f: Z— X and g: Z —Y such that the triple (Sh,(Z), f, g) is the
product of Sh,(X) and Sh,(Y). By Lemma 5, there is a proper map
f:Z — X generating f. Note f is onto, because-Sh,(Z) = Sh,(X) x
Sh,(Y) and dim X = 0. Put Z, = f'(x), ze X. Since f is a closed
map and dim X = 0, Z, has a neighborhood basis in Z consisting of
open and closed sets in Z. Consider two proper fundamental nets
h, and h,: Z,— Z such that h, is generated by the inclusion map:
Z,c Z and h, is generated by a constant map of Z, to a point of
Z,C Z. Since Y has the same proper shape as a locally compact
AR, by the definition of the product, we have h, = h,. This means

D
that Z, has a trivial shape. By Lemma 6, Sh,(Z) = Sh,(X). This
completes the proof.

ExampLE 8. Let X be a 0-dimensional locally compact and non
compact space and let YeSUV~=. (See Sher [18, p. 349].)

If Y has the end E(Y) consisting of only one point, then
the product Sh,(X) X Sh,(Y) exists and Sh,(X) xSh,(Y)=
Sh,(X) # Sh,(X X Y), where E(Y)=F(Y)—Y and F(Y)
means the Freudenthal compactification of Y.

(3.35)
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If E(Y) consists of more than one point, then the

3.36
(3.36) product Sh,(X) x Sh,(Y) does not exist.

Let us show (3.35). Since E(Y) is one point, we can assume by
Sher [18, Theorem (3.1)] that ¥ = R*(=[0, «)). Choose a proper
map #: X—R*. We claim that the triple (Sh,(X), i, ) is the product
of Sh,(X) and Sh,(Y), where ¢ is the identity map: X — X, i and ¢
are the proper fundamental nets generated by 4 and g¢. Let Z be
any locally compact space. Give proper fundamental nets f: Z — X
and g: Z— R*. There exist proper maps f: Z—X and ¢g: Z— R*
generating f and g. Since any proper maps of Z into R* are properly
homotopic to each other, we have g ~ pf. This implies (Sh,(X), i, ¢) =
Sh,(X) % Sh,(Y). ?

Next, let Y be an SUV= such that E(Y) consists of more than one
point. By [18, Theorem (3.1)] we can assume that Y is a tree. Since
E(Y) has at least two points, Y contains a real line R as a closed
set. There exists a proper retraction r: Y — R. Suppose that
Sh,(X) x Sh,(Y) exists. By the proof of Theorem 4, we have Sh,(X) x
Sh,(Y) = (Sh,(X), i, ), where ¢ is the identity: X— X and g is a
proper map of X into Y. Consider two proper maps f,, fo: X—Y
defined as follows.

(@) = rp(@)

fi@) = —rpe)’
Since (Sh,(X), i, #) = Sh,(X) x Sh,(Y) and R is a proper retract of
Y, we have f, = f, in R. On the other hand, since Ff,(E(X)) C E(R)=
{—o0} U{eo}, where FYf, is the extension of f;, over F(X), it is easy
to prove that f; f f,in R. This contradiction means that the product

Sh,(X) x Sh,(Y) does not exist.

rzeX.

ExAMPLE 4. Let X be a 0-dimensional locally compact and non-
compact space. Then the product Sh,(X) x Sh,(R*) does not exist.
Here R" is the n-dimensional euclidean space. The proof is similar
to (3.36). Namely, for » = 2, one can give a similar argument using
a proper map g: S"' X J— R* — {0} such that g|S"* x {4} fails to be
null homotopic in R* — {0} for 4 =1,2, --.. (Note that ¢ is not
properly homotopic in B* to any map which factors through a 0-
dimensional space.)

4. Proper shapes of the products.

THEOREM 5. Suppose that X is compact and X', Y and Y' are
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locally compact. If Shy(X) = Sh,(X') and Sh,(Y) = Sh,(Y’), then
Sh,(XxY) = Sh,(X xY’).

In the Winter school “Shape Theory and Pro-homotopy” held in
Dubrovnik, January, 1976, R. B. Sher raised the following question:

Let X be compact and let X’ and Y’ be locally compact. If
Sh,(X) = Sh,(X’) and Sh,(R) = Sh,(Y’), where R is the real line, does
the equality Sh,(X X R) = Sh, (X’ x Y”) hold?

Theorem 5 solves this question.

Proof of Theorem 5. Since X is compact and Sh,(X) = Sh,(X’),
X' is compact. Hence Sh(X) = Sh(X’) by Ball and Sher [1, 3.15].
We divide the proof to the following two cases: (A) X = X', (B)
Y=Y.

First, let us prove the theorem under the hypothesis (A). Let
H = M — {w}, where M is the Hilbert cube and w is a point of M. We
consider Y’ and Y as closed sets in H and X as a subset of M. Since
Sh,(Y) = Sh,(Y”’), there exist proper fundamental nets f = {f;: \ € 4}
from Y to Y’ in H and g = {g.: #€ 2} from Y’ to Y in H such that
of '_1;: iy and fg = iy, where i, are and iy, the fundamental nets gener-
ated by the idexﬁities ty:Y—Y and 7,: Y’ —Y’. (See for the definitions
Ball and Sher [1, p. 166].) Let 4: M — M be the identity. Then f=
{¢t X fiined} is a proper fundamental net of X xY to X xY’ in
M x H. Similarly g = {7 X g,: # € 2} is a proper fundamental net of
X xY to Xx Y. Obviously §f ~ iy,, and f§ ~ iy.y.. This means
Sh,(X X Y) = Sh,(X x Y"). P ?

Next, we shall prove the case (B). We consider Y as a closed
subset of H and X, X’ as Z-sets in M. Since X and X’ are Z-sets
in M, by the proof of Lemma 4.1 of Chapman [7], there exist homo-
topies &, i M X I— M satisfy_ing the following conditions:

(4.1) &, 0) = o = 7](58: 0), zeM,

for any Ue U(X, M) and U’ e U(X’', M) there exists a
(4.2) t'e(0,1] such that &=, t)e U for xe U and t<]0,t],
and 7(z, t)e U’ for ze U’ and t€[0, t'],

for any Ue U(X, M) and U’ e U(X’, M) there exists a
(4.3) t'€(0,1] such that &(=,t) =2 for e X — U and te¢
[0, #], and 7(z, t) = z for xe X — U’ and t€[0, t'],

(4.4) &, t)¢ X and 7z, t)¢ X’ for xe M and ¢t€(0, 1] .
Since Sh(X) = Sh(X’) and X, X’ are Z-sets in M, by Chapman [7,
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Theorem 2] there exists a homeomorphism h: M — X — M — X'.
Define h: (M — X)x H—(M — X") x H by h(z, y) = (h(x), y) for
(@,y)e (M — H) x H. Obviously % is a homeomorphism. Denote
by 4 the set of all maps from H into (0,1]. We define an order
=< in 4 as follows: If a, Be 4 and a(y) < B(y) for each ye H, then
a = B. Obviously 4 forms a directed set by this order. Consider
the sets f={f,. e 4} and g = {g.: @ € 4} of maps [, go.: MXH—MxH
defined as follows.

Ful@, y) = h(E(, a(y)), ¥)

(4.5) ~ ,
9%, ¥) = h7(n(=, a(y)), ¥)

(x,y)eM x H.

By (4.4) f, and g, are well defined. We shall prove that f: X x Y —
X' xYand g: X’ XY — X XY are proper fundamental nets in M x H.
Obviously the maps f, and g., @ e 4, are closed. Since f;'(a,¥y’) =
{(, ¥): b)) = &, a¥)), xe M} and g.'(2, ¥') = {(&, ¥'): h(z) =
Nz, a(y"), x e M} for (¢', y') e Mx H, both f;'(2', ') and g;'(2', ¥') are
compact. Therefore f, and g, are proper maps. Let W be any closed
neighborhood of X’ XY in M x H. We can assume by Lemma 3
that W is a basic neighborhood. Therefore there exist a locally finite
closed cover {W,.axecf} of the base B(W) of W and a collection
{V, @e 2} of closed neighborhoods of X’ in M such that W =
UseoVe X W, Set W =h (W — X' x H)U X x B(W). We claim

(4.6) WeUXxXxY,Mx H).

To prove (4.6), it is enough to prove that M x B(W) — W' is disjoint
from X x B(W), where the closure is taken in M x H. Since M x
BW) —W' CUuseo h (M —V,) x W) and {W,} is locally finite in H,
MxBW) =W NXXBW)CUseo W (M —V)x W) NXxBW)=
@. Hence (4.6) is true.

Next, note that there exists a map a e 4 such that

4.7 (&=, t), y) e W' for (z, y)e W’ and t [0, a(y)] .

This is proved by making use of the properties (4.1), (4.2), (4.3) of
the homotopy &, the paracompactness of B(W) and Tietz’s extension
theorem. By (4.7) and the definition of W’ we have f,|/W" W —W.
Suppose that SeA and @ < B. Define a homotopy ¢ on the set
W' x I by o= 9),t) =k, tay) + 1 — )BW), y) for (x,y)e W
and tel. Since a < B, we have (W' x I)C W by (4.7). Obviously
@ is a proper map. This means that f,|W' = f;|W’' in W. Thus we
have proved that for a given closed neighborhood W of X' xY in

M x H, there exist a closed neighborhood W’ of X XY in M x H
and an index @ € 4 such that if 8=« then f,|W’ = fo|W’ in W. This
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implies that f = {f,} is a proper fundamental net. Similarly it is
seen that g = {g.} is a proper fundamental net.
Finally let us prove

(4.8) gf =iy and fg =iy, .
V4 V4

Take a closed basic neighborhood We U(X XY, M x H). There exists
an « e 4 such that

4.9) (@, t),y)e W for (w,y)eW and tel0, aly)l

Consider the map f.: M x H— M x H, f,ef (cf. (4.5)). By the same
way as the proof of (4.6) it is proved that

W =Mx BW)—f.Mx BWHYeUX' xY,M x H).
From (4.8) it follows that there exists a 8 €4 such that
(4.10) if (x, y) ¢ W’ then (9(x, t), y) = (w, y) for each ¢ e[0, B(y)] .

Consider the map ¢,fs: M X H— M x H. If (z, y) € X, then g,f. (2, y)=
(&, a(y)), By)), y). Since (&(@, (), y) &€ W', gsfu(@, y)= (&=, (¥)), ¥)
by (4.10). Define a homotopy H on the set W x I by H((z, y), t) =
(E(z, ta(y)), ¥), (x, y) €W and te€I. From (4.9) it follows that
H(W x I)cW. Therefore we have gﬂfa|W% iy in W. By the

choice of @ and B, we can see that if & = a and B8 = 8 then
95 |W = iy in W. Thus we have proved that if W is a closed basic

P
neighborhood of X X H in M x H, then there exist «, 8¢ 4 such
that if @' = @ and 8 = B then ¢;f. |W =~ iy in W. This proves the
first relation of (4.8). The second relation of (4.8) is proved similarly.
This completes the proof.

REMARK 8. Theore 5 implies that if X is compact then Sh,(X x Y)
is uniquely determined by Sh,(X) and Sh,(Y). However Sh,(Xx7Y)
is not generally the product of Sh,(X) and Sh,(Y). Because, if ¥
is a locally compact, non compact and O0-dimensional space then
Sh,(X) x Sh,(Y) need not exist (cf. Example 3).

Following Ball [2, p. 185] a locally compact separable metric
space X is said to be an absolute proper shape retract (APSR) if X
is a proper shape retract of every locally compact separable metric
space Y in which X is properly embedded. Here X is said to be
properly embedded in Y if X is a closed set of ¥ and the injection
3: X —Y is end preserving, that is, F(¢)| E(X): E(X) — E(Y) is injec-
tive, where E(X) = F(X) — X is the remainder of the Freudenthal
compactification F(X) of X (cf. [2, p. 180]). Sher [19] defined an
absolute neighborhood proper shape retract (ANPSR) as follows: X e
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ANPSR if and only if for each locally compact separable metric
space X' containing X as a closed set there exists a closed neighborhood
X" of X in X’ such that X is a proper shape retract of X”. We
shall prove that

THEOREM 6. If X is a pointed FANR (resp. FAR) and Y is an
ANPSR (resp. APSR), then X XY is an ANPSR (resp. APSR).

Proof. We give the proof in case X is a pointed FANR and Y
is an ANPSR. The other case is proved similarly and we omit the
proof.

Let X be a pointed FANR and Y ¢ ANPSR. Since Y ¢ ANPSR, by
[19, Corollary (6.3)] there exist a locally compact ANR H in which
Y is properly embedded, an AR N containing H as a closed set and
a proper fundamental net r = {r;: Ae 4}: H—Y such that r;, N— N
and 7,(y) =y for ye¢Y and ned. Consider X as a Z-set of the
Hilbert cube M. By Lemma 2 and Remark 1 there exist a decreasing
sequence {M,:k = 0,1, 2, ---} of neighborhoods of X in M and a map
@: M X [0, ) — M satisfying the properties (3.7), (3.8), (3.9) and (3.10).
((3.6) is not required.) We can assume that M, is a compact ANR.
By 2 denote the set of all maps a@ of H into [0, ). We define an
order < in 2 as follows: If a, B¢ and a(y) < B(y) for each y € H,
then @« < 8. Then 2 becomes a directed set. For a pair (a, \)€
Q2 x A, define a map fi,,: M x H— M x H by

411 fen® y) = (P, ar,y)), ri(y)) for (z,y)e M x H.

Set £ = {fien: (@ N) e x 4}. For each (@, N\)e x 4, if (z, y)e
XXY, fien(@, ¥) = (%, y) because @p(z, r) = x for x€ X and r€[0, )
by (3.8) and r,(y) =y for y€ Y. Thus, to prove the theorem it is
enough to show that f is a proper fundamental net of M, X H to
X x Y, because this means that X x Y is a proper shape retract of
a locally compact ANR M, x H and the theorem follows from ]19,
Corollary (63)]. Let W be a basic neighborhood of X XY in M X H.
There exists an a €2 such that

if (x,y)eM, x B(W) then (p(z,r),y)e W for each

4,12
( ) re [a(y)y o).

Since r is a proper fundamental net, there exist a \ €4 and a closed
neighborhood F' of Y in B(W) such that if » < ¢ then »,|F % .| F

in B(W). We claim
(4.18) if (B, ) = (a, \) then fion| M, X F —’3’1-)- JoemlM, X Fin W,
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To prove (4.13), let & F x I— B(W) be a proper homotopy such
that &(y, 0) = r(y) and &(y, 1) = r.(y) for y € F. Define proper homo-
topies h, and h, on the set M, X F x I by

h(®, y, t) = (@, (1L — t)ar,(y) + tBr(y)), r¥y)) ,
(4.14) (z,y,t)eM, Xx F X 1T,
ho(z, y, t) = (p(®, BE(Y, 1)), §(y, 1)) ,

By (4.12) we have h(M, x F' x I) U h(M, Xx FF x I)CW. Since, by
(4.11) and (4.14), h(z, y, 0) :(¢(x7 ar(y)), 74(¥)) :f(a,Z)(w’ Y), h(x, y, )=
(9’(% Briy)), 72(¥)) = ho(@, ¥, 0) and hy=, y, 1) = (9’(% B&(y, L), &y, )=
(@@, Brr)), ri¥)) = fi,m@, y) for (z, y)e M, x F, the relation (4.13)
holds. Thus f is a proper fundamental net. This completes the
proof.

REMARK 4. In [3] Ball defined four proper shape categories
A A L and P Here .&4° is our category &°,. He proved
that %% 1 =1, 2, 8, are isomorphic to each other. Denote by Sh}(X)
the shape of a locally compact space X in the category .&4% 4 =
0,1,2, 8. It is known that we can replace the category &, by the
category ./}, ¢ = 0,1, 2, 3, throughout this paper. For example, the
following theorem is proved.

THEOREM 4’ Let ©=0,1,2,8. If X is compact, X', Y and Y’
are locally compact, and Shi(X) = Shi(X’) end Shi(Y) = Shi(Y"),
them Shi(X xY) = Shi(X' xY").
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