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ON INTEGRAL REPRESENTATIONS OF PIECEWISE
HOLOMORPHIC FUNCTIONS

GERHARD K. KALISCH

Let D be the interior of the unit circle in C, Dc its
exterior and T the unit circumference. We consider certain
piecewise holomorphic functions that are holomorphic in D
and also in Dc. This paper deals with those piecewise holo-
morphic functions that are representable by means of complex
Poisson-Stieltjes integrals on T; we call this set of functions
Pi. The set of all piecewise holomorphic functions (holo-
morphic in D and in Dc) we call P. Earlier work—see Rolf
Nevanlinna, Eindeutige Analytische Funktionen, Springer,
Berlin, 1953 and references there—dealt with positive
(Herglotz-Riesz) or real (Nevanlinna) measμres; we shall use
here the entire space M of bounded complex Borel measures
on T. This gives the theory more flexibility. We consider
characterizations of functions in P representable by means
of complex Poisson-Stieltjes integrals, uniqueness questions,
the nature of the mapping between the subset P1 of P of
representable functions and M, as well as the ring structures
in M (under convolution) and P1 (Hadamard products), and
questions of derivatives and integrals. We end with an ap-
plication to Fourier-Stieltjes moments relative to measues
in M.

We call a function FeP representable if there is a measure
m e M so that F = \Pcdm + k where Pc = Pc{z) = (β" + z)/(eu - z) is
the complex Poisson kernel, & is a piecewise constant function in P,
and where the limits of integration are omitted when they are 0
and 2π respectively. A function F e P is said to be of real type if
Fiz"1) = - T\z) for all zeD{jDc. The functions

(1) G = GF(z) = —(F(z) - TW1)), H = HF(z) = - —(iF{z) + iFψ^))

are of real type; we have F - G + iH and FePx if and only if G
and H are in Px. — The decomposition of the complex measure m into
its real and imaginary parts is given by m — (l/2(m + m)) +
i((l/2i)(m — m)) = (Re m) + ί(Im m) where m is defined as usual by
I g dm = \g dm for continuous functions g on T. If the represent-
able function FePx is given by F = \Pcdm + k, then GF =

ίp^(Rem) + l/2(fc - k) and iϊ^ = \pcd{lmm) + (l/2i)(fc + fc). - If
J r . J
meikf, we write my = Iβ i3tdm.
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The following theorem characterizes the elements of Pι among
those of P.

THEOREM 1. The function FeP is representable if and only if
there is a constant BF such that

(2) ' f I F(r eu) - F(χ'ιeu) \dt^BF for all r e [0,1) .

Note that if F is of real type this becomes Nevanlinna's condi-

tion \ I Re F{r eu) \ dt <; BF for all r e [0,1); we deduce our theorem

from Nevanlinna's.

Proof. The representability of F implying that of G and H,
Nevanlinna's theorem asserts the existence of constants BG and BH

such that

( 3 ) ί I Re G(r eu)\ dt ^ BG, \ | Re H(r eu) \dt^BH

for all r 6 [0,1). Thus, since 2 Re G(z) = Re F(z) — Re F{z~') and

2ReJ5Γ(s) = Im F(z) - I m ί 7 ^ 1 ) , (3) implies (2). Conversely, let F

satisfy (2). Then G and H given by (1) satisfy (3):

1/2 f I Re F{reu) - Re F(r~ιeu) \dt= ί [Re G(r eu) | dt ^ 1/2 ί| F(reu) -

F{r-ιeil) \dt^BF and similarly 1/2 ί | Im F(r eu) - Im F(χ-ιeu) \ dt=

11 Re H(reu) \dt<LBF so that by Nevanlinna's theorem there exist

measures m^ and m2 in M which are real such that G = \pcdmι + kx

and H = \Pcdm2 + k2 (for suitable constants klf k2) so that F =

1 Pc(dm1 + idm2) + (fci + ik2) = \ Pcdm + k with m = mι + im2, k = k1 + ik2

and F e P ! .

Representations F = \Pcdm + A; are clearly not unique: adding a

multiple ah of Lebesgue measure (aeC) to m merely changes the
r

constant: F — \Pcd(m + ah) + &' with k' = k — 2πa in D and &' =
fc + 2ττα in Dc. It is, however, possible to standardize, and thus to
make unique, the representations. This is done in the following
theorem which also presents an inversion formula expressing m and
k in terms of F.

THEOREM 2 If F = \pcdmι + kι= \Pcdm2 + k2 with kx the same

constant in D and in Dc and similarly for k2f then mί = m2 and
fc1 = Jc2. If FeP1 and if we define

( 4) mF(t) = (l/4ττ)limΓ (F(rei8) - F(r~ιei9))ds
r\l JO
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( 4 ) kF = — (F(0) + F(oo)) both in D and Dc ,

then

( 5 ) F =

uniquely.

Thus all functions FePt have a (unique) representation with the
constant the same in D and Dc. We do not wish to confine ourselves
to this representation in view of Theorems 4-7 below.

Proof. If F = G + iH as in (1), then Nevanlinna's theory says
that there are measures mG and mH and constants kG and &H given

by mG(t) = (l/27r)limr τ ι £ Re G(r βΐs) cte = (l/4π) limr n Γ (Re F(r eίs) -
Re F(r~'e^ds, G = jpσdmβ + ̂  with fc(7 = l/2(G(0) + G(oo°)) = l/2(G(0)-
G(0)) = i Im G(0) with similar expressions for mH, kHy H. Thus mF

and fcF are as given in (4) and (5) is therefore true. The uniqueness

results from this: If F = \Pcdm + k where k is the same constant

in D and D% then F(0) = m(Γ) + fc, F(oo) = - m(Γ) + k so that

2 & = JP(0) + F(oo). If now F = ί P^mi + fc = ί Pcdm2 + fc, then

ϊP ί̂Zm = 0 where m = m1 — m2 so that m, = 0 for all integers j

and m = 0, m1 = m2. —Note that (4) and (5) can also be deduced
directly from our hypothesis (2) and the expressions

F(z) = (l/4π)[(eu + r-tyW-r-tyiFire") - F(r-ιeu))dt + kF(\z

F(z) =

Condition (2) which characterizes representability can be used to
introduce a natural norm in P l β If jFeP x define | | J P | | 0 =

supo^<ijl^(re«) - ^(r-V1)! dί and | | F | | = | | F | | 0 + | ^ | . The following

lemma relates | | JP | | 0 to \\mF\\ for mFeM.

LEMMA. 11^110^24^1^^11 ^ 6 | | F | | 0 .

Proof. (1) We have for m e M the definition 11 m \ | = Var |Jff[m] =
sup^Σis: \m(tk) — ̂ (^-i)l over all partitions E: 0 = to<tt< <tn = 2π
with /, = [tk_19 tk]. Let JDF(r, s) = Z?(r, s) = F(rβί8) - JPCr-V). Then
llm^H = (l/4τr) sup £ J l im r ΣJ \ D(r, s)ds where we have used (4).
Thus | |m*|| ^ (l/4τr)sup^ limr Σ* \χ \D(r9 s)\ ds = (l/4π)\imr[\D(r, s)\ ds =
(1/47Γ) | ! ^ Π
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( 2 ) When Fx and F2 are in Px we have \\F, + F2\\0 ^ \\F.
II 2̂ 2 Ho since

( 6 ) \F,+ F 2 | | 0 - sup \\DFι + DF2\ ^
0£r<lJ l -i

Thus if F = G + iH as in (1), we have | | F | | 0 ^ | | G | | 0 + ||£Γ||0 and
since 2mG = mF + mF and 2imH = mF — mF we have | |mG | | ^ \\^F\\

and 11 mH \\<L\\mF\\. We next establish the inequality 11 (5110 <; 12ττ 11 mG 11.
We have G = Gx — G2 corresponding to a decomposition m^ = T ^ — m2

for positive measures mι and m2. We also have 11G \ |0 ^ 11G1 \ |0 + 11G2110.
If some function Fo 6 Px has nonnegative real part and so corresponds

to a positive measure m0, we have 112̂ 01 Γo = 21imr I ΈLeF0(reu)dt=

4π Re JP0(0) = 4πmo(T) = 4ττ | |m o | | . Let now m^ί) = Ydiτ\l[mG] and

m2(ί) = mi(ί) — mG(t). Then HmJI = | |m f f | | and | | m s | | ^ 2 | |m f f | | so that

^ l | G 1 | | o + IIG.Ho ^ 12ττ | |mβ | | ^ 12ττ ||m^|| and similarly | | f Γ | | 0 ^

m F | | , i.e., the first inequality asserted in the lemma is proved.

THEOREM 3. The function F\-*\\F\\ = ||2^||0 + \kF\ is a norm
on Px. The map φ: Mx C~> Px given by (m, k) \-+ F = \Pcdm + k is
a 1-1 linear bicontinuous map of the Banach space MxC (with
usual norm topology) onto Pγ (relative to the norm topology based
on \\F\\) so that, in particular, Pλ is a Banach space with its
norm. A sequence (m, , kj) converges to (m0, k0) where the conver-
gence of the measures is weak* and that of the k3- the ordinary
convergence of complex numbers if and only if F3 —* Fo for the cor-
responding functions uniformly on compact sets and there exists a
constant B with \\F9 \\ ^ B for all positive j .

Note that φ would not be well-defined if we did not use the
(unique) representation of F with k the same in D and Dc; see (4),
(5).

Proof. (1) The first part of the theorem is just a summary of

assertions proved earlier. (2) Suppose mj—+m0 weak*. Then \Pcdmj—+

S J
Pcdm0 pointwise in DiJ Dc; on every compact subset of D U Dc the

family I \ Pcdm5 \ is uniformly bounded so that by virtue of normal

family theory the convergence \Pcdm5—> \pcdmo is uniform on com-

pact sets. The weak* convergence of m, to m0 says that the \\mό\\

and hence, by the lemma, the H^Ho are bounded. The convergence
\Pcdmj~-*\PcdmQ uniformly on compacts and the convergence kj~+k0
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imply that Fj~+F0 uniformly on compacts and that the \\Fj\\ are
bounded.—The converse is similar: If F3 —•> Fo uniformly on compacts
and if the ||.F/|| are bounded, then first by the lemma the ||m, ||
are bounded and \tdm3~+\tdmQ on the dense subset {t} of trigono-
metric polynomials on T and this, together with the boundedness
of the \\mά\\ implies the weak* convergence of m3 to m0.

Note that if we consider the restriction φr of φ to Λf, then the
image φ{M) in Px is the closed subspace consisting of all F with
F(0) + F(oo) = 0. Then map^ r has of course the same properties
as φ.

Let F(D) and F{DC) be the parts of FeP in D and Dc respec-
tively. When F is merely in P, the relation between F(D) and
F(DC) is of course totally arbitrary. If, however, FePlf there is
a relation. First, if we take two arbitrary functions / and g with
the proviso that/be holomorphic in {z; \z\ < 1 + a) and g holomorphic
in {z; I z \ > 1 — 6} (for positive a and 6) and then combine their re-
strictions to D and Dc respectively, then F with F(D) = f and
F(DC) — g will be in Px\ otherwise, however, the relation between
F(D) and F(DC) is governed by the following theorems.

THEOREM 4. A function FeP with F(D) constant is in Pλ if

and only if F — \Pcdm + k where m is absolutely continuous with

derivative fτeLx and Fourier series Σoβ"*^- and which is the
boundary function of f{z) antiholomorphic in D given by χ o zja3 .

Similarly F(DC) is constant if and only if F — \Pcdm + k with ab-
solutely continuous m whose derivative gτ 6 Lγ has Fourier series
Σo eίjtbj and is the boundary function of g(z) — Σ o z*bj holomorphic
in D.

Proof. This is just the F. and M. Riesz theorem—the necessities

are obvious. Suppose now that \pcdm + k = d, a constant in D,

then m(T) + k = d and, since Pc - 1 + 2Σι e~ i j tz3 i n A w e conclude

that [pcdm + fc = 1(1 + 2 Σ i eijtzj)dm + k = d + 2 Σ i *MJ" = d so that
J r J r _

m. = o = \e~ijtdm (j = 1, •) i.e., \eijtdm = 0 for all positive integers
y, so that m is absolutely continuous with derivative m! = fτ{t) with
Fourier series Σ o ^ ' ^ and the first half of the theorem is proved.
The second half proceeds the same way.

Let MQ be the subset of M consisting of absolutely continuous
measures with derivatives gτ e Lγ with Fourier series Σ i ufi'^

THEOREM 5. A function f holomorphic in D is the part F(D)
for some function FeP^f and only if disto^r<1 (mr, MQ) <^B<°o for
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some constant B where mr is the absolutely continuous measure
with derivative f(reu) and dist is based on the usual norm in M.

This criterion contains the criteria contained in the Herglotz-
Riesz and Nevanlinna theorems.

Proof. For the necessity suppose we have FeP, with F(D) =f
in D. To show that disto^r<1(mr, Mo) <; B, we find for each r e [0,1)

ameasure nreMQ with \\mr—nr||=supιιci|oo=1 1 cd(mr — nr) ^ B, taken
over all continuous functions c on T. Now m'r = f(reu) — F{D){reu)~
F{reiι) and our basic criterion (2) furnishes nr with n'τ =

F{r~ιeu) so that dist(mr, Mo) ̂  \\mr-nr \\ ^ supr [

For the sufficiency, suppose that dist(mr, Mo) ^ B. This implies
by the weak* compactness of bounded sets in M that there exists a
sequence rd e [0,1) with r5 increasing to 1 and measures nr e Mo such
thatmr—nr—+m e M(weak* convergence). Writenr

r — ̂ ιaό{r)e~ijt. Then

L(r) = [Pc{f(reu) - Σiaά(r)e-ijt)dt-+ ί Pcdm as r\l. Now L(r) =

4tκf(rz) — 2π/(0) while Ip^cίm furnishes a function (in Dc) that is

holomorphic in Ώ\ Thus \P̂ cZm = Fe P1 yields a function with

F(D) = / + const.
It is clear from this argument and from Theorem 4 that there

are many functions FePt with F(D) = f + const.: the difference of
any two of them is characterized in the second half of that theorem.

In addition to its Banach space structure, M has also a ring
structure with respect to convolution of measures. The correspond-
ing ring structure in P1 is given by the Hadamard product: If /
and g have expansions ^a0z

5 and ΣoM^' respectively, define f*g
by Σo^i&i^> if / a n ( i Q have expansions Σ o ^ ~ y a n ( i Έiod3-z~j re-
spectively, define f*g by — ̂ c5d5z~5. If JP and G are in P, then
the Hadamard product F*G is defined in D and Dc according to the
rules just mentioned for D and Dc respectively.

THEOREM 6. If Fx and F2 are in Pγ with Fd = \pcdmό + kd where

the kj are piecewise constants in P1 then Fλ*F2 = F = \Pcdm -{- ke P1

and

kjc2 + k.

( 7 ) m — 2(m^m2), k —

+ m1(T)m2(T) - kjct + ktm2{T) + k2mt(T)

in D and Dc respectively.
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Proof. The proof is a simple calculation based on the formula

(mί*mi)ί = mίtjm2tj: If zeD then \Pcd(m^m2) = m1{T)m2{T) +

2 Σi ^i,A,α2α with analogous expansions for Fx and JP2. We obtain
( ^ ί ΰ W = W Γ ) + WWΓ) + i,) + 4 Σ i ^ l i Λ . 2 β in # with a
similar equation in Dc so that (7) is established.

COROLLARY. The map (F, G)\-* F*G is continuous in both vari-
ables in the norm of P1#

The usual Banach algebra inequality || F*G\\ ^ ||F\\ \\G\\ is not

valid in P 2 : take F = G = 10 + z in 2) and equal to 10 + z'1 in Dc.

The m a p ^ of Theorem 3 is t h u s not an isometry.

. If m e J I ί , define Fm by

( 8 ) Fm = —\pcdm + km, 2km = - m ( Γ ) in D and ra(T) in Dc .
2 *>

Let P2 be the subset of P1 consisting of all F will F(0) = F(oo) = 0;
it is a closed subalgebra of Px. The following immediate consequence
of the preceding theorem is worth stating separately.

THEOREM 7. The map ψ:M—*P2 given by (8) is a linear conti-
nuous open epimorphism of the Banach algebra M to the Banach
algebra P2 with kernel the constant multiples of Lebesgue measure.

Similar statements are valid about other subalgebras of M x C
and Plf e.g., for the subalgebra of M of all m with m(T) = 0 and
the subalgeba of P2 of all F with kF = 0; the kernel of the restric-
tion of ψ to this subalgebra of M is determined on the basis of
Theorem 4.

Our using complex measures makes the following considerations
possible. We define derivatives of functions in P as usual (i.e., in
D and Dc separately). If G = Ff for functions in P we call F an
integral of G. We shall use the phrase that F is differentiate (or
integrable) in Px if F and Ff are in Px. Differentiability of F in
Px imposes a strong restriction of F; integrability is much less re-
strictive although infinite integrability is of course very restrictive.
In what follows all functions in Px will be in the standard represen-
tation (5).

THEOREM 8. A function F = \pcdn + k has a derivative Ff =

\pcdm + k! (all in Px) if and only if n is absolutely continuous

with derivative g of bounded variation and g(0) = g(2π) = 0. If F
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is differentiable in Pλ then mlt) = — i I e~ίs dg, m^ = 0, ft' = m(T).
r Jo

Or equally well: A function G = \Pcdm + ft' has an integral F=

\Pcdn + ft (all in PJ if and only if m_t = 0 and kf = m(Γ). 7/ G

is integrable in Px then n is absolutely continuous with derivative

<7 of bounded variation and g(0) — g(2π) — 0, and g(t) = il eίsdm.
Jo

Proof. We prove the first version of the theorem. Necessity:
(1) If F' = J ( - l -2ΣιZ~jeijt)dm(t) + k' = - m o - 2 Σ i m _ ^ + fc' (ex-
pansion in .Dc) is to be the derivative of a function in Px, we must
have -ra 0 + fc' = — m(Γ) + ft' = 0 and m_t = 0. (2) Consider
i\Pc\ ei8dm(s)dt and expand Pc. Treat ί) and J9C separately. In
the expansion, change the order of integration and differentiate;
using m_! = 0 and ft' = m(Γ), we see that we have obtained Ff.

Thus F = IPccίw + ft = i I Pc \eisdm{s)dt + const.; the uniqueness as-

sertion of Theorem 2 then implies that n is absolutely continuous

whose derivative g(t) = i\ eisdm(s) which is of bounded variation
Jo

with g(0) — 0 and g(2π) = im_x = 0; this also shows that m(ί) =

— il e~i8dg(s) as desired.—Sufficiency: Suppose JF = IP^d^ + ft with

absolutely continuous n whose derivative g is of bounded variation

and flr(O) = #(2π) = 0: to show that F is differentiable in Px with

ί7' = ίpccίm + m(Γ) where m(ί) = —i\*e~<edflr(s) and m_L = 0; the
J Jo

last equation is immediate: m_x = g(2π) — g(0) — 0. Consider now

\Pcdm + m(Γ) where m is defined as above. Again we proceed by

expanding Pc and treat D and Dc separately. Thus \Pcdm + m(Γ) =

Pce~udg(t) — i lβ"**ίZflr(ί). After expanding, we integrate by parts

and observe that we have obtained F' as expected.
This completes the proof of the theorem.

The second part of the following corollary is again a result of
the F. and M. Riesz theorem on analytic measures.

COROLLARY. A function F = \ Pcdm is infinitely differentiable

in Pi if and only ifmeC^ and m(i)(0) = mU)(2π) = 0 for all positive
integers j . A function in P1 is infinitely integrable in Px if and
only if it is zero in Dc.

The preceding results can all be phrased in terms of Fourier-
Stieltjes moments. We single out the following application. It is
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clear that if {jn3} is a moment sequence corresponding to the mea-
sure m, then [n3] is also a moment sequence whose measure n is
absolutely continuous with derivative of bounded variation i m. This
can also be read from Theorem 8; the hypothesis in the necessity
part of that theorem which says that F be in Px can be replaced
by demanding merely that Fe P. We consider in the following
theorem a certain kind of perturbation of the multiplier sequence
{j} of {jUj}; we obtain the same conclusion as for that latter sequence.

THEOREM 9. If {a3n3} is a moment sequence and if the analytic
functions Σi U — aj)zj and Σ i U + a,-j)z3' have radii of convergence
greater than 1, then {%} is a moment sequence corresponding to an
absolutely continuous measure whose derivative is of bounded vari-
ation.

Proof. We note that the function F defined in D by Σ i aJnoZJ

and in Dc by — ̂ a_3n_3z~j is in Pλ since {a3n3} is a moment sequence
by hypothesis. We shall show that {jnό} is a moment sequence; we
show first that the function G defined in D by Σ i 3nάzό a n ( i m Dc

by Σ i Jn-jZ~j is in Px; we use the criterion (2) of Theorem 1. We
have

G(reu) - GO-V') - Σ
1

( 9) = Σ r'lU - <hiyn.fi™ - (j + α_y)»_ye-««]
1

+ Σ

We show next that the sequence {%} is bounded: since {a3n3} is a
moment sequence, it is bounded, say, | aβn5 \ ̂  Bm, since the power
series mentioned in the statement of the theorem have radii of con-
vergence greater than 1, we will have for sufficently large j the
inequalities | j — a31 <; 1 and | j + a_3- \ <; 1 so that | a3 \ ̂  | j \ — 1 whence
\n3\^B as desired. We now take absolute values in (9) and integrate
with respect to t. Thus

\\G{reu) - Gir-W^dt ^ [{/(re**) - W^)\ dt

-V)| dt = Tt(r) + Γ£(r)\\F{reu) -

where / and g are the analytic functions with radii of convergence
greater than 1 mentioned in the theorem. Thus 2\(r) 5£ Bx for all
re(0,1) and T2(r)£B2 since FeP,. Thus GePu {jn3} is a moment
sequence and the theorem is proved.

Analogous problems for several variables and also for regions
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other than D and Dc such as complementary half planes will be
dealt with in another paper.
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