ON INTEGRAL REPRESENTATIONS OF PIECEWISE HOLOMORPHIC FUNCTIONS

Gerhard K. Kalisch

Let D be the interior of the unit circle in C, D^{c} its exterior and T the unit circumference. We consider certain piecewise holomorphic functions that are holomorphic in D and also in D^{c}. This paper deals with those piecewise holomorphic functions that are representable by means of complex Poisson-Stieltjes integrals on T; we call this set of functions P_{1}. The set of all piecewise holomorphic functions (holomorphic in D and in D^{c}) we call P. Earlier work-see Rolf Nevanlinna, Eindeutige Analytische Funktionen, Springer, Berlin, 1953 and references there-dealt with positive (Herglotz-Riesz) or real (Nevanlinna) measures; we shall use here the entire space M of bounded complex Borel measures on T. This gives the theory more flexibility. We consider characterizations of functions in P representable by means of complex Poisson-Stieltjes integrals, uniqueness questions, the nature of the mapping between the subset P_{1} of P of representable functions and M, as well as the ring structures in M (under convolution) and P_{1} (Hadamard products), and questions of derivatives and integrals. We end with an application to Fourier-Stieltjes moments relative to measues in M.

We call a function $F \in P$ representable if there is a measure $m \in M$ so that $F=\int P_{C} d m+k$ where $P_{C}=P_{C}(z)=\left(e^{i t}+z\right) /\left(e^{i t}-z\right)$ is the complex Poisson kernel, k is a piecewise constant function in P, and where the limits of integration are omitted when they are 0 and 2π respectively. A function $F \in P$ is said to be of real type if $F\left(\bar{z}^{-1}\right)=-\overline{F(z)}$ for all $z \in D \cup D^{c}$. The functions

$$
\begin{equation*}
G=G_{F}(z)=\frac{1}{2}\left(F(z)-\overline{F\left(\bar{z}^{-1}\right)}\right), H=H_{F}(z)=-\frac{1}{2}\left(i F(z)+i \overline{F\left(\bar{z}^{-1}\right)}\right) \tag{1}
\end{equation*}
$$

are of real type; we have $F=G+i H$ and $F \in P_{1}$ if and only if G and H are in P_{1}. - The decomposition of the complex measure m into its real and imaginary parts is given by $m=(1 / 2(m+\bar{m}))+$ $i((1 / 2 i)(m-\bar{m}))=(\operatorname{Re} m)+i(\operatorname{Im} m)$ where \bar{m} is defined as usual by $\int \bar{g} d m=\int \bar{g} d m$ for continuous functions g on T. If the representable function $F \in P_{1}$ is given by $F=\int P_{C} d m+k$, then $G_{F}=$ $\int P_{C} d(\operatorname{Re} m)+1 / 2(k-\bar{k})$ and $H_{F}=\int P_{C} d(\operatorname{Im} m)+(1 / 2 i)(k+\bar{k}) .-$ If $m \in M$, we write $\hat{m}_{j}=\int e^{-i j t} d m$.

The following theorem characterizes the elements of P_{1} among those of P.

Theorem 1. The function $F \in P$ is representable if and only if there is a constant B_{F} such that

$$
\begin{equation*}
\int\left|F\left(r e^{i t}\right)-F\left(r^{-1} e^{i t}\right)\right| d t \leqq B_{F} \text { for all } r \in[0,1) \tag{2}
\end{equation*}
$$

Note that if F is of real type this becomes Nevanlinna's condition $\int\left|\operatorname{Re} F\left(r e^{i t}\right)\right| d t \leqq B_{F}$ for all $r \in[0,1)$; we deduce our theorem from Nevanlinna's.

Proof. The representability of F implying that of G and H, Nevanlinna's theorem asserts the existence of constants B_{G} and B_{H} such that

$$
\begin{equation*}
\int\left|\operatorname{Re} G\left(r e^{i t}\right)\right| d t \leqq B_{G}, \int\left|\operatorname{Re} H\left(r e^{i t}\right)\right| d t \leqq B_{H} \tag{3}
\end{equation*}
$$

for all $r \in[0,1)$. Thus, since $2 \operatorname{Re} G(z)=\operatorname{Re} F(z)-\operatorname{Re} F\left(\bar{z}^{-1}\right)$ and $2 \operatorname{Re} H(z)=\operatorname{Im} F(z)-\operatorname{Im} F\left(\bar{z}^{-1}\right)$, (3) implies (2). Conversely, let F satisfy (2). Then G and H given by (1) satisfy (3): $1 / 2 \int\left|\operatorname{Re} F\left(r e^{i t}\right)-\operatorname{Re} F\left(r^{-1} e^{i t}\right)\right| d t=\int\left|\operatorname{Re} G\left(r e^{i t}\right)\right| d t \leqq 1 / 2 \int \mid F\left(r e^{i t}\right)-$ $F\left(r^{-1} e^{i t}\right) \mid d t \leqq B_{F}$ and similarly $1 / 2 \int\left|\operatorname{Im} F\left(r e^{i t}\right)-\operatorname{Im} F\left(r^{-1} e^{i t}\right)\right| d t=$ $\int\left|\operatorname{Re} H\left(r e^{i t}\right)\right| d t \leqq B_{F}$ so that by Nevanlinna's theorem there exist measures m_{1} and m_{2} in M which are real such that $G=\int P_{C} d m_{1}+k_{1}$ and $H=\int P_{C} d m_{2}+k_{2}$ (for suitable constants k_{1}, k_{2}) so that $F=$ $\int P_{C}\left(d m_{1}+i d m_{2}\right)+\left(k_{1}+i k_{2}\right)=\int P_{C} d m+k$ with $m=m_{1}+i m_{2}, k=k_{1}+i k_{2}$ and $F \in P_{1}$.

Representations $F=\int P_{c} d m+k$ are clearly not unique: adding a multiple $a L$ of Lebesgue measure $(a \in C)$ to m merely changes the constant: $\quad F=\int P_{C} d(m+a L)+k^{\prime}$ with $k^{\prime}=k-2 \pi a$ in D and $k^{\prime}=$ $k+2 \pi \alpha$ in D^{c}. It is, however, possible to standardize, and thus to make unique, the representations. This is done in the following theorem which also presents an inversion formula expressing m and k in terms of F.

THEOREM 2. If $F=\int P_{C} \dot{d} m_{1}+k_{1}=\int P_{C} d m_{2}+k_{2}$ with k_{1} the same constant in D and in D^{c} and similarly for k_{2}, then $m_{1}=m_{2}$ and $k_{1}=k_{2}$. If $F \in P_{1}$ and if we define

$$
\begin{equation*}
m_{F}(t)=(1 / 4 \pi) \lim _{r i 1} \int_{0}^{t}\left(F\left(r e^{i s}\right)-F\left(r^{-1} e^{i s}\right)\right) d s \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
k_{F}=\frac{1}{2}(F(0)+F(\infty)) \text { both in } D \text { and } D^{c} \tag{4}
\end{equation*}
$$

then

$$
\begin{equation*}
F=\int P_{C} d m_{F}+k_{F} \tag{5}
\end{equation*}
$$

uniquely.
Thus all functions $F \in P_{1}$ have a (unique) representation with the constant the same in D and D^{c}. We do not wish to confine ourselves to this representation in view of Theorems $4-7$ below.

Proof. If $F=G+i H$ as in (1), then Nevanlinna's theory says that there are measures m_{G} and m_{H} and constants k_{G} and k_{H} given by $\quad m_{G}(t)=(1 / 2 \pi) \lim _{r \uparrow 1} \int_{0}^{t} \operatorname{Re} G\left(r e^{i s}\right) d s=(1 / 4 \pi) \lim _{r \uparrow 1} \int_{0}^{t}\left(\operatorname{Re} F\left(r e^{i s}\right)-\right.$ $\left.\operatorname{Re} F\left(r^{-1} e^{i s}\right)\right) d s, G=\int P_{C} d m_{G}+k_{G}$ with $k_{G}=1 / 2(G(0)+G(\infty))=1 / 2(G(0)-$ $\overline{G(0)})=i \operatorname{Im} G(0)$ with similar expressions for m_{H}, k_{H}, H. Thus m_{F} and k_{F} are as given in (4) and (5) is therefore true. The uniqueness results from this: If $F=\int P_{C} d m+k$ where k is the same constant in D and D^{c}, then $F(0)=m(T)+k, F(\infty)=-m(T)+k$ so that $2 k=F(0)+F(\infty)$. If now $F=\int P_{C} d m_{1}+k=\int P_{C} d m_{2}+k$, then $\int P_{C} d m=0$ where $m=m_{1}-m_{2}$ so that $\hat{m}_{j}=0$ for all integers j and $m=0, m_{1}=m_{2}$. -Note that (4) and (5) can also be deduced directly from our hypothesis (2) and the expressions

$$
\begin{aligned}
& F(z)=(1 / 4 \pi) \int\left(e^{i t}+r^{-1} z\right) /\left(e^{i t}-r^{-1} z\right)\left(F\left(r e^{i t}\right)-F\left(r^{-1} e^{i t}\right)\right) d t+k_{F}(|z|<r<1) \\
& F(z)=(1 / 4 \pi) \int\left(e^{i t}+r z\right) /\left(e^{i t}-r z\right)\left(F\left(r e^{i t}\right)-F\left(r^{-1} e^{i t}\right)\right) d t+k_{F}\left(|z|>r^{-1}>1\right)
\end{aligned}
$$

Condition (2) which characterizes representability can be used to introduce a natural norm in P_{1}. If $F \in P_{1}$ define $\|F\|_{0}=$ $\sup _{0 \leq r<1} \int\left|F\left(r e^{i t}\right)-F\left(r^{-1} e^{i t}\right)\right| d t$ and $\|F\|=\|F\|_{0}+\left|k_{F}\right|$. The following lemma relates $\|F\|_{0}$ to $\left\|m_{F}\right\|$ for $m_{F} \in M$.

Lemma. $\|F\|_{0} \leqq 24 \pi\left\|m_{F}\right\| \leqq 6\|F\|_{0}$.
Proof. (1) We have for $m \in M$ the definition $\|m\|=\left.\operatorname{Var}\right|_{0} ^{2 \pi}[m]=$ $\sup _{E} \sum_{K}\left|m\left(t_{k}\right)-m\left(t_{k-1}\right)\right|$ over all partitions $E: 0=t_{0}<t_{1}<\cdots<t_{n}=2 \pi$ with $I_{k}=\left[t_{k-1}, t_{k}\right]$. Let $D_{F}(r, s)=D(r, s)=F\left(r e^{i s}\right)-F\left(r^{-1} e^{i s}\right)$. Then $\left\|m_{F}\right\|=(1 / 4 \pi) \sup _{E} \lim _{r} \sum_{k}\left|\int_{I_{k}} D(r, s) d s\right|$ where we have used (4). Thus $\left\|m_{F}\right\| \leqq(1 / 4 \pi) \sup _{E} \lim _{r} \sum_{k} \int_{I_{k}}|D(r, s)| d s=(1 / 4 \pi) \lim _{r} \int|D(r, s)| d s=$ $(1 / 4 \pi)\|F\|_{0}$.
(2) When F_{1} and F_{2} are in P_{1} we have $\left\|F_{1}+F_{2}\right\|_{0} \leqq\left\|F_{1}\right\|_{0}+$ $\left\|F_{2}\right\|_{0}$ since

$$
\begin{gather*}
\left|F_{1}+F_{2} \|_{0}=\sup _{0 \leq r<1} \int\right| D_{F_{1}}+D_{F_{2}}\left|\leqq \sup \int\right| D_{F_{1}} \mid \tag{6}\\
+\sup \int\left|D_{F_{2}}\right|=\left\|F_{1}\right\|_{0}+\left\|F_{2}\right\|_{0}
\end{gather*}
$$

Thus if $F=G+i H$ as in (1), we have $\|F\|_{0} \leqq\|G\|_{0}+\|H\|_{0}$ and since $2 m_{G}=m_{F}+\bar{m}_{F}$ and $2 i m_{H}=m_{F}-\bar{m}_{F}$ we have $\left\|m_{G}\right\| \leqq\left\|m_{F}\right\|$ and $\left\|m_{H}\right\| \leqq\left\|m_{F}\right\|$. We next establish the inequality $\|G\|_{0} \leqq 12 \pi\left\|m_{G}\right\|$. We have $G=G_{1}-G_{2}$ corresponding to a decomposition $m_{G}=m_{1}-m_{2}$ for positive measures m_{1} and m_{2}. We also have $\|G\|_{0} \leqq\left\|G_{1}\right\|_{0}+\left\|G_{2}\right\|_{0}$. If some function $F_{0} \in P_{1}$ has nonnegative real part and so corresponds to a positive measure m_{0}, we have $\left\|F_{0}\right\|_{0}=2 \lim _{r} \int \operatorname{Re} F_{0}\left(r e^{i t}\right) d t=$ $4 \pi \operatorname{Re} F_{0}(0)=4 \pi m_{0}(T)=4 \pi\left\|m_{0}\right\|$. Let now $m_{1}(t)=\left.\operatorname{Var}\right|_{0} ^{t}\left[m_{G}\right]$ and $m_{2}(t)=m_{1}(t)-m_{G}(t)$. Then $\left\|m_{1}\right\|=\left\|m_{G}\right\|$ and $\left\|m_{2}\right\| \leqq 2\left\|m_{G}\right\|$ so that $\|G\|_{0} \leqq\left\|G_{1}\right\|_{0}+\left\|G_{2}\right\|_{0} \leqq 12 \pi\left\|m_{G}\right\| \leqq 12 \pi\left\|m_{F}\right\|$ and similarly $\|H\|_{0} \leqq$ $12 \pi\left\|m_{F}\right\|$, i.e., the first inequality asserted in the lemma is proved.

THEOREM 3. The function $F \mapsto\|F\|=\|F\|_{0}+\left|k_{F}\right|$ is a norm on P_{1}. The map $\phi: M \times C \rightarrow P_{1}$ given by $(m, k) \mapsto F=\int P_{C} d m+k$ is a 1-1 linear bicontinuous map of the Banach space $M \times C$ (with usual norm topology) onto P_{1} (relative to the norm topology based on $\|F\|)$ so that, in particular, P_{1} is a Banach space with its norm. A sequence (m_{j}, k_{j}) converges to (m_{0}, k_{0}) where the convergence of the measures is weak* and that of the k_{j} the ordinary convergence of complex numbers if and only if $F_{j} \rightarrow F_{0}$ for the corresponding functions uniformly on compact sets and there exists a constant B with $\left\|F_{j}\right\| \leqq B$ for all positive j.

Note that ϕ would not be well-defined if we did not use the (unique) representation of F with k the same in D and D^{c}; see (4), (5).

Proof. (1) The first part of the theorem is just a summary of assertions proved earlier. (2) Suppose $m_{j} \rightarrow m_{0}$ weak *. Then $\int P_{C} d m_{j} \rightarrow$ $\int P_{c} d m_{0}$ pointwise in $D \cup D^{c}$; on every compact subset of $D \cup D^{c}$ the family $\left\{\int P_{c} d m_{j}\right\}$ is uniformly bounded so that by virtue of normal family theory the convergence $\int P_{C} d m_{j} \rightarrow \int P_{C} d m_{0}$ is uniform on compact sets. The weak* convergence of m_{j} to m_{0} says that the $\left\|m_{j}\right\|$ and hence, by the lemma, the $\left\|F_{j}\right\|_{0}$ are bounded. The convergence $\int P_{C} d m_{j} \rightarrow \int P_{C} d m_{0}$ uniformly on compacts and the convergence $k_{j} \rightarrow k_{0}$
imply that $F_{j} \rightarrow F_{0}$ uniformly on compacts and that the $\left\|\boldsymbol{F}_{j}\right\|$ are bounded.-The converse is similar: If $F_{j} \rightarrow F_{0}$ uniformly on compacts and if the $\left\|F_{j}\right\|$ are bounded, then first by the lemma the $\left\|m_{j}\right\|$ are bounded and $\int t d m_{j} \rightarrow \int t d m_{0}$ on the dense subset $\{t\}$ of trigonometric polynomials on T and this, together with the boundedness of the $\left\|m_{j}\right\|$ implies the weak* convergence of m_{j} to m_{0}.

Note that if we consider the restriction ϕ_{r} of ϕ to M, then the image $\phi(M)$ in P_{1} is the closed subspace consisting of all F with $F(0)+F(\infty)=0$. Then $\operatorname{map} \phi_{r}$ has of course the same properties as ϕ.

Let $F(D)$ and $F\left(D^{c}\right)$ be the parts of $F \in P$ in D and D^{c} respectively. When F is merely in P, the relation between $F(D)$ and $F\left(D^{c}\right)$ is of course totally arbitrary. If, however, $F \in P_{1}$, there is a relation. First, if we take two arbitrary functions f and g with the proviso that f be holomorphic in $\{z ;|z|<1+a\}$ and g holomorphic in $\{z ;|z|>1-b\}$ (for positive a and b) and then combine their restrictions to D and D^{c} respectively, then F with $F(D)=f$ and $F\left(D^{c}\right)=g$ will be in P_{1}; otherwise, however, the relation between $F(D)$ and $F\left(D^{c}\right)$ is governed by the following theorems.

Theorem 4. A function $F \in P$ with $F(D)$ constant is in P_{1} if and only if $F=\int P_{C} d m+k$ where m is absolutely continuous with derivative $f_{T} \in L_{1}$ and Fourier series $\sum_{0} e^{-i j t} a_{j}$ and which is the boundary function of $f(z)$ antiholomorphic in D given by $\sum_{0} \bar{z}^{j} a_{j}$. Similarly $F\left(D^{c}\right)$ is constant if and only if $F=\int P_{C} d m+k$ with absolutely continuous m whose derivative $g_{T} \in L_{1}$ has Fourier series $\sum_{0} e^{i j t} b_{j}$ and is the boundary function of $g(z)=\sum_{0} z^{j} b_{j}$ holomorphic in D.

Proof. This is just the F. and M. Riesz theorem—the necessities are obvious. Suppose now that $\int P_{C} d m+k=d$, a constant in D, then $m(T)+k=d$ and, since $P_{C}=1+2 \sum_{1} e^{-i j t} z^{j}$ in D, we conclude that $\int P_{C} d m+k=\int\left(1+2 \sum_{1} e^{i j t} z^{j}\right) d m+k=d+2 \sum_{1} \hat{m}_{j} z^{j}=d$ so that $\widehat{m}_{j}=0=\int e^{-i j t} d m(j=1, \cdots)$ i.e., $\int e^{i j t} d \bar{m}=0$ for all positive integers j, so that \bar{m} is absolutely continuous with derivative $\bar{m}^{\prime}=\bar{f}_{T}(t)$ with Fourier series $\sum_{0} e^{i j t} \bar{a}_{j}$ and the first half of the theorem is proved. The second half proceeds the same way.

Let M_{0} be the subset of M consisting of absolutely continuous measures with derivatives $g_{T} \in L_{1}$ with Fourier series $\sum_{1} a_{j} e^{-i j t}$.

Theorem 5. A function f holomorphic in D is the part $F(D)$ for some function $F \in P_{1}$ if and only if $\operatorname{dist}_{0 \leqq r<1}\left(m_{r}, M_{0}\right) \leqq B<\infty$ for
some constant B where m_{r} is the absolutely continuous measure with derivative $f\left(r e^{i t}\right)$ and dist is based on the usual norm in M.

This criterion contains the criteria contained in the HerglotzRiesz and Nevanlinna theorems.

Proof. For the necessity suppose we have $F \in P_{1}$ with $F(D)=f$ in D. To show that $\operatorname{dist}_{0 \leqq r<1}\left(m_{r}, M_{0}\right) \leqq B$, we find for each $r \in[0,1)$ a measure $n_{r} \in M_{0}$ with $\left\|m_{r}-n_{r}\right\|=\sup _{\|\mid c\|_{\infty}=1}\left|\int c d\left(m_{r}-n_{r}\right)\right| \leqq B$, taken over all continuous functions c on T. Now $m_{r}^{\prime}=f\left(r e^{i t}\right)=F(D)\left(r e^{i t}\right)=$ $F\left(r e^{i t}\right)$ and our basic criterion (2) furnishes n_{r} with $n_{r}^{\prime}=F\left(D^{c}\right)\left(r^{-1} e^{i t}\right)=$ $F\left(r^{-1} e^{i t}\right)$ so that $\operatorname{dist}\left(m_{r}, M_{0}\right) \leqq\left\|m_{r}-n_{r}\right\| \leqq \sup _{r} \int\left|F\left(r e^{i t}\right)-F\left(r^{-1} e^{i t}\right)\right| d t \leqq$ $B<\infty$.

For the sufficiency, suppose that $\operatorname{dist}\left(m_{r}, M_{0}\right) \leqq B$. This implies by the weak* compactness of bounded sets in M that there exists a sequence $r_{j} \in[0,1)$ with r_{j} increasing to 1 and measures $n_{r} \in M_{0}$ such that $m_{r}-n_{r} \rightarrow m \in M$ (weak* convergence). Write $n_{r}^{\prime}=\sum_{1} a_{j}(r) e^{-i j t}$. Then $L(r)=\int P_{C}\left(f\left(r e^{i t}\right)-\sum_{1} a_{j}(r) e^{-i j t}\right) d t \rightarrow \int P_{c} d m$ as $r \uparrow 1$. Now $L(r)=$ $4 \pi f(r z)-2 \pi f(0)$ while $\int P_{c} d m$ furnishes a function (in D^{c}) that is holomorphic in D^{c}. Thus $\int P_{C} d m=F \in P_{1}$ yields a function with $F(D)=f+$ const.

It is clear from this argument and from Theorem 4 that there are many functions $F \in P_{1}$ with $F(D)=f+$ const.: the difference of any two of them is characterized in the second half of that theorem.

In addition to its Banach space structure, M has also a ring structure with respect to convolution of measures. The corresponding ring structure in P_{1} is given by the Hadamard product: If f and g have expansions $\sum_{0} a_{j} z^{j}$ and $\sum_{0} b_{j} z^{j}$ respectively, define $f^{*} g$ by $\sum_{0} a_{j} b_{j} z^{j}$, if f and g have expansions $\sum_{0} c_{j} z^{-j}$ and $\sum_{0} d_{j} z^{-j}$ respectively, define $f^{*} g$ by $-\sum_{0} c_{j} d_{j} z^{-j}$. If F and G are in P, then the Hadamard product $F^{*} G$ is defined in D and D^{c} according to the rules just mentioned for D and D^{c} respectively.

THEOREM 6. If F_{1} and F_{2} are in P_{1} with $F_{j}=\int P_{C} d m_{j}+k_{j}$ where the k_{j} are piecewise constants in P_{1} then $F_{1}{ }^{*} F_{2}=F^{\prime}=\int P_{c} d m+k \in P_{1}$ and

$$
-m_{1}(T) m_{2}(T)+k_{1} k_{2}+k_{1} m_{2}(T)+k_{2} m_{1}(T)
$$

$$
\begin{align*}
m=2\left(m_{1}^{*} m_{2}\right), k= & \tag{7}\\
& +m_{1}(T) m_{2}(T)-k_{1} k_{2}+k_{1} m_{2}(T)+k_{2} m_{1}(T)
\end{align*}
$$

in D and D^{c} respectively.

Proof. The proof is a simple calculation based on the formula $\left(m_{1}{ }^{*} m_{2}\right)_{j}=\hat{m}_{1, j} \hat{m}_{2, j}$: If $z \in D$ then $\int P_{C} d\left(m_{1}^{*} m_{2}\right)=m_{1}(T) m_{2}(T)+$ $2 \sum_{1} \hat{m}_{1, a} \hat{m}_{2, a} z^{a}$ with analogous expansions for F_{1} and F_{2}. We obtain $\left(F_{1}{ }^{*} F_{2}\right)(z)=\left(m_{1}(T)+k_{1}\right)\left(m_{2}(T)+k_{2}\right)+4 \sum_{1} \hat{m}_{1, a} \hat{m}_{2, a} z^{a} \quad$ in D with a similar equation in D^{c} so that (7) is established.

Corollary. The $\operatorname{map}(F, G) \mapsto F * G$ is continuous in both variables in the norm of P_{1}.

The usual Banach algebra inequality $\|F * G\| \leqq\|F\|\|G\|$ is not valid in P_{1} : take $F=G=10+z$ in D and equal to $10+z^{-1}$ in D^{c}. The map ϕ of Theorem 3 is thus not an isometry.

- If $m \in M$, define F_{m} by

$$
\begin{equation*}
F_{m}=\frac{1}{2} \int P_{C} d m+k_{m}, 2 k_{m}=-m(T) \text { in } D \text { and } m(T) \text { in } D^{c} \tag{8}
\end{equation*}
$$

Let P_{2} be the subset of P_{1} consisting of all F will $F(0)=F(\infty)=0$; it is a closed subalgebra of P_{1}. The following immediate consequence of the preceding theorem is worth stating separately.

TheOrem 7. The map $\psi: M \rightarrow P_{2}$ given by (8) is a linear continuous open epimorphism of the Banach algebra M to the Banach algebra P_{2} with kernel the constant multiples of Lebesgue measure.

Similar statements are valid about other subalgebras of $M \times \mathbf{C}$ and P_{1}, e.g., for the subalgebra of M of all m with $m(T)=0$ and the subalgeba of P_{2} of all F with $k_{F}=0$; the kernel of the restriction of ψ to this subalgebra of M is determined on the basis of Theorem 4.

Our using complex measures makes the following considerations possible. We define derivatives of functions in P as usual (i.e., in D and D^{c} separately). If $G=F^{\prime}$ for functions in P we call F an integral of G. We shall use the phrase that F is differentiable (or integrable) in P_{1} if F and F^{\prime} are in P_{1}. Differentiability of F in P_{1} imposes a strong restriction of F; integrability is much less restrictive although infinite integrability is of course very restrictive. In what follows all functions in P_{1} will be in the standard representation (5).

TheOrem 8. A function $F=\int P_{c} d n+k$ has a derivative $F^{\prime}=$ $\int P_{c} d m+k^{\prime}$ (all in P_{1}) if and only if n is absolutely continuous with derivative g of bounded variation and $g(0)=g(2 \pi)=0$. If F
is differentiable in P_{1} then $m(t)=-i \int_{0}^{t} e^{-i s} d g, \hat{m}_{-1}=0, k^{\prime}=m(T)$. Or equally well: A function $G=\int P_{c} d m+k^{\prime}$ has an integral $F=$ $\int P_{c} d n+k$ (all in P_{1}) if and only if $\hat{m}_{-1}=0$ and $k^{\prime}=m(T)$. If G is integrable in P_{1} then n is absolutely continuous with derivative g of bounded variation and $g(0)=g(2 \pi)=0$, and $g(t)=i \int_{0}^{t} e^{i s} d m$.

Proof. We prove the first version of the theorem. Necessity: (1) If $F^{\prime}=\int\left(-1-2 \sum_{1} z^{-j} e^{i j t}\right) d m(t)+k^{\prime}=-\hat{m}_{0}-2 \sum_{1} \hat{m}_{-j} z^{j}+k^{\prime}$ (expansion in D^{c}) is to be the derivative of a function in P_{1}, we must have $-\hat{m}_{0}+k^{\prime}=-m(T)+k^{\prime}=0 \quad$ and $\quad \hat{m}_{-1}=0$. (2) Consider $i \int P_{C} \int_{0}^{t} e^{i s} d m(s) d t$ and expand P_{C}. Treat D and D^{c} separately. In the expansion, change the order of integration and differentiate; using $\hat{m}_{-1}=0$ and $k^{\prime}=m(T)$, we see that we have obtained F^{\prime}. Thus $F=\int P_{C} d n+k=i \int P_{C} \int_{0}^{t} e^{i s} d m(s) d t+$ const.; the uniqueness assertion of Theorem 2 then implies that n is absolutely continuous whose derivative $g(t)=i \int_{0}^{t} e^{i s} d m(s)$ which is of bounded variation with $g(0)=0$ and $g(2 \pi)=i \hat{m}_{-1}=0$; this also shows that $m(t)=$ $-i \int_{0}^{t} e^{-i s} d g(s)$ as desired.-Sufficiency: Suppose $F=\int P_{C} d n+k$ with absolutely continuous n whose derivative g is of bounded variation and $g(0)=g(2 \pi)=0$: to show that F is differentiable in P_{1} with $F^{\prime}=\int P_{C} d m+m(T)$ where $m(t)=-i \int_{0}^{t} e^{-i s} d g(s)$ and $\hat{m}_{-1}=0$; the last equation is immediate: $\hat{m}_{-1}=g(2 \pi)-g(0)=0$. Consider now $\int P_{C} d m+m(T)$ where m is defined as above. Again we proceed by expanding P_{c} and treat D and D^{c} separately. Thus $\int P_{c} d m+m(T)=$ $-i \int P_{c} e^{-i t} d g(t)-i \int e^{-i t} d g(t)$. After expanding, we integrate by parts and observe that we have obtained F^{\prime} as expected.

This completes the proof of the theorem.
The second part of the following corollary is again a result of the F. and M. Riesz theorem on analytic measures.

Corollary. A function $F=\int P_{C} d m$ is infinitely differentiable in P_{1} if and only if $m \in \boldsymbol{C}_{\infty}$ and $m^{(j)}(0)=m^{(j)}(2 \pi)=0$ for all positive integers j. A function in P_{1} is infinitely integrable in P_{1} if and only if it is zero in D^{c}.

The preceding results can all be phrased in terms of FourierStieltjes moments. We single out the following application. It is
clear that if $\left\{j n_{j}\right\}$ is a moment sequence corresponding to the measure m, then $\left\{n_{j}\right\}$ is also a moment sequence whose measure n is absolutely continuous with derivative of bounded variation $i m$. This can also be read from Theorem 8; the hypothesis in the necessity part of that theorem which says that F be in P_{1} can be replaced by demanding merely that $F \in P$. We consider in the following theorem a certain kind of perturbation of the multiplier sequence $\{j\}$ of $\left\{j n_{j}\right\}$; we obtain the same conclusion as for that latter sequence.

Theorem 9. If $\left\{a_{j} n_{j}\right\}$ is a moment sequence and if the analytic functions $\sum_{1}\left(j-a_{j}\right) z^{j}$ and $\sum_{1}\left(j+a_{-j}\right) z^{j}$ have radii of convergence greater than 1, then $\left\{n_{j}\right\}$ is a moment sequence corresponding to an absolutely continuous measure whose derivative is of bounded variation.

Proof. We note that the function F defined in D by $\sum_{1} a_{j} n_{j} z^{j}$ and in D^{c} by $-\sum_{1} a_{-j} n_{-j} z^{-j}$ is in P_{1} since $\left\{a_{j} n_{j}\right\}$ is a moment sequence by hypothesis. We shall show that $\left\{j n_{j}\right\}$ is a moment sequence; we show first that the function G defined in D by $\sum_{1} j n_{j} z^{j}$ and in D^{c} by $\sum_{1} j n_{-j} z^{-j}$ is in P_{1}; we use the criterion (2) of Theorem 1. We have

$$
\begin{align*}
G\left(r e^{i t}\right)-G\left(r^{-1} e^{i t}\right)= & \sum_{1} r^{j}\left(j n_{j} e^{i j t}-j n_{-j} e^{-i j t}\right) \\
= & \sum_{1} r^{j}\left[\left(j-a_{j}\right) n_{j} e^{i j t}-\left(j+a_{-j}\right) n_{-j} e^{-i j t}\right] \tag{9}\\
& +\sum_{1} r^{j}\left(a_{j} n_{j} e^{i j t}+a_{-j} n_{-j} e^{-i j t}\right)
\end{align*}
$$

We show next that the sequence $\left\{n_{j}\right\}$ is bounded: since $\left\{a_{j} n_{j}\right\}$ is a moment sequence, it is bounded, say, $\left|a_{j} n_{j}\right| \leqq B$; since the power series mentioned in the statement of the theorem have radii of convergence greater than 1 , we will have for sufficently large j the inequalities $\left|j-a_{j}\right| \leqq 1$ and $\left|j+a_{-j}\right| \leqq 1$ so that $\left|a_{j}\right| \geqq|j|-1$ whence $\left|n_{j}\right| \leqq B$ as desired. We now take absolute values in (9) and integrate with respect to t. Thus

$$
\begin{aligned}
& \int\left|G\left(r e^{i t}\right)-G\left(r^{-1} e^{i t}\right)\right| d t \leqq \int\left|f\left(r e^{i t}\right)-\overline{g\left(r e^{i t}\right)}\right| d t \\
& \quad+\int\left|F\left(r e^{i t}\right)-F\left(r^{-1} e^{i t}\right)\right| d t=T_{1}(r)+T_{2}(r)
\end{aligned}
$$

where f and g are the analytic functions with radii of convergence greater than 1 mentioned in the theorem. Thus $T_{1}(r) \leqq B_{1}$ for all $r \in(0,1)$ and $T_{2}(r) \leqq B_{2}$ since $F \in P_{1}$. Thus $G \in P_{1},\left\{j n_{j}\right\}$ is a moment sequence and the theorem is proved.

Analogous problems for several variables and also for regions
other than D and D^{c} such as complementary half planes will be dealt with in another paper.

Received November 1, 1976 and in revised form March 23, 1977.
University of California
Irvine, CA 92664

