WEAK AND NORM APPROXIMATE IDENTITIES ARE DIFFERENT

CHARLES A. JONES AND CHARLES D. LAHR

An example is given of a convolution measure algebra which has a bounded weak approximate identity, but no norm approximate identity.

1. Introduction. Let A be a commutative Banach algebra, A' the dual space of A, and ΔA the maximal ideal space of A. A weak approximate identity for A is a net $\{e(\lambda): \lambda \in A\}$ in A such that

 $\chi(e(\lambda)a) \longrightarrow \chi(a)$

for all $a \in A$, $\chi \in \Delta A$. A norm approximate identity for A is a net $\{e(\lambda): \lambda \in A\}$ in A such that

$$||e(\lambda)a - a|| \longrightarrow 0$$

for all $a \in A$. A net $\{e(\lambda): \lambda \in A\}$ in A is bounded and of norm M if there exists a positive number M such that $||e(\lambda)|| \leq M$ for all $\lambda \in A$.

It is well known that if A has a bounded weak approximate identity for which $f(e(\lambda)a) \rightarrow f(a)$ for all $f \in A'$ and $a \in A$, then A has a bounded norm approximate identity [1, Proposition 4, page 58]. However, the situation is different if weak convergence is with respect to ΔA and not A'. An example is given in §2 of a Banach algebra A which has a weak approximate identity, but does not have a norm approximate identity. This algebra provides a counterexample to a theorem of J. L. Taylor [4, Theorem 3.1], because it is proved in [3, Corollary 3.2] that the structure space of a convolution measure algebra A has an identity if and only if A has a bounded weak approximate identity of norm one.

2. The example. Throughout this paper the set of complex numbers is denoted C and the set of real numbers R.

Let S be a commutative semigroup, and $\mathcal{L}_{i}(S)$ the Banach space of all complex functions $\alpha: S \to C$ such that $||\alpha|| = \sum_{x \in S} |\alpha(x)|$ is finite, made into a convolution algebra under the product

$$lphasteta=\sum\limits_{x\, \in S} \sum\limits_{u,v top u = x} lpha(u)eta(v)\delta_x$$
 ,

where δ_x represents the point mass at $x \in S$, $\alpha = \sum_{x \in S} \alpha(x) \delta_x$ and $\beta = \sum_{x \in S} \beta(x) \delta_x$. A semicharacter on S is a bounded nonzero function $\chi: S \to C$ such that $\chi(xy) = \chi(x)\chi(y)$ for all $x, y \in S$. The set of

all semicharacters is denoted \hat{S} .

It has been shown in a previous paper [3] that if $\mathcal{L}_1(S)$ is semisimple, then the existence of a bounded weak approximate identity of norm one in $\mathcal{L}_1(S)$ is equivalent to the existence of a net $\{u_d\}$ in S such that $\chi(u_d) \to 1$ for all $\chi \in \hat{S}$. It has also been shown that the existence of a norm approximate identity bounded by 1 is equivalent to the existence of a net $\{u_d\}$ in S with the following property: for each $x \in S$, there exists d_x such that $xu_d = x$ for all $d \ge d_x$. For the particular semigroup S to follow, it will be shown that $\mathcal{L}_1(S)$ does indeed have a bounded weak approximate identity, but does not have a norm approximate identity.

Let the set of integers be denoted by Z and the set of positive integers by Z^+ . Further, let $S = \{m/n: m, n \in Z^+\}$ under addition. Then S is a cancellative semigroup and so $\zeta_1(S)$ is semisimple [2]. If $\chi \in \hat{S}$, then χ is uniquely determined by its values on $\{1/n: n \in Z^+\}$. For if m is any positive integer, then for all $n \in Z^+$, $\chi(m/n) = \chi(1/n)^m$. In fact $\chi(1) = \chi(n/n) = \chi(1/n)^n$ for all $n \in Z^+$, and so $\chi(1/n)$ is an *n*th root of $\chi(1)$. Now, each pair (k, z), where $k \in Z$ and $z = re^{i\theta}$ with $|z| \leq 1$ and $r, \theta \in \mathbf{R}$, determines a semicharacter $\chi_{k,z}$ of S by defining

$$\gamma_{k,z}(m/n) = r^{m/n} e^{im(\theta + 2k\pi)/n}$$

for all m/n in S. It is clear that $\chi_{k,z}(1/n) \to 1$ for each $\chi_{k,z} \in \hat{S}$. However, not all semicharacters have such a nice form. In constructing an arbitrary semicharacter χ , there are very few restrictions imposed upon how the *n*th root of $\chi(1)$ is to be chosen. Thus, a more elaborate argument is required to obtain a weak approximate identity for $\zeta_1(S)$.

LEMMA 2.1. Let G be an infinite discrete group with identity e. Then there exists a net $\{g_{\lambda}\} \subset G$, $g_{\lambda} \neq e$ for all λ , such that $\chi(g_{\lambda}) \rightarrow 1$ for each $\chi \in \hat{G}$.

Proof. Let \overline{G} be the Bohr compactification of G. Then there is an algebra isomorphism i of G onto a dense subset of \overline{G} . Specifically, for each $g \in \overline{G}$, there exists a net $\{i(g_{\lambda}): g_{\lambda} \in G\}$ such that $i(g_{\lambda}) \to g$; equivalently, $\overline{\chi}(i(g_{\lambda})) \to \overline{\chi}(g)$ for each $\chi \in \widehat{G}$, where $\overline{\chi}$ is the unique extension of $\chi \in \widehat{G}$ to $\overline{\chi} \in \widehat{G}$ [3]. Since \overline{G} is infinite and compact, the identity i(e) of \overline{G} is not isolated in \overline{G} . Hence, there is a net $\{i(g_{\lambda}): g_{\lambda} \in G\}, g_{\lambda} \neq e$ for all λ , such that $i(g_{\lambda}) \to i(e)$. Therefore,

 $\chi(g_{\lambda}) = \overline{\chi}(i(g_{\lambda})) \longrightarrow \overline{\chi}(i(e)) = 1$ for each $\chi \in \widehat{G}$.

Let $T = \{z \in C : |z| = 1\}$ and $D = \{z \in C : |z| \leq 1\}$. Then the previous lemma yields the following number-theoretic result.

THEOREM 2.2. Let $\{z_1, z_2, \dots, z_p\} \subset T$, $p \in \mathbb{Z}^+$. Then for each $\varepsilon > 0$ there exists $m \in \mathbb{Z}^+$ such that $|(z_i)^m - 1| < \varepsilon$ for all $i, 1 \leq i \leq p$.

Proof. Consider the group $G = \mathbb{Z}$ under addition. Then $\widehat{G} = \{\chi_z : z \in T\}$, where $\chi_z(n) = z^n$, $n \in G$. Now, let $\varepsilon > 0$ be given. By Lemma 2.1, there exists a net $\{n_\lambda : \lambda \in A\} \subset G$, $n_\lambda \neq 0$ for all λ , such that $z^{n_\lambda} = \chi_z(n_\lambda) \rightarrow 1$ for each $\chi_z \in \widehat{G}$. Without loss of generality, assume that $n_\lambda \in \mathbb{Z}^+$ for all λ . Hence, given $\{z_1, z_2, \dots, z_p\} \subset T$, there exist $\lambda_1, \lambda_2, \dots, \lambda_p$ in A such that $|z_i^{n_\lambda} - 1| < \varepsilon$ for all $\lambda \geq \lambda_i$, $1 \leq i \leq p$. Thus, if $\lambda_0 \in A$ is such that $\lambda_0 \geq \lambda_i$, $1 \leq i \leq p$, then with $m = n_{\lambda_0}$,

$$|(z_i)^m-1| for $i=1,\,2,\,\cdots,\,p$.$$

COROLLARY 2.3. Let $\{z_1, z_2, \dots, z_p\} \subset T$, $p \in \mathbb{Z}^+$. Then for each ε , $0 < \varepsilon < 1$, there exist neighborhoods U_1, U_2, \dots, U_p and there exists $m_0 \in \mathbb{Z}^+$ such that

(1) $z_i \in U_i \text{ and } U_i \subset D, \ 1 \leq i \leq p,$ (2) $|u-1| < \varepsilon \text{ for all}$

$$u \in U_i^{m_0} = \{w_1 w_2 \cdots w_{m_0} : w_j \in U_i\}, \quad 1 \leq i \leq p.$$

Proof. Let $z_j = e^{i\theta_j}$, $1 \leq j \leq p$. By Theorem 2.2, there exists $m_0 \in \mathbb{Z}^+$ such that $|m_0\theta_j \pmod{2\pi}| < \varepsilon/2$ for all j. Now, for each j, let

$$U_j = \left\{w = |w|e^{i\omega} arepsilon D: |\omega - heta_j| < rac{arepsilon}{4m_0} ext{ and } |w| > \left[1 - rac{arepsilon}{4}
ight]^{1/m_0}
ight\}.$$

Then if $u \in U_j^{m_0}$, $u = w_1 w_2 \cdots w_{m_0}$, $w_k \in U_j$ for all k, so that $|\omega_1 + \omega_2 + \cdots + \omega_{m_0} - m_0 \theta_j| < \varepsilon/4$ and $|w_1| |w_2| \cdots |w_{m_0}| > 1 - \varepsilon/4$. Thus, if $u \in U_j^{m_0}$, then

$$|u-1| \leq |u-z_j^{m_0}|+|z_j^{m_0}-1| < rac{arepsilon}{2}+rac{arepsilon}{2}=arepsilon$$

After a technical lemma, the desired result will be proved. S continues to be the semigroup of positive rationals under addition.

LEMMA 2.4. Let $\{\chi_1, \chi_2, \dots, \chi_p\} \subset \hat{S}, p \in \mathbb{Z}^+$. Then there exists a subsequence $\{1/n_k: k \in \mathbb{Z}^+\}$ of $\{1/n: n \in \mathbb{Z}^+\}$ and there exist $z_1, z_2, \dots, z_p \in T$ such that $\chi_i(1/n_k) \to z_i$ for each $i, 1 \leq i \leq p$.

Proof. Note that for each $i, \chi_i(1/n)$ is an *n*th root of $\chi_i(1)$ and so $|\chi_i(1/n)| \rightarrow 1$ as $n \rightarrow \infty$.

Now, $\{\chi_1(1/n): n \in \mathbb{Z}^+\}$ is a subset of the closed unit disk D, and so by compactness has a convergent subsequence with limit $z_i; z_i \in T$ by the above remark. Further, if a subsequence $\{1/n_{\mathscr{L}}: \mathscr{L} \in \mathbb{Z}^+\}$ exists such that $\chi_i(1/n_{\mathscr{L}}) \to z_i$ for $i = 1, 2, \dots, j$, then by compactness $\{\chi_{j+1}(1/n_{\mathscr{L}}): \mathscr{L} \in \mathbb{Z}^+\}$ has a convergent subsequence $\{\chi_{j+1}(1/n_k): k \in \mathbb{Z}^+\}$ with limit $z_{j+1} \in T$. Thus, the induction proof is complete.

THEOREM 2.5. There exists a net $\{q_d: d \in \mathscr{D}\} \subset S$ such that $\chi(q_d) \rightarrow 1$ for each $\chi \in \hat{S}$. Therefore, $\mathcal{L}_1(S)$ has a weak approximate identity of norm one.

Proof. Let $\mathscr{F}(\hat{S})$ denote the collection of all finite subsets of \hat{S} and let $\mathscr{D} = \mathbb{Z}^+ \times \mathscr{F}(\hat{S})$ be directed by $(n, A) \leq (m, B)$ if and only if $n \leq m$ and $A \subset B$.

Now, define a mapping $d \mapsto q_d$ of \mathscr{D} into S as follows: For each $d = (n, A), A = \{\chi_1, \dots, \chi_p\}$, fix a subsequence $\{1/n_k : k \in \mathbb{Z}^+\}$ such that $\chi_i(1/n_k) \to z_i \in T$ for all i. Then there exist $m_0 \in \mathbb{Z}^+$ and neighborhoods U_1, \dots, U_p of z_1, \dots, z_p , respectively, such that |u - 1| < 1/n for all $u \in U_j^{m_0}, 1 \leq i \leq p$. Now, there exist $K_i \in \mathbb{Z}^+$ such that $k \geq K_i$ implies $\chi_i(1/n_k) \in U_i$ for $1 \leq i \leq p$. Hence, for each $i, 1 \leq i \leq p$,

$$|\chi_i(m_{_0}\!/n_{_k})-1|=|\chi_i(1\!/n_{_k})^{m_0}-1|<rac{1}{n}$$

for all $k \ge K_i$. Set $K_0 = \max \{K_i : i = 1, 2, \dots, p\}$. Then define $q_d = m_0/n_{K_0}$.

Finally, it remains to show that for each $\chi \in \hat{S}$, $\chi(q_d) \to 1$. So, let $\varepsilon > 0$ be given. Then choose n_0 such that $(1/n_0) < \varepsilon$, and let $A_0 = \{\chi\}$. If $d = (n, A) \ge (n_0, A_0) = d_0$, then $|\chi(q_d) - 1| < (1/n_0) < \varepsilon$.

COROLLARY 2.6. There exists a net $\{1/n_d: d \in \mathscr{D}\} \subset \{1/n: n \in \mathbb{Z}^+\}$ such that $\chi(1/n_d) \rightarrow 1$ for each $\chi \in \hat{S}$.

Proof. Repeat the proofs of Lemma 2.4 and Theorem 2.5 with $\{1/n: n \in \mathbb{Z}^+\}$ replaced by $\{1/n!: n \in \mathbb{Z}^+\}$. Then in the proof of Theorem 2.5 choose K_0 such that

(1) $K_0 \ge \max \{K_i: i = 1, 2, \dots, p\}$ and

(2) $n_{\kappa_0} \ge m_0$. Thus, $q_d = m_0/n_{\kappa_0}!$ is of the form $1/n_d$ for some $n_d \in Z^+$.

Theorem 2.5 and Corollary 2.6 make it clear that $\mathcal{L}_i(S)$ has a bounded weak approximate identity $\{\delta_{1/n_d}: d \in \mathcal{D}\}$ [3]. However, S does not have relative units. That is, given $m/n \in S$, there is no $v \in S$ such that v(m/n) = m/n. Thus, $\mathcal{L}_i(S)$ does not have a norm approximate identity, bounded or unbounded.

3. A general result. The same techniques developed in $\S 2$ can be used to prove a useful result about weak approximate identities of norm one for a commutative Banach algebra.

THEOREM 3.1. Let A be a commutative Banach algebra. Then A has a weak approximate identity of norm one if and only if there exists a net $\{v(\rho): \rho \in \mathscr{I}\}$ in A, $||v(\rho)|| \leq 1$ for all ρ , such that $|\chi(v(\rho))| \rightarrow 1$ for all $\chi \in \Delta A$.

Proof. If A has a weak approximate identity of norm one, then there exists a net $\{v(\rho): \rho \in \mathscr{I}\}$ in A, $||v(\rho)|| \leq 1$ for all ρ , such that

$$\chi(v(\rho)a) \longrightarrow \chi(a)$$
 for all $a \in A$, $\chi \in \varDelta A$.

Thus, for each $\chi \in \varDelta A$, $\chi(a) \neq 0$ for some $a \in A$ implies that $\chi(v(\rho)) \rightarrow 1$ and hence $|\chi(v(\rho))| \rightarrow 1$.

Conversely, assume that $\{v(\rho)\}$ is such that $|\chi(v(\rho))| \to 1$ for each $\chi \in \Delta A$. Let $\mathscr{F}(\Delta A)$ be the collection of all finite subsets of ΔA and let $\Lambda = \mathbb{Z}^+ \times \mathscr{F}(\Delta A)$ be directed by $(n, F) \leq (m, E)$ if and only if $n \leq m$ and $F \subset E$.

Then define a mapping $\lambda \mapsto e(\lambda)$ of Λ into A as follows: for each $\lambda = (n, F)$, where $n \in \mathbb{Z}^+$ and $F = \{\chi_1, \chi_2, \dots, \chi_r\}$, there exists by compactness of D a subnet $\{v(\rho')\}$ of $\{v(\rho)\}$ such that $\chi_i(\rho') \to z_i \in T$ for $i, 1 \leq i \leq r$. By Corollary 2.3, there exists $m_0 \in \mathbb{Z}^+$ and neighborhoods U_i of z_i in D such that |z - 1| < 1/n for all $z \in U_i^{m_0}, 1 \leq i \leq r$. Now, let ρ'_0 be such that $\chi_i(v(\rho'_0)) \in U_i$ for all $i, 1 \leq i \leq r$, and define $e(\lambda) = v(\rho'_0)^{m_0}$. Note that for each i,

$$egin{aligned} |\chi_i(e(\lambda))-1| &= |\chi_i(v(
ho_0')^{m_0})-1| \ &= |(\chi_i(v(
ho_0')))^{m_0}-1| < rac{1}{n} \ . \end{aligned}$$

Thus, $\chi(e(\lambda)) \to 1$ for each $\chi \in \Delta A$ and hence $\chi(e(\lambda)a) \to \chi(a)$ for each $\chi \in \Delta A$, $a \in A$. Also, $||e(\lambda)|| = ||v(\rho'_0)^{m_0}|| \leq 1$ for all $\lambda \in \Lambda$.

COROLLARY 3.2. Let S be a commutative semigroup for which $\mathcal{L}_1(S)$ is semisimple. Then $\mathcal{L}_1(S)$ has a weak approximate identity of norm one if and only if there exists a net $\{s(\rho):(\rho) \in \mathscr{I})\}$ in S such that $|\chi(s(\rho))| \rightarrow 1$ for all $\chi \in \hat{S}$.

Proof. The Banach algebra $\mathcal{L}_1(S)$ has a weak approximate identity of norm one if and only if there exists a net $\{s(\lambda): \lambda \in A\}$ in S such that $\chi(s(\lambda)) \to 1$ for all $\chi \in \hat{S}$ [3]. Thus, the proof is completed by applying Theorem 3.1 with $v(\rho) = \delta_{s(\rho)}$ for all ρ .

103

References

1. F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, 1973.

2. E. Hewitt and H. S. Zuckerman, The Z₁-algebra of a commutative semigroup, Trans. Amer. Math. Soc., **83** (1956), 70-97.

3. C. D. Lahr, Approximate identities for convolution measure algebras, Pacific J. Math., 47 (1973), 147-159.

4. J. L. Taylor, The structure of convolution measure algebras, Trans. Amer. Math. Soc., **119** (1965), 150-166.

Received January 25, 1977.

DARTMOUTH COLLEGE HANOVER, NH 03755