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WEAK AND NORM APPROXIMATE IDENTITIES
ARE DIFFERENT

CHARLES A. JONES AND CHARLES D. LAHR

An example is given of a convolution measure algebra
which has a bounded weak approximate identity, but no norm
approximate identity.

1. Introduction. Let A be a commutative Banach algebra, 4’
the dual space of A, and 4A the maximal ideal space of 4. A weak
approximate identity for A is a net {e(\): A€ 4} in A such that

1le(V)a) — x(a)

for all ac A, y€4A. A norm approximate identity for A is a net
{e(\): e 4} in A such that

lleve — all— 0

for all ae A. A net {e(\):ne 4} in A is bounded and of norm M if
there exists a positive number M such that ||e(\)|| < M for all he 4.

It is well known that if A has a bounded weak approximate
identity for which f(e(N)a) — f(a) for all fe A" and ac A, then 4
has a bounded norm approximate identity [1, Proposition 4, page 58].
However, the situation is different if weak convergence is with re-
spect to 4A and not A’. An example is given in §2 of a Banach
algebra A which has a weak approximate identity, but does not
have a norm approximate identity. This algebra provides a coun-
terexample to a theorem of J. L. Taylor [4, Theorem 3.1], because
it is proved in [3, Corollary 8.2] that the structure space of a con-
volution measure algebra A has an identity if and only if A has a
bounded weak approximate identity of norm one.

2. The example. Throughout this paper the set of complex
numbers is denoted C and the set of real numbers R.

Let S be a commutative semigroup, and 4(S) the Banach space
of all complex functions a: S— C such that ||| = 3,.s]a(®)] is
finite, made into a convolution algebra under the product

axfB = Z‘s 2 a(u)B(v)o, ,

UV=2x

where §, represents the point mass at zeS, a = >, .s @), and
B=3,.s8x)J,. A semicharacter on S is a bounded nonzero func-
tion y: S— C such that y(zy) = y(@)x(y) for all 2, ye S. The set of
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all semicharacters is denoted S.

It has been shown in a previous paper [3] that if «(S) is semi-
simple, then the existence of a bounded weak approximate identity
of norm one in 4(S) is equivalent to the existence of a net {u,} in
S such that ¥(u;) — 1 for all xe§. It has also been shown that the
existence of a norm approximate identity bounded by 1 is equivalent
to the existence of a net {u;} in S with the following property: for
each xS, there exists d, such that au, = « for all d = d,. For
the particular semigroup S to follow, it will be shown that 4(S)
does indeed have a bounded weak approximate identity, but does
not have a norm approximate identity.

Let the set of integers be denoted by Z and the set of positive
integers by Z*. Further, let S = {m/n: m, ne Z*} under addition.
Then S is a cancellative semigroup and so 4(S) is semisimple [2].
If xe§, then y is uniquely determined by its values on {l/n:n € Z"}.
For if m is any positive integer, then for all n € Z*, x(m/n) = y(1/n)™.
In fact ¥(1) = x(n/n) = y(1/n)* for all neZ*, and so y(1/n) is an
nth root of x(1). Now, each pair (%, 2), where kcZ and z = re”
with |2] £1 and 7, 6 € R, determines a semicharacter yx,, of S by
defining

Y (M) = pmingimtekn/n

for all m/n in S. It is clear that y,.(1/n)—1 for each x,,,,e§.
However, not all semicharacters have such a nice form. In con-
structing an arbitrary semicharacter ¥, there are very few restric-
tions imposed upon how the nth root of y(1) is to be chosen. Thus,
a more elaborate argument is required to obtain a weak approximate
identity for ~4(S).

LEMMA 2.1. Let G be an infinite discrete group with identity
e. Then there ewists/\a net {g;} G, g, % e for all N, such that
¥(g)) — 1 for each 1 eG.

Proof. Let G be the Bohr compactification of G. Then there
is an algebra isomorphism ¢ of G onto a dense subset of G. Spe-
cifically, for each ge@G, there exists a net {i(g,): g; <G} such that
#(g;) — g; equivalently, %(¢(g:)) -—»j(g) for each xe@, where ¥ is the
unique extension of xe@ to ¥€G [3]. Since G is infinite and com-
pact, the identity i(e) of G is not isolated in G. Hence, there is a
net {i(gy): 9. € G}, g: # e for all \, such that i(g,) —i(e). Therefore,

2(g) = (i(g) — %(i(e)) =1 for each xeG.

Let T={2¢C:|z| =1} and D ={2eC:|z| <1}, Then the pre-
vious lemma yields the following number-theoretic result.
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THEOREM 2.2. Let {2, 2y -+, 2,}C T, peZ". Then for each
&> 0 there exists meZ" such that |(z)"— 1| <e for all 1,1 <
1 < p.

Proof. Consider the group G = Z under addition. Then G =
{X.:2€ T}, where x,(n)=2", neG. Now, let ¢ >0 be given. By
Lemma 2.1, there exists a net {n;: ned}C G, n; # 0 for all \, such
that 2" = y,(n;) —1 for each x,e@. Without loss of generality,
assume that n; € Z* for all . Hence, given {z, 2,, -+, 2,} C T, there
exist N, Ay +-+, N, in 4 such that |22 — 1] <e for all A=\, 1=
© < p. Thus, if A,e4 is such that = X;,, 1 =17 = p, then with
m = n207

[(z)"— 1] <e for ¢=1,2 --+,p.

COROLLARY 2.3. Let {2, 2, ++-,2,}CT, peZ". Then for each
g, 0 <e<1, there exist neighborhoods U,, U,, --+, U, and there exists
m, € Z* such that

(1) zeU,and U,CcD, 11 < p,

(2) |u—1|<e for all

welUpP ={ww, - w,:w; U}, 1<i1=Z0p.

Proof. Let z; =¢%, 1< j<p. By Theorem 2.2, there exists
m, € Z* such that |m,0; (mod 27)| < ¢/2 for all j. Now, for each 7,
let

Uj={w= \w|eeD: |® — 6;] < —°— and |w| >[1—i}”’"°}.
4m, 4

Then if we U, u = wow, -+ W,, w,€U; for all k, so that |, +

@y + o0+ Oy — mP;| < €[4 and |w,||w,| -+ |Wa,| > 1 — /4. Thus,

if we U, then

lu— 1= |u—2f| 4+ [z —1| <

After a technical lemma, the desired result will be proved. S
continues to be the semigroup of positive rationals under addition.

LEMMA 2.4, Let (Y Yo =y Yo} < S, peZt. Then there exists a
subsequence {l/n:keZ'} of {yn:meZ"} and there exist z, 2, -
2, €T such that y,(1/n,) — 2; for each 1,1 <1 < p.

’

Proof. Note that for each 17, y,(1/n) is an nth root of y,(1) and
80 |x(l/n)|—1 as n— co.
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Now, {x.(1/n): ne€ Z'} is a subset of the closed unit disk D, and
so by compactness has a convergent subsequence with limit z;2, €T
by the above remark. Further, if a subsequence {1/n.: 7€ Z*} exists
such that x(1/n,)—z2, for ¢=1,2, --., 7, then by compactness
{xis:(1/ny): 2€ Z*} has a convergent subsequence {x;.(1/m): ke Z*}
with limit z;., € T. Thus, the induction proof is complete.

THEOREM 2.5. There exists a met {g. de=z}cC S such that
X)) — 1 for each ye€S. Therefore, 4(S) has a weak approximate
identity of morm omne.

Proof. Let #(S) denote the collection of all finite subsets of
S and let 2 = Z* x 7 (8) be directed by (n, A) < (m, B) if and
only if n < m and ACB.

Now, define a mapping d +— q, of & into S as follows: For each
d=m,A), A={, *-*, X}, fix a subsequence {1/n,: k € Z*} such that
x:(1/n,) —z;€ T for all v. Then there exist m, € Z* and neighborhoods
v,---,U, of z,---,2, respectively, such that |u — 1| <1/n for
all ueUp, 1 <4< p. Now, there exist K,eZ* such that k = K,
implies y,(1/n,) € U; for 1 < ¢ < p. Hence, for each 7,1 <1 < p,

Ix(mofn) — 1] = | (L™ — 1| < 712_

for all k = K,. Set K, =max{K;:v=1,2, .-+, p}. Then define ¢, =
Mo/ Mgy R

Finally, it remains to show that for each xeS, x(9;) —1l. So,
let ¢ >0 be given. Then choose m, such that (1/n,) < ¢, and let
A, ={y}. If d =(n, A) = (n, A) = d,, then |x(q;) — 1| < A/n,) < e.

COROLLARY 2.6. There exists a met {l/n;:de Z}C{l/nineZ’}
such that x(1/ng) — 1 for each yeS.

Proof. Repeat the proofs of Lemma 2.4 and Theorem 2.5 with
{1/n:m e Z*} replaced by {l/n!:n e Z*}. Then in the proof of Theo-
rem 2.5 choose K, such that

(1) K,zmax{K;:i=12, ..., p} and

(2) mg, =m,.. Thus, q; = mng! is of the form 1/n, for some
I-VAR

Theorem 2.5 and Corollary 2.6 make it clear that 4(S) has a
bounded weak approximate identity {6,,.,:de =} [3]. However, S
does not have relative units. That is, given m/n €S, there is no
v€ S such that v(m/n) = m/n. Thus, Z4(S) does not have a norm
approximate identity, bounded or unbounded.
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3. A general result. The same techniques developed in § 2 can
be used to prove a useful result about weak approximate identities
of norm one for a commutative Banach algebra.

THEOREM 8.1. Let A be a commutative Banach algebra. Then
A has a weak approximate identity of morm ome if and only if
there exists a net {v(p):pe A} in A, ||v(0)|| <1 for all o, such
that |x(v(0))| —1 for all ye 4A.

Proof. If A has a weak approximate identity of norm one,
then there exists a net {v(0): o€ 7} in A, ||v(0)|| =1 for all p,
such that.

rw(o)a) — y(a) for all acA, xecdA.

Thus, for each y € 44, x(a) # 0 for some a € 4 implies that y(v(0)) —1
and hence |x(v(0))|— 1.

Conversely, assume that {v(0)} is such that |x(v(p))|—1 for
each yc4A. Let .# (4A) be the collection of all finite subsets of
4A and let 4 = Z* X F (4A) be directed by (n, F) < (m, E) if and
only if n <m and F CE.

Then define a mapping M+ e(\) of 4 into A as follows: for each
A= (n, F), where neZ" and F = {)i, X ***, X»}, there exists by
compactness of D a subnet {v(0")} of {v(p)} such that y, (o) —z¢eT
for 43,1 < ¢ < r. By Corollary 2.3, there exists m,e Z* and neigh-
borhoods U, of 2z, in D such that [z — 1| <1/n for all ze UM, 1<
1 <r. Now, let o, be such that y (v(0))e U, for all 1,1 <17,
and define e(\) = v(0,)™. Note that for each 17,

| %eV) — 1] = [x(w(oh)m) — 1]
= | Qo)™ — 1] < -71; )

Thus, x(e(n)) —1 for each ye4A and hence y(e(\)a)— x(a) for
each ye4A, acA. Also, |leN)]| = [|[v(eo)™]|] =1 for all ne 4.

COROLLARY 3.2. Let S be a commutative semigroup for which
Z(S) is semisimple. Then 4(S) has a weak approximate identity
of morm one if and only if there ewists a met {s(0):(p)€ #)} in S
such that |x(s(0))| — 1 for all yeS8.

Proof. The Banach algebra ~4(S) has a weak approximate iden-
tity of norm one if and only if there exists a net {s(\):ne4d} in S
such that y(s(»)) —1 for all xS [3]. Thus, the proof is completed
by applying Theorem 3.1 with v(p) = d,,, for all p.
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