
PACIFIC JOURNAL OF MATHEMATICS
Vol, 72, No. 1, 1977

ON PRODUCT OF SHAPE AND A QUESTION OF SHER

Y. KODAMA

In this paper the products in various shape categories
are investigated. In the weak shape category defined by
Borsuk, for arbitrary metrizable spaces X and Y there exists
always the product Sh^X) X Sh^Γ). In the shape category
in the sense of Fox, if X is a pointed FANR and Y is an
arbitrary metrizable space, there exists the product ShF(X) X
SMF) and the relation ShF(X) X ShF(Y) = Sh^X X Y) holds.
In the proper shape category in the sense of Ball and Sher,
the product does not exist generally. If X is a compactum
and Y is a locally compact metrizable space, the proper shape
of the product space X X Y is determined uniquely by the
proper shapes of X and Y.

1* Introduction* The notion of shape was introduced by Borsuk
14] for compact metric spaces in 1968. The concept was extended
to arbitrary metrizable spaces by Borsuk [5] and by Fox [10], to
locally compact metrizable spaces by Ball and Sher [1]. These exten-
sions form different shape categories to each other. We denote by
^ s (resp. ί̂ V) the strong (resp. weak) shape category in the sense
of Borsuk [6], by ^F the shape category in the sense of Fox [10]
and by <g*p the proper shape category in the sense of Ball and Sher
[1], The shapes of a metrizable space X in <ĝ , <^w, <^F and ^ v are
denoted by Sh^X), Sh^X), Sh^X) and Sh^X) respectively.

The purpose of this paper is to investigate the existence of the
products in the categories ^ , ^V, ^F and c^v. The following was
proved essentially by Borsuk [6].

(1) If X and Y are metrizable then the product Sh^(X) x
Sh^(F) in the category Cw exists and it equals Sh^ (X x Y).

We shall prove that
(2) If X is a compact metric space which has the same shape

as a compact ANR, then for every metrizable space Y there exists
the product Sh5(X) x Shs(Y) in ςfs.

It is known that the equality Sh5(X) x Shs(Y) = Sh*(X x Y)
does not generally hold.

(3) If X is a pointed FANR in the sense of Borsuk [6], then
for every metrizable space Y there exists the product Sh^(X) x
ShF(Y) in &F.

(4) In the category <ĝ , the product does not generally exist.
( 5) If X is a compactum and Y is a locally compact metrizable

space, then Shp(X x Y) is determined uniquely by Sh^X) and Shp(Y').
The assertion (5) solves a question raised by R. B. Sher in the
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Winter school "Shape theory and pro-homotopy" held in Dubrovnik,
January, 1976.

Throughout this paper all spaces are metrizable and maps are
continuous. AR and ANR mean those for metric spaces.

2 Definition and notations* A familiarity with the basic
terminology and notations of Borsuk's shape theory for metrizable
spaces [6], of Fox's shape theory for metrizable spaces [10] and of
Ball-Sher's proper shape theory for locally compact metrizable spaces
[1] is assumed. A number of other technical or specialized definitions
and notations are given in this section.

We denote by <& the shape category defined by Borsuk [6, Chap.
VII] for compacta whose morphisms are the equivalence classes of
fundamental sequences. Namely, we take for objects of ^ the class
of all compacta, assign to each l e ^ 7 a subset X' of the Hubert
cube M homeomorphic to X, and define a morphism from X to Y in
^ to be an equivalence class of fundamental sequences from X' to
Y' in (M, M). We denote by <ĝ  (resp. ^V) the strong (resp. weak)
shape category defined by Borsuk [6, Chap. Ill] for metrizable spaces
whose morphisms are the equivalence classes of strong (resp. weak)
fundamental sequences, by ^F the shape category defined by Fox
[10] for metrizable spaces whose morphisms are the equivalence
classes of mutations and by ^ the proper shape category of Ball
and Sher [1] for locally compact metrizable spaces whose morphisms
are the equivalence classes of proper fundamental nets. (cf. Ball
[3, p. 17].) The category ^ is regarded as a full subcategory of
each of the categories <g*Sf ^Wf <g*F and <^p. The shapes of a space
X in <gf, ξ?s, <gV, <afp and ^ are denoted by Sh(X), Shs(X), Slv(X),
Sh^(X) and Sh3)(X) respectively.

A space X is said to be a strong fundamental absolute retract
(SFAR) if, for every space Y containing X as a closed subset, X
is an S-retract of Y (cf. Borsuk [6, Chap. VI, §2]). A spaces X
is said to be a strong fundamental absolute neighborhood retract
(SFANR) if, for every space Y containing X as a closed set, X is
an S-retract of some neighborhood of X in Y. For compacta, these
concepts coincide with Borsuk's original one's, FAR and FANR (cf.
[6, Chap. VIII]). Obviously every AR is an SFAR and every ANR
is an SFANR.

Let X%, i = 1, 2, be compacta. A product of Sh(Xi) and Sh(X2)
is a triple (Sh(X),plf p2) where X is a compactum and /v-X—•Xi,
p2:X~+X2 are fundamental sequences (called projections) with the
property if Z is any compactum (that is, an object of &) and
fλ: Z —• Xί9 f2: Z —*X2 are arbitrary fundamental sequences there exists
a unique fundamental sequence f: Z -+X (up to the equivalence class)
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such that pf = f, and p2f = f2. The product of ShfXJ and Sh(X2)
is denoted simply by Sh(Xi) x Sh(X2) (suppressing projections). Pro-
ducts in the categories ^ s , <gV, <ϊfF and ^ are defined similarly.
We denote Sh^XJ x Sh5(X2), Sh^XJ x Sh^(X2), Sh^XJ x Sh^(X2) and
ShpCXJ x Sh3,(X2) the products in <ĝ , <̂ V, <jg>F and <&9 respectively.

It is known that in the category ^ there exists the product
Sh(X) x Sh(Γ) for arbitrary compacta X and Y. Keesling [13] has
proved that in the shape category of Mardesic and Segal [16] whose
objects are compact Hausdorίf spaces there exists the product for
any family of objects; namely, if {Xα: a e Λ) is a family of compact
Hausdorίf spaces there exists the product ΐ[aeΛ S h ^ X J and the
relation Π«6^Sh^(Xα) = ShMS([[aeΛXa) holds, where Sh^(X) means
the shape of X in the sense of Mardesic and Segal. Since Sh(X) =
Shĵ CX) for a compact metric space X (we consider only metrizable
spaces), the theorem of Keesling means the existence of the product
in the category ^ .

Let M be a space and X a subspace of M. Throughout the
paper, by U(X, M) we mean the set of all neighborhoods X in M.

3* Products in the shape categories*

THEOREM 1. Let X be a compactum with the same shape as a
compact ANR K. Then for every space Y there exists the product

x Shs(Y) in the category ^ s and Sh^X) x Shs(Y) = Shs(K x Γ).

From the example given by Godlewski and Nowak [11, p. 391]
it is known that in Theorem 1 the equality

x Shs(Y) = Sh5(X x Y)

does not hold generally and also the compactness of K is essential.

Proof of Theorem 1. Let L, M, N be AR's containing X, K, Y
as closed sets respectively. Since Sh(X) = Sh (K), there exist funda-
mental sequences a — {ak: K—*X}M,L and β — {/3fc:X—>K}LyM such that

(3.1) βa ~ iKtM and aβ ~ ix>L .

(See [6, Chap. Ill and VII] for notations.) Let π: M x N-+M and
μ:MxN~+N be the projections. Consider the S-sequences p —
aπ: K x Γ—>X and μ: K x Y —>3Γ, where π: K xY—>K and μ are
generated by π and μ respectively. We shall prove that the triple
(Sh^iΓ x Y),p, μ) equals Sh5(X) x Sh5(Γ). Let Z be a space and P
be an AR containing Z as a closed get. Suppose that

f={fk:Z > K x Y}P,MXN and g = {gk: Z >K x Y}P,MXN
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are S-sequences such that pf ^ pg and μf ΞJ μg. Let us prove f'eg. g.
S S o

Take a map r: M—+M such that for some Ue U(K, M) the restriction
r IU is a retraction of {7 to iL For each k, consider the map φk —
mfk x μfk P-+M x N. Since K is compact, it is easy to know that
the sequence {φk} forms an S-sequence which is S-homotopic to f.
Since K is an ANR and {fk} is an S-sequence, there exist a V e U(Z, P)
and a number k0 such that rπfk \ V ^ rπfk. \ V in K for k, k' ̂  fc0. Hence

(3.2) f ^ {rπfk0 x μfk} .

Similarly we know that there exist a F ' e U(Z9 P) and a &Lsuch that
rπgkV

f ~ rπgk,V in K for &, &' ̂  fclβ- Hence

(3.3) fif ^ {rπfcl x ^Λ} .

Since pf^pg, there exists a WeU(Z, P), T F c F n F ' , such that

7πfko\Wcϊ rπgh\W in K. Thus we have

(3.4) {rπfko x μfk) ̂  {rτr f̂cl x

Since μf ^ μg, it is proved that

s
(3.5) {rπgkl x μ/J ̂  {rπgh x ^Λ} .

By (3.2), (3, 3), (3.4) and (3.5) we have f 9: g.

s
Finally, suppose that S-sequences f — {fk: Z —> X}P,L and ^ =

{gk\Z-»Y}p,N are given. If we let βf = {φk: Z-+K}P>M (cf..(3.1)),
then it is proved by the same argument as in above that ψ =
{rφk x gk\Z—*Kx Y)P,MXN forms an 5-fequence such thatpψ a f and

~ g. This completes the proof.

COROLLARY 1. / / X is an FAR, then Sh^(X) x Sh^F) = Sh5(Γ)
for every space Y. If, in addition, Y is an SFAR, then Sh5(X) x
,Shs(Y) is an SFAR.

For, an FAR has the same shape as one point space (Borsuk
[6, p. 257]).

COROLLARY 2. / / a compactum X has the same shape as a
compact ANR K and Y is an SFANR, then 8hs{X) x Sh s(Γ) =

xΓ)eSFANR.

This is proved by the same argument as the proof of Theorem
1 and we omit the proof.
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EXAMPLE 1. Let X be the Warsaw circle. Then Xis an FANE
but not an ANR. Let J be the set of positive integers. The space
X x / is not an SPANR. This is proved by the same argument as
Godlewski and Nowak [11]. Imbedd X x J in an AR as a closed set.
Suppose that there exist a V e U(X x J, M) and an S-retraction r =
{rk:V-+Xx J}M,M- We can assume that V — \JkejVk, VkZ)X x {k},
keJ, and {Vk} is discrete. Since X is not an ANR, for each keJ
there exists a point xkeVkf) rk(Vk) - X x {&}. The set W - M -
Π {%• k 6 J} is a neighborhood of X x / in M. However, rk(V) <t W
for each fee J. Hence r is not an S-retraction.

In the category ^ w the product exists always as shown in the
following.

THEOREM 2 (Borsuk). Let X and Y be arbitrary spaces. Then
in the category ̂ w the product Sh^X) x Sh^(F) exists and Shw(X) x

This is proved essentially by Borsuk. The theorem is obvious
from the following lemma.

LEMMA 1. Let X, Y and Z be spaces and let M, N and L be
AR's containing X, Ϋ and Z as closed sets respectively. If f =
{fk: Z —>X}LiM and g — {gk: Z —>Y}LyN are W-sequences, then f x g =
{fk x 9h- Z —»X x Y)L,MXN ^ a W-sequence and the W-class [f x g] is
determined uniquely by [f] and [g].

The proof follows from the definitions of TΓ-sequences and W-
classes. (cf. Borsuk [6, Chap. IV(7.1)].)

EXAMPLE 2. Let Y be the subset of the plane as follows:

Y = {(x, y): x = 0, - 1 < y < 1}U{O, y): y = sin (π/2x), 0 < x£ 1}

Let X = {p} be one point space. Consider the maps/, g: X—>Ysuch
that f(p) = (0, 0) and g(p) = (1,1). Then / and g induce non equi-
valent morphisms in the category <ĝ  or ^Wf and induce equivalent
morphisms in ^F or <^p. Next, let Z = {(x, y): x = 0, 1, 2, ,
— 1 ^ y ^ 1} U {(x9 y): y = sin π/2(x — n)9 n < x <̂  n + 1, n = 0,1, •},
/ = {1, 2, 3, •} and R = the real line. Then Shs(J) = Shs(R x J) Φ
Shs(Z x J), Sh^(J) = Shw(R x J) = S V ( 2 x J), ShF(J) = Sh^i? x J) =
ShF(Z x J) and Sh,(J) ^ Shp(R x J) = Shp(Z x J) .

Next, we shall consider the product in the category <g*F. A
compactum X is called a pointed FANR (cf. [6, pp. 254-255]) if for
each x e X {X, x) is shape dominated by a pointed finite CW complex.
Our theorem is
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THEOREM 3. If X is a pointed FANR, then for every space Y
the product ShF(X) x Sh^F) in ^F exists and Sh^X) x ShF(Γ) =
ShF(X x Y).

For the proof we need a couple of lemmas. The following lemma
gives a useful characterization of a pointed FANR which is proved
by Siebenmann, Gillou and Hahl [20, Theoreme 5.8] and Edwards
and Geoghegan [9, Theorem 1.1].

LEMMA 2. Let X be a pointed FANR lying in the Hilbert space
M. Then there exist a decreasing sequence {Mk: k = 0,1, 2, •} of
neighborhood of X in M and a map <p: M x [0, oo)—•jkf satisfying
the following conditions.

For each r e [0, oo) the map τ: M—*M defined by τ(x) =

<p(x, r), xeM, is a homeomorphism onto .

(3.7) {Mk} forms a neighborhood basis of X in M.

(3.8) φ(x, r) = x, (x, r) eMx{0}U(Λf-Mo)x[0, oo)u U MMx[0, k] .

φ(Mk x[k + n, oo)) c Mk+n_u k = 1, 2, . , n = - 1 , 0,1,

2, , where M_x = Λf0 .

For et eri/ powί (a?, r ) e J l ί 0 x [ 0 , oo), ΐ / φ(a?f r) e Mk for

(3.10) some k, φ(x, r') e ikffc_2 for each rT e [r, oo), where M_2 =

The proof is easily obtained by making use of [20, Theoreme
5.8] and by a simple induction.

REMARK 1. Dydak, Nowak and Strok [8, Lemma 4] have proved
that if we replace the Hilbert space by an arbitrary AR in Lemma
2 then there exist a decreasing sequence {Mk} of neighborhoods and
a map φ satisfying (3.7), (3.8) and (3.9). If M is an AR containing
X and X is unstable in M in the sense of Sher [18, p. 346], then
it is proved that there exist {Mk} satisfying (3.7), (3.8), (3.9) and
(3.10). As seen in the proof of Theorem 3, the condition (3.6) is not
necessary to prove it. Hence it is enough for us to assume that X
is embedded unstably in an AR M.

From now on we assume that X is a pointed FANR lying in the
Hilbert space M and Y is a closed set of an AR N. We denote by
{Mk, k = 0,1, 2, •} a decreasing sequence of neighborhoods of X in
M and by φ a map from M x [0, oo) to M satisfying the conditions
(3.6M3.10).
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A neighborhood W e U(X x Y, M x N) is said to be basic if there
exist a closed neighborhood V e U(Y, N), an open covering {Va: aeΛ}
of V and a collection {Ua: Uae U(X, M), aeΛ} such that W =
\JaeΛUa x Va. The closed neighborhood V is said to be a base of W
and denoted by B(W).

From the compactness of X the following lemma is obvious.

LEMMA 3. The set of basic neighborhoods forms a cofinal sub-
system of U(X xY,MxN).

LEMMA 4. For every basic neighborhood W e U(X x Γ , M x N)
there exists a map β: B(W) —•[(), co) such that

if ψ\Mι x B(W) -+M x J5(TF) is defined by φ(x, y) =

(3.11) (9>(a?, i8(y)), y) /or (a?, i/JeΛ^ x S(TΓ), then Φ{MX x

„-. every (x,y)eM1 x B(W) and every re[β(y)9 oo),
(3.12)

(φ(#, r), #) e Tr.

Here Mι is the neighborhood of X in M described in above and B(W)
is the base of W.

Proof There exists an open cover {Va:aeΛ} of B(W) and a
collection {Ua\ Uae U(X, M), aeΛ} such that W = \JaeAUa x V*. By
the paracompactness of B(W) and (3.7), we can find a locally finite
open cover {V[:XeΩ} of B(W) and a map i: Ω —> {1, 2, 3, •••} such
that {V'χ} refines {Va} and [JλeΩ Mi{λ) xV'λc.W. Construct a map
β: B(W) -> [0, oo) such that β(y) ^ ΐ(λ) + 1 for each y e F^. To prove
that β satisfies the lemma, let (x, y)eM1 x B(W) and r ^ /5(̂ /). If
y e V[y then r ^ /S(̂ /) ̂  i(λ) + 1. By the property (3.9) of φf

x

Since (x, r)eM1 x [i(λ) + 1, ©o), we have (φ(a;, r), #) 6Λfi(λ) x F ^ c I f .
This completes the proof.

Proof of Theorem 3. Let π: M x N—>M and μ:M x N~+N be
the projections. We shall prove that the triple (Sh^(X x Y), π, μ) is
the product to Shp(X) and Shi,(X) where π and μ mean the mutations
generated by π and μ respectively.

Let Z be a space and let L be an AR containing Z as a closed
set. We must prove: Suppose that mutations f:U(Z, L)-+U(X, M)
and g: U(Z, L)—> ί/(F, i\f) are given. Then there exists a mutation
Λ: ί/(ίΓ, L) —> ί/(X x y, Λί x iV) satisfying the following conditions.
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(3.13) πh~f and μh~g

If ti\ U(Z, L) ~* U(X xY,M x N) is a mutation such

that πh' ~ f and μh! ~ g, then h ~ h! .

Without loss of generality (by taking a cofinal subsystem of {MJ
if necessary), we can assume that the mutation f has the following
property.

Let / : U -+V be any map in f. Then there exists an
(3.15)

Mt, i ^ 3, such that f(U) c Mi+2 aMt(zV .

First, let us construct a mutation h. Define h as the set of all
maps h satisfying the conditions:

(3.16) h: U >W, U e U(Z, L), W e U(X xY,MxN);

there exists a basic neighborhood We U(Xx Y, M x N)
( 3 * 1 7 ) such that h{U)aW(zW'

there exist / ef, g eg, domain of / — domain of g,

(3.18) and a: Z7—• [0, oo) such that range of / c Mz and range

oίg(zB{W)\

(3.19) h(x) = (φ(f(x), a(x)), g(x)), x e U ;

for every xeU and for every
( 3 2 0 ) r 6 [a(x\ oo) (φ(f(x), r), g(x)) e W

if πh{x) 6 Mi+2 for xeU then φ{f(x), r) e Mi for every
( M f ^ I ΐ

r e [ φ ) , oo) .

Let us prove that h forms a mutation. We have to prove that
h satisfies the conditions (2.1), (2.2) and (2.3) of [10, p. 49]. That h
satisfies (2.1) is obvious. Let W e U(X xY,Mx N). We must find
a member h of h whose range is W. Take a basic neighborhood
W such that WaW (cf. Lemma 3). By Lemma 4 there exists a
map β: B(W) -* [0, oo) satisfying (3.11) and (3.12). Choose maps f ef
and geg such that f:U~>Ms and g: U-+B(W), where Z7e U(Z, L).
Set a — /9#: Z7—>[0, oo) and consider the map h defined on the set U
as follows:

h(x) = (φ(f(x), a(x)), g{x)) , x e U .

By (3.11) and (3.12) h{U)aW, and for each xeU and each r ^
a{x) (<p(f{x), r\ g(x)) e W. Moreover (3.21) is satisfied by the property
(3.10) of φ. Hence h: U~+W belongs to h. Therefore h satisfies
(2.2) of [10].
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Finally, let ho,hί:U—+W be any maps in h. By the definition
of h there exist ft€f, g^eg, basic neighborhoods W{ and a(: U—>
[0, oo) for i = 0,1 satisfying (3.16)-(3.21). Since f and g are muta-
tions, there exist a U' e U(.£, L), homotopies ξ:U' x I ~* M3 and
77: IT x J —£(TFβ) U B{Wd such that £(», i) = ft{x) and 17(3?, t) = g,(x)
for a; 6 U' and i = 0,1. By Lemma 4 we can find a map /3: B(W0) U

[0, 00) such that if φ: M3 x (B(W0) U BdF,)) — Λf x (5(Tf0) U

X)) is defined by 9>(x, 2/) = (φ(x, β(y)), y) for (x, y)eM3x (B(W0) U
Ό), then

Ψ(M3) x (B(Wo) U B{Wd) c TΓ'» for each (x, y)eMsx

(3.22) (ΰ(TFβ) U B(TO and for each r 6 [/3(ί/), oo), (9,(3?, r), y) e

W :

Define a homotopy i^: Z7' x I-*M x N by

fli(», t) = (φ(ξ(β, t), β(v(χ, t))), 7){χ, t)\ (x; t)eU' x I.

By (3.22) Ht(U' x 7 )c ΐF ' . We have

H2(x,i) = (<p(ft(x), βglx)), glx)), x e Ϊ7', and for each a? e
(3.23) £7' and for each re[βgt(x), 00), (^(//aO, r), flr4(as)).6 TΓ,

Let iίi, i = 0,1, be the homotopies defined on the set U' x I as follows.

#,(», ί) = (φ(ft(x), tat(x)+(1 -t)βgt(x))t glx)){x, t) e U' x I

and % = 0, 1 .

Then, by (3.24) and (3.19)

Hf(a?, 0) - (^/.(α), βglx)\ glx)) , .
(3.25) g 6 27' and t = 0, 1 .

Hlx, 1) = hlx) ,

Since tat{x) + (1 — t)βgt(x) ^ min {a^x), βgt(x)} for each α e U', by
(3.20) and (3.22)

HIU' x I)aW .

By (3.23) and (3.25) we have K\Ur a h,\Uf in W. Thus Λ forms a
mutation.

It remains to show that h satisfies (3.13) and (3.14). By (3.19),
since μh = g\U for each heh, obviously μh ^ g. Let us show that
πh ^ Λ Suppose heh, f ef and πh, f:U—+V, where Ue U(Z, L) and
VeU(X,M). By the definition of h there exist f'ef and α:ί7~>
[0, oo) such that the range of /'cΛf8 and τrΛ,(aO = φ(f\x), cc(x)) for
xeU. Since f is a mutation, there is a £7' e U(Z, L) and a homotopy
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ξ: U' x I — AT, such that ξ(x, 0) = f(x) and ξ(x, 1) = /'(») for x e U'.
By (3.15) we can find Mf such that f(U')<zMi+2czMtcV. Take a
map β: U' — [0, <χ>) such that /9(a>) ̂  α(a?) and ^(f(a;, ί), £(»)) e V for
each a; 6 U'. Define homotopies H, H' and H" on the set U' by

», ί) = φ(ξ(x, t), β{x))

H'(X, t) = φ(f(x), tβ(x)) , X 6 U' .
H"(x, t) = φ(f'(x), ta(x) + (1 - t)β(x))

Obviously H(Ur x I)czV. Also, by (3.10) and (3.21) we have
H'(U' x I) U H"(U' x I) c Mt c F. Since πΛ(») = H(», 1) and f(x) =
H'(x, 0) for xeU',πh\U' cz f\U' in F. Thus h satisfies (3.13).

Finally, to prove (3.14), let heh,h'eh' and h,h':U-+W, where
Ue U(Z, L) and We U(X xY,Mx N). By the definition of h, there
exist fef,geg and α:Z7—>-[0, oo) such that h(x) — (φ(f(x), a(x)),
g(x)) e W for xeU. Without loss of generality we can assume
that

(range of πh) U (range of πh') c M3 and there exist a

collection {Va: aeΛ} of open subsets of N and a map

(3.26) i: Λ —>• {3, 4, 5, •} such that (range of μ/ι) U (range of

μh')czV=\JaeΛVa and

Since JΓΛ ~ f — πΛ' and μh ~ g ~ μh', there exists a {/' e ί/(Z, L)
such that TΓfeI[7' ~ πλ'11/"' in M3 and μh\U' =c μh'\U'in V. Let f: U' x
/—* Λf3 x F be a homotopy such that ξ(x, 0) '= (πh(x), μh(x)) and
ί(», 1) = (πh'(x), μh'(x)) = h'(x) for x e Z7'. Choose a map β: U' ~* [0, °o)
such that if a homotopy H is defined on the set U' x J by

, ί) = (^(πf(x, t), β(x)), μξ(x, t)), (x,t)eUf x I,

then H(U' x /) c Uαej-M^m x ^ α We have

H(x, 0) = (φ(πh(x), β(x)), μh{x))
H(x, 1) = (φ(πh'(x), β(x)), μh\x)) , X β *

Define homotopies if' and i ϊ " on [/' x / by

H'(x, t) = (φ(πh(x), tβ{x)\ μh(x)) , (x,t)eU' x I,

and

H"(x, t) = (φ(πh'(x), tβ(x)), μh'{x)) , (x,t)eUr x I

By (3.26) and (3.10) H\U' x I)ϋH"(U' x J ) c U««-iΛfi(«)
Moreover
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H\x9 0) = (φ(πh(x), 0), μh(x)) = h(x), H'(x, 1) - (φ(πh(x),

(3.28) £(a?)), /Λ(aO), Jϊ"(α?, 0) = (φ(πh\x), 0), μA'(αO) = h\x) and

#"(&, 1) = (φ(πh'(x), β(x)), μh\x)) for a? 6 £7' .

By (3.27) and (3.28) we have h\U ~ h'\U. This completes the proof
of Theorem 3.

COROLLARY 3. Let X be a pointed FANR (resp. FAR) and let
Y be an MANR (resp. MAR) in the sense of Godlewski [12]. Then
the product ShF(X) x ShF(Γ) exists and it is an MANR (resp. MAR).

This follows from Theorem 3 and [16, Theorem 2].

Problem. If X is a movable compactum in the sense of Borsuk
[6, Chap. V], for every metrizable space Y does there exist the
product ShF(X) x ShF(Γ)?

REMARK 2. Theorem 3 is strengthened as follows. By ^M denote
the shape category in the sense of Mardesic [17] whose objects are
topological spaces and morphisms are shapings. Then it is proved:

THEOREM 3'. If X is a pointed FANR, then for every paracom-
pact space Y the product Shi¥(X) x ShM(F) in ^M exists and Shif(X) x
Shi¥(F) = ShM(X x Y), where ShM(Z) is the shape of Z in the sense
of Mardesic [17].

Let us sketch the proof. We claim that the triple (ShM(Xx Y),
π, μ) is the produt of ShM(X) and Sh i f(F), where π and μ are the
shapings of X x Y to X and Y generated by the projections π: X x
Y-+X and μ: X x Y—>Y respectively. (See for the notations Mardesic
[17].) Let Z be a topological space. Suppose that any shapings
f:Z~>X and g: Z —>Y are given. We must find a unique shaping
h: Z -+X xY such that πh — f and μh = g. Let P be a simplicial
complex with metric topology and let s: X x Y —>P be a map. Since
X is compact and Y is paracompact, there exist a locally finite open
cover V of Y and a map ξ: X x Kv-+P such that ξ o ( l x x ψ) ~ s,
where Kv is the nerve of V and ψ:Y—+Kv is a canonical map.
Consider X as a subset of the Hubert space M. We use the same
notations as in the proof of Theorem 3. Since P is an ANR, there
exist a neighborhood W of X x Kv in M x Kv and an extension
ξ:W—+P of ξ. Let i:X-+Ms be the inclusion. Consider the maps
f(i):Z~+M3 and g(ψ): Z —• Kv. (We assume that M3 is an ANR.)
There exists a map α:iΓF-+[0, °°) such that if η: Z —*MZ x Kv is
defined by η(z) = (φ{f(i)(z), a(g(ψ)(z))), g(ψ)(z)\ *£%> then η{Z) c W.
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Let h(s) = ξη: Z —+ P. For a given map s: X x Y —> P, we have
defined a map h(s):Z~+P. The correspondence h is the required
shaping: Z ~+ X xY. That Λ satisfies πh — f and μh = g and the
uniqueness of A are proved by the same argument as the proof of
Theorem 3.

In the remainder of this section we discuss the product in the
category ^p. We assume that all spaces are separable. As shown
by Ball and Sher [1, 5], this does not loose the generality.

THEOREM 4. Let X be a ^dimensional locally compact space
and let Y be a locally compact space with the same proper shape
as a locally compact AR. If the product Sĥ CX) x Shp(Y) exists,
then Shp(X) x Shp(Y) = Shp(X).

For the proof we need a couple of lemmas. We let H = M — {w},
where M is the Hubert cube and w is a point of M.

LEMMA 5. Let X and Z be locally compact spaces contained in
H as closed sets. If X is O-dimensional, then every proper funda-
mental net (f, Z, X), where f = {fλ: λ 6 Λ}, fλ: H—*H9 is generated by
a proper map f:Z—>X. Moreover f is uniquely determined by the
proper fundamental class [f].

(See Ball and Sher [1, 3] for notations and definitions.)

Proof. Since dim X = 0, there exist collections {Fa: a e Ωt}, i —
1, 2, , such that for each i — 1, 2, ,

(3.29) the set F, = U {Fa: a e Ω%) is a neighborhood of X in H ,

if a 6 Ωi9 then Fa is compact, Faf] X ^ 0 and the
(o.oU)

diameter of Fa < 1/ί ,

(3.31) {Fa: a e Ω,} is discrete in H ,

(3.32) {Fβ: β e Ωί+1) refines {Fa: aeΩ%) .

Since f is a proper fundamental net, there exists a sequence {X^. i =
1, 2, } of elements of A such that

(3.33) λ, < λ m , i = 1, 2, ,

if λ, μ ^ λ,, X, μeΛ, then
( ' } f λ \ Z ~ f μ \ Z in Fί9 i = l , 2 , ••-.

Take a point a; 6 Z. By (3.31), for each i there exists a unique at e £*,
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such that fλ.(x)eFai. By (3.33) and (3.34) Fa.i)Fa.+1 for each i. If
we put f(x) = Γ\ΐ=ίFa9 then by (3.29) and (3.30)* f(x) consists of
exactly one point of X. Consider the map / : Z—»X. Obviously
/ is continuous. Let xe X. Take Fa., at e Ωi9 i = 1, 2, , such that
x e Fai. Since f~\Fai) afj}{Fa%)9 we have

r\χ) = n/r;^) n ^ .

This means f~\x) is compact. Finally, let F be a closed set of Z.
Set H< = U {*V ^ Π Λ4(F) =* 0 , α, e ί2,}, i = 1, 2, . . . Since fh is
closed, £T, is closed by (3.30) and (3.31). From the equality f{F) =
ΠΓ=i #* the closedness of / follows. Thus / is a proper map. It is
obvious that / generates f = {fλ} and is uniquely determined by the
proper fundamental class [f]. This completes the proof.

The following lemma is proved by the same argument as the
proof of [14, Theorem 2] and we omit the proof.

LEMMA 6. Let X and Y be locally compact spaces. If there

exists a proper onto map f:X—+Y such that for each yeY f~\y)

has a trivial shape and d i m F < oo, then Sh p (X) = Sh p (Y).

Proof of Theorem 4. We consider X and Y as closed subsets in
H. Suppose that Sh^X) x Shj,(F) exists. There exist a locally
compact space Z contained in H as a closed set, proper fundamental
nets f: Z—> X and g: Z —*Y such that the triple (Shp(Z), f, g) is the
product of Shp(X) and Shp(F). By Lemma 5, there is a proper map
f\Z—*X generating f. Note / is onto, because Shp(Z) = Sh^X) x
Shp(Y) and dimX = 0. Put Zx = f~ι{x)y xeX. Since / is a closed
map and dim X = 0, Zx has a neighborhood basis in Z consisting of
open and closed sets in Z. Consider two proper fundamental nets
ht and Λ2: Zx—+Z such that ht is generated by the inclusion map:
ZxczZ and Λ2 is generated by a constant map of Zx to a point of
ZxdZ. Since Y has the same proper shape as a locally compact
AR, by the definition of the product, we have hx ~ Λ2. This means

that Zx has a trivial shape. By Lemma 6, &\(Z) = Sh,,(X). This
completes the proof.

EXAMPLE 3. Let X be a 0-dimensional locally compact and non
compact space and let ΓeSUV00. (See Sher [18, p. 349].)

If Y has the end E{Y) consisting of only one point, then

the product Shp(X) x Shp(Γ) exists and Shp(X) x Shp(Γ) =
( 3 ' 3 Shp(X) Ψ Shp(X x Y), where E{Y) = F(Γ) - Γ and F(Y)

means the Freudenthal compactification of Y.
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If E(Y) consists of more than one point, then the
(3.36)

product Shp(X) x Shp(Γ) does not exist.

Let us show (3.35). Since E(Y) is one point, we can assume by
Sher [18, Theorem (3.1)] that Y = R+( = [0, <χ>)). Choose a proper
map μ: X—>R+. We claim that the triple (Sh^X), ί, μ) is the product
of Sh^X) and Shί)(F), where i is the identity map:X—>X, i and μ
are the proper fundamental nets generated by i and μ. Let Z be
any locally compact space. Give proper fundamental nets f: Z —> X
and g:Z-+R+. There exist proper maps f:Z~*X and g:Z—>R+

generating f and g. Since any proper maps of Z into R+ are properly
homotopic to each other, we have g ~ μf. This implies (Sh^X), i, μ) =

x Shp(Γ).
Next, let Y be an SUV°° such that E{Y) consists of more than one

point. By [18, Theorem (3.1)] we can assume that Yis a tree. Since
E(Y) has at least two points, Y contains a real line R as a closed
set. There exists a proper retraction r: Y —> R. Suppose that
Shp(X) x Shp(F) exists. By the proof of Theorem 4, we have Shp(X) x
Shp(Γ) = (Shp(X), i, ^0, where i is the identity: X—>X and μ is a
proper map of X into F. Consider two proper maps flff2:X—>Y
defined as follows.

= rμ(x)

Since (Sh^X), ί, //) = Shp(X) x Shp(F) and i? is a proper retract of
Y, we hav? fx ~ f2 in R. On the other hand, since Fft(E(X)) c #(#) =
{— oo}u{oo}9 where Fft is the extension of ft over F(X), it is easy
to prove that fx ψ f2 in R. This contradiction means that the product

v
Sh^X) x Shp(Y) does not exist.

EXAMPLE 4. Let X be a O-dimensional locally compact and non-
compact space. Then the product Sh?)(X) x Shp(Rn) does not exist.
Here Rn is the ^-dimensional euclidean space. The proof is similar
to (3.36). Namely, for n ^ 2, one can give a similar argument using
a proper map g: S"'1 x J—>Rn — {0} such that ^IS^"1 x {i} fails to be
null homotopic in Rn — {0} for i = 1, 2, . (Note that # is not
properly homotopic in Rn to any map which factors through a 0-
dimensional space.)

4* Proper shapes of the products*

THEOREM 5. Suppose that X is compact and X', Y and Y' are
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locally compact. If Shp(X) = Sh^X') and Shp(F) = Shp(Γ')f then
Shp(Xx Y) = Sh,(X x Y').

In the Winter school "Shape Theory and Pro-homotopy" held in
Dubrovnik, January, 1976, R. B. Sher raised the following question:

Let X be compact and let Xr and Y' be locally compact. If
Sh^X) = Sh^X') and Shp(R) = ShP(Γ0, where R is the real line, does
the equality Shp(X x ί ) = Shp(X' x Γ') hold?

Theorem 5 solves this question.

Proof of Theorem 5. Since X is compact and Shp(X) = Sh^X'),
X' is compact. Hence Sh(X) = Sh(X') by Ball and Sher [1, 3.15].
We divide the proof to the following two cases: (A) X = X', (B)

Y = r.
First, let us prove the theorem under the hypothesis (A). Let

H= M— {w}, where M is the Hubert cube and w is a point of M. We
consider Yf and Y as closed sets in H and X as a subset of M. Since
Shp(F) = Shp(F')> there exist proper fundamental nets f = {fλ: XeΛ}
from Γ to Yf in ff and # = {gμ: μeΩ} from Γ' to Y in i ϊ such that
gf ~ iγ and fg C=L iγt, where iγ, are and ix, the fundamental nets gener-

ic p
ated by the identities iγ\ Y—>Y and iτ,: Y'— Y'. (See for the definitions
Ball and Sher [1, p. 166].) Let i:M-+M be the identity. Then f =
{i xfλ:XeΛ} is a proper fundamental net of 1 x 7 to 1 x 7 ' in
M x H. Similarly g = {i x ^ :μeΩ} is a proper fundamental net of
I x 7 ' to I x 7, Obviously gf~ iZxγ and f̂  cz ixxY,. This means
Sh,(X x Y) = Shp(X x Γ').

Next, we shall prove the case (B). We consider 7 as a closed
subset of H and X, Xf as i?-sets in M. Since X and X' are Z-sets
in Λf, by the proof of Lemma 4.1 of Chapman [7], there exist homo-
topies ξ, η: M x I—>M satisfying the following conditions:

(4.1) ξ(x9 0) = x = )?(#, 0) , x e M ,

for any Z7e f/(X, Af) and U' e U(X', M) there exists a

(4.2) ί' G (0,1] such that ξ(x, t) e U f or x e U and t e [0, ί'],

and 7)(x, t) e U' for x e Ur and ί e [0, *'] ,

for any Ue U{X, M) and 17' 6 ί/(X', ΛΓ) there exists a

(4.3) ί' 6 (0,1] such that ζ(x, t) = x for x e X - U and ί 6

[0, t% and 37(0?, ί) = x for a? e X - U' and ί e [0, t'\ ,

(4.4) ί(α, t)$X and 77(0;, ί) ? Γ for xeM and t 6(0, 1] .

Since Sh(X) = Sh(X') and X, X' are £-sets in M, by Chapman [7,
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Theorem 2] there exists a homeomorphism h:M—X—*M—X'.
Define h: (M - X) x H~->(M - X') x H by h(x, y) = (h(x), y) for
(x, #) e (M — iϊ) x H. Obviously h is a homeomorphism. Denote
by A the set of all maps from H into (0, 1]. We define an order
^ in A as follows: If a, β eA and a{y) ^ β(#) for each y eH, then
a^> β. Obviously A forms a directed set by this order. Consider
the sets f = {/„: α: e A} and # = {ga: aeA} of maps fa, ga: MxH~+MxH
defined as follows.

(A x\ fa(χ> y) h(ξ(Xf a(y))f y)
(4.5) ~ , (x, y) e M x H .

0 (« ?/) λ " 1 ^ ^ α(y)), V)
By (4.4) /« and ga are well defined. We shall prove that f:XxY—>
Xf x Y and ^r:X' x F ^ I x Y are proper fundamental nets in M x H.
Obviously the maps fa and ga9 ae A, are closed. Since faι(%\ yf) =
{(a, y'):h-\x') = f(α;, α(y')), ^ 1 } and flrίV, »0 = {(», 1/0: ft(»0 =
i7(aj, α(j/0), ^ 1 } for (α;;, / ) e l x H, both / ί V , y') and g~\x\ yf) are
compact. Therefore fa and ^α are proper maps. Let W be any closed
neighborhood of X1 x Y in M x H. We can assume by Lemma 3
that ΫΓ is a basic neighborhood. Therefore there exist a locally finite
closed cover {Wa:aeΩ} of the base B(W) of TF and a collection
{Fα: 6K e Ω} of closed neighborhoods of Xr in Jkf such that W ~
\J«*QVaxWa. Set W = h-χW-X'x H)UXx B(W). We claim

(4.6) W e U(X xY,Mx H) .

To prove (4.6), it is enough to prove that M x B( W) — W is disjoint
from X x B(W), where the closure is taken in M x H. Since M x
B(W) -W'<z\JaeQ h~\{M - Va) x Wg) and {Wa} is locally finite in jff,

-wnxx5(PΓ)cu^^fe-^M-v a )χw a )nxχ
0 . Hence (4.6) is true.

Next, note that there exists a map ae A such that

(4.7) (ζ(x, t), 2/) 6 TΓ' for {x, y) e W and t e [0, α(y)] .

This is proved by making use of the properties (4.1), (4.2), (4.3) of
the homotopy ζ, the paracompactness of B(W) and Tietz's extension
theorem. By (4.7) and the definition of W we have fa\W'\W'-+W.
Suppose that βeΛ and a ^ β. Define a homotopy φ on the set
W x I by φ«x, y\ t) = K(ξ(x, ta(y) + (1 - t)/S(»)), V) for (», ») e W
and ί e I. Since a<* β, we have ^<PF' x I)aW by (4.7). Obviously
φ is a proper map. This means that fa \ Wf ~ fβ \ W in W. Thus we

v
have proved that for a given closed neighborhood W of X' x Y in
M x H, there exist a closed neighborhood W of I x Γ in M x H
and an index α e Λ such that if β ^ a then / α | TΓ' ^ //, | ϊ^' in W. This
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implies that f = {fa} is a proper fundamental net. Similarly it is
seen that g = {ga} is a proper fundamental net.

Finally let us prove

(4.8) gf ~ iXχγ and fg ~ ίx,xγ .
p P

Take a closed basic neighborhood We U(X xY, M x H). There exists
an aeΛ such that

(4.9) (ζ(x,t),y)eW for (x,y)eW and ί e [0, α(y)]

Consider the map fa:Mx H~^M x H,faef (cf. (4.5)). By the same
way as the proof of (4.6) it is proved that

W = M x B(W) - /α(jkf x B( W)) 6 U{X' xY,MxH).

From (4.3) it follows that there exists a β e Λ such that

(4.10) if (α?, y) ί TΓ then (37(3, ί), y) = (a?, T/) for each t 6 [0, /3(i/)] .

Consider the map gβfa:Mx H~+ Mx H. If (x, y) eX, then gβfa(x, y) =
{η{ζ{x, a(y))f β{y)), y). Since (ξ(x, a(y)), y) t W, gβfa{x, y) - (ζ(x, a{y)\ y)
by (4.10). Define a homotopy H on the set W x I by H((x, y), t) =
(f (a?, ία(2/)), 2/), (a?, i/) 6 TΓ and t 6 I. From (4.9) it follows that
H(W x I)cW. Therefore we have gβfa\Wc^iw in W. By the

p
choice of a and β, we can see that if a' ^ a and βr ^ β then
ffiί'/«') W — v i n ^ Thus we have proved that if W is a closed basic

neighborhood of X x H in M x H, then there exist a, βeΛ such

that if α' ^ α and /5 ̂  β then gβ/faf\W ^ iw in ΫΓ. This proves the

first relation of (4.8). The second relation of (4.8) is proved similarly.
This completes the proof.

REMARK 3. Theore 5 implies that if X is compact then Shp(X x Y)
is uniquely determined by Sh^(X) and Shp(F) However Shp(XxY)
is not generally the product of Shp(X) and Sh^F). Because, if Y
is a locally compact, non compact and 0-dimensional space then
Shp(X) x Shp(Γ) need not exist (cf. Example 3).

Following Ball [2, p. 185] a locally compact separable metric
space X is said to be an absolute proper shape retract (APSR) if X
is a proper shape retract of every locally compact separable metric
space Y in which X is properly embedded. Here X is said to be
properly embedded in Y if X is a closed set of Y and the injection
i: X-+Y is end preserving, that is, F(i)\E(X): E{X)~>E(Y) is injec-
tive, where E(X) = F{X) — X is the remainder of the Freudenthal
compactification F(X) of X (cf. [2, p. 180]). Sher [19] defined an
absolute neighborhood proper shape retract (ANPSR) as follows: Xe
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ANPSR if and only if for each locally compact separable metric
space X* containing X as a closed set there exists a closed neighborhood
X" of X in X' such that X is a proper shape retract of X". We
shall prove that

THEOREM 6. If X is a pointed FANR (resp. FAR) and Y is an
ANPSR (resp. APSR), then X xY is an ANPSR (resp. APSR).

Proof. We give the proof in case X is a pointed FANR and Y
is an ANPSR. The other case is proved similarly and we omit the
proof.

Let X be a pointed FANR and Y e ANPSR. Since Y e ANPSR, by
[19, Corollary (6.3)] there exist a locally compact ANR H in which
Y is properly embedded, an AR N containing H as a closed set and
a proper fundamental net r = {rλ: XeΛ}: H-+Y such that rλ:N—+N
and τλ{y) = y for yeY and XeΛ. Consider X as a Z-set of the
Hubert cube M. By Lemma 2 and Remark 1 there exist a decreasing
sequence {Mk: k = 0, 1, 2, •} of neighborhoods of X in M and a map
φ: M x [0, oo) —> M satisfying the properties (3.7), (3.8), (3.9) and (3.10).
((3.6) is not required.) We can assume that Mx is a compact ANR.
By Ω denote the set of all maps a of H into [0, oo). We define an
order <Ξ in Ω as follows: If a, β e Ω and a{y) ^ β{y) for each y eH,
then a <̂  β. Then Ω becomes a directed set. For a pair (a, X) e
Ω x Λ, define a map fa>λ): M x H-+M x H by

(4.11) /(«,»(&, y) = (φ(x9 arλ(y)\ rλ(y)) for (x,y)eM x H .

Set f = {fa,λ): (α, λ)e i3x Λ}. For each (α, λ) ei2 x Λ, if (a?, #) 6
XxY, f{a,λ)(χ> V) — (χ> v) because <p(x, r) — x for x e X and r 6 [0, oo)
by (3.8) and rλ(y) = y for yeY. Thus, to prove the theorem it is
enough to show that f is a proper fundamental net of Mι x H to
1 x 7 , because this means that X x Y is a proper shape retract of
a locally compact ANR Mιx H and the theorem follows from ]19,
Corollary (63)]. Let W be a basic neighborhood of X x Fin Λf x H.
There exists an <%ei2 such that

if (α?, y)eMίx B(W) then (<p(#, r), y) e ΪΓ for each
(4.12)

Since r is a proper fundamental net, there exist a λ e i and a closed
neighborhood F of Γ in B(TΓ) such that if λ ^ μ then r ; | F ^ r J F
in B{W). We claim

(4.13) if 08, μ) ^ (α, λ) then fiβtZ) \Mxx F^ fiβ,μ)\Mλ x Fin W.
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To prove (4.13), let ξ: F x I—> B(W) be a proper homotopy such
that ξ(y, 0) = rλ(y) and ζ(y, 1) = rμ(y) for y e F. Define proper homo-
topies hx and h2 on the set Mx x F x I by

Wα?, y, ί) - (9?(a?, (1 - t)arλ(y) + tβrλ{y)), rλ{y)) ,

(4.14) (a?, y,t)eM1x F x I,

», i)), ξ(y, ί)) ,

By (4.12) we have h1{M1 x Fx 1)1) h2{M1 x F x I)aW. Since, by
(4.11) and (4.14), K(x, y, 0) = (φ(x, arλ{y)), rλ{y))=f{a>λ){x, y), h,{x, y, 1) =
{φ{x, βrλ(y)), rλ(y)) = h2{%, y, 0) and ht(x, y, 1) = (φ(x, βξ(y, 1)), ξ(y, 1)) =
(φ(x, βrμ(τ)\ rμ(y)) = /(̂ >/0(a?, 2/) for (a?, y) e.Mί x F, the relation (4.13)
holds. Thus / is a proper fundamental net. This completes the
proof.

REMARK 4. In [3] Ball defined four proper shape categories
£<%\ ss9\ S^ and S<%\ Here ^ ° is our category <afp. He proved
that S^f i = 1,2, 3, are isomorphic to each other. Denote by Sh*(X)
the shape of a locally compact space X in the category S%*fi =
0,1, 2, 3. It is known that we can replace the category <g*p by the
category 6^1, i = 0, 1, 2, 3, throughout this paper. For example, the
following theorem is proved.

THEOREM 4' Let i = 0, 1, 2, 3. // X is compact, X', Y and Y'
are locally compact, and Sh*(J5Γ) = Sh'(X') αwd ShJ(Γ) = ShJ(Γ0,
ί^e^ Sh;(Z x Y) = ShJtr x Γ').

REFERENCES

1. B. J. Ball and R. B. Sher, A theory of proper shape for locally compact metric
spaces, Fund. Math., 8β (1974), 163-192.
2. B. J. Ball, Proper shape retract, Fund. Math., 8 9 (1975), 177-189.
3. f Alternative approaches to proper shape theory, to appear in Proc. Charlotte
Top. Conference.
4. K. Borsuk, Concerning homotopy properties of compacta, Fund. Math., 62 (1968),
223-254.
5. r Qn the concept of shape for metrizable spaces, Bull. Acad. Polon. Sci., 18
(1970), 127-132.
6. , Theory of Shape, Warszawa, 1975.
7. T. A. Chapman, On some applications of infinite-dimensional manifolds to the theory
of shape, Fund. Math., 76 (1972), 181-193.
8. J. Dydak, S. Nowak and M. Strok, On the union of two FANR-sets, Bull. Acad.
Polon. Sci., 24 (1976), 485-489.
9. D. A. Edwards and R. Geoghegan, Shapes of completes, ends of manifolds, homotopy
limits and the Wall obstruction, Ann. of Math., 101 (1975), 521-535.
10. R. H. Fox, On shape, Fund. Math., 74 (1972), 47-71.
11. S. Godlewski and S. Nowak, On two notions of shape, Bull. Acad. Polon. Sci., 20
(1972), 387-393.



134 Y. KODAMA

12. S. Godlewski, Mutational retracts and extensions of mutations, Fund. Math., 84
(1974), 47-65.
13. J. Keesling, Products in the shape category and some applications, to appear.
14. Y. Kodama, On the shape of decomposition spaces, J. Math. Soc. of Japan, 26
(1974), 635-645.
15. , On shape of product spaces, to appear in Gen. Top. its Appli.
16. S. Mardesic and J. Segal, Shapes of compacta and ANR-systems, Fund. Math., 72
(1971), 41-59.
17. S. Mardesic, Shapes for topological spaces, General Topology and its Applications,
3 (1973), 265-282.
18. R. B. Sher, Property SUV°° and proper shape theory, Trans. Amer. Math. Soc,
190 (1974), 345-356.
19. , Extensions, retracts, and absolute neighborhood retracts in proper shape
theory, to appear in Fund. Math.
20. L. C. Siebenmann, L. Guillow and H. Hahl, Les voisinages ouverts reguliers: criteres
homotopiques dy existence, Ann. Sci. E. N. S., 7 (1974), 431-462.

Received July 14, 1976 and in revised form February 16, 1977.

UNIVERSITY OF TSUKUBA

IBARAKI, JAPAN




