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APPROXIMATE FIBRATIONS AND A MOVABILITY
CONDITION FOR MAPS

DONALD CORAM AND PAUL DUVALL

In a previous paper the authors defined the approximate
homotopy lifting property and studied its implications. This
property is a generalization of the homotopy lifting property
of classical fiber space theory. Here a necessary and
sufficient condition on point-inverses for a map to have the
approximate homotopy lifting property for %-cells is given;
and the approximate homotopy lifting property for w-cells is
shown to imply the approximate homotopy lifting property
for all spaces. A corollary is that, in a fairly general
context, any two point-inverses of a Serre (weak) fib rat ion
have the same shape. By combining these results with results
of L. Husch, some conditions are obtained under which a map
between manifolds can be approximated by locally trivial
fibrations.

1* Introduction and preliminaries* Throughout this paper,

p:E-+B will denote a surjective map between locally compact, sepa-
rable metric ANR's E and B. We say that p has the approximate
homotopy lifting property (AHLP) with respect to the space X if
whenever h: X x I-+B and h: X x {0} —> E are maps such that ph =
h\X x {0} and ε is a cover of B, h extends to a map h: X x I—*E
such that h and ph are ε-close. By a simple modification of [4; XX,
2.4], if p has the AHLP with respect to X, we may choose h to be
stationary when h is, i.e., if h(p(x), t) = p(x) for all t, h(x, t) = x for
all t. If p has the AHLP for all spaces, we say that p is an ap-
proximate fibration. (It suffices to have the AHLP for metric spaces
by [3, Prop. 1.4].)

Approximate fibrations and approximate lifting were introduced
in [3] as an abstraction of the useful lifting properties possessed by
t/V^-maps [9], [11], [12]. It is shown in [3] that approximate fibra-
tions have shape theoretic properties analogous to the homotopy
theoretic properties of Hurewicz fibrations. For example, under
appropriate hypotheses on E and B any two point inverses of p have
the same shape, and p induces an exact sequence involving the
homotopy groups of E and B and the shape-theoretic homotopy
groups of any point inverse of p.

In this paper, we study conditions which imply that a map is
an approximate fibration. Section 2 is devoted to showing that, in
the case of approximate liftings, the difference between Serre and
Hurewicz fibrations disappears; that is, the AHLP for all cells is
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equivalent to the AHLP for all spaces. In §3 we define a movability
condition for maps and study its relationship to approximate liftings.
Finally, in §4 we give some applications.

We will use the following notation and terminology. Map means
continuous function. All covers are open covers. If δ is a cover of
a space X, and Veδ, the star of V is the union of all members of
δ which intersect V. The star of δ is the cover whose elements are
the stars of members of δ. δ is star-finite if each member of δ
meets only finitely many members of δ. We say that δ refines the
cover ε and write δ < ε if each member of δ is contained in a member
of ε. Also δ star-refines ε if the star of δ refines ε. We will often
use the fact that each open cover of a separable metric space has
a star-finite star refinement [4, p. 167 and p. 255]. If ε is a cover
of the space Xand/, g: Y—+X are maps, we say / and g are ε-close
provided that for each y eY there is F e e such that f(y), g(y) e V.
Also / and g are ε-homotopic if there is a homotopy H between /
and g such that for each yeY, there is a Veε such that
H({y} x / ) c 7 . If ε is a cover of B and f:X-+E, g:X~>B are
maps such that pf and g are ε-close, we say that / is an ε-lift of
g. If ε is a positive number, ε-close means close with respect to
the cover by open ε-balls. Similar definitions hold for ε-homotopic,
ε-lift. If C is a subset of a space X, a neighborhood of C is a set
which contains C in its interior. If x is a point in a metric space
X with metric d, N(x, r) — {y e X\d{x, y) < r}. If x is a vertex of
a complex K, st(x, K) — U {int σ \ x is a vertex of σ). For 6 6 B, Fb

denotes p~\b). In discussing homotopies defined on I x I we often
identify X x {0} with X.

We conclude this section with several lemmas which are analogous
to standard facts in the usual theory of fibrations. Since they will
be used in a crucial way in the rest of the paper, we include indica-
tions of proofs for completeness.

LEMMA 1.1 (see [3], Lemma 1.2). Suppose that p has the AHLP
for the metric space X. Given a cover ε of B there is a refinement
δ of ε such that if h: X x I-^-B and h: X—>E are maps such that
h is δ-lift of h\X x {0}, h extends to an ε-lift of h.

Proof. Let ω be a twice star refinement of ε and let δ be a
star refinement of ω such that any two <?-close maps into B are α>-
homotopic. Let g:X—>(0,1) be a map such that for each xeX,
h(x x [0, q(x)]) is contained in some member of δ. Let φ: X x
[-1,0]—>B be an ω-homotopy between ph and h\XxO. Let

g:Xx[-l,l]-+Bbe given by g{x, t) = {g£ ^ ~ | f | = ° There
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is a g: X x [ — 1,1]—+ E which extends h and is an ω-lift of g by
the AHLP. Define h: X x I-+E by

' Q(x)

K{X> t] = Wx, 2t - q{x)) , if

.g(x, t) , if q(x) <; t ^ 1 .

We need to show that h is an ε-lift of h. If {x9 t) is a point in X x l
with t ^ q(x)/2, then pfe(α?, t) = p<7(#, 2t/q(x) — 1) which is ω-close to
g{x, 2t/q(x) - 1) = #(&, 2ί/g(a;) - 1). 0(a?, 2t/g(a?) - 1) is α)-close to
φ(xf 0) = h(x, 0), and h(x9 0) is ω-close to h(x9 t) by our choice of g(a ).
Since ω twice star refines ε, pK(x9 t) is ε-close to h(x9 t).

If g(a?)/2 ^ t ίk q{x), then y = 2ί — g(a?) 6 [0, g(a?)], so pfe(a?, t) =
PSί(Xf V) which is α)-close to g(x9 y) = λ(a?, j/), which is α>-close to
h(x, t) by our choice of g(a ), so ph(x, t) is ε-close to h(x, t). If
t > q{x)9 ph(x9 t) is ω-close to g(χ9 t) = λ(a?, ί)

LEMMA 1.2. Suppose that p has the AHLP for Iq, q <; k and
let (X, A) be a polyhedral pair with dimension X ^ k. Then given
a cover ε of B there is a cover δ of B such that if h: X x I—>B
and h: X x {0} U A x I—+E are maps such that ph\X x {0} =
h\X x {0} and h\A x I is δ-lίft of h\A x I, h extends to an ε-lift
ofh.

Proof. Given ε, let δ = δk < δfc_x < < δ0 = ε be a collection
of covers so that δt plays the role of δ in 1.1 for ε = δt^l9 i > 0.
Triangulate X so that A is a subcomplex and build the extension
over the cells of X — A as in [19, 7.2.6], using Lemma 1.1 to extend.

COROLLARY 1.3. If p has the AHLP for Iq, q <; k, then p has
the AHLP for all polyhedra of dimension k or less.

Note that the δ in Lemma 1.1 depends only on the cover ε, and
on the dimension of X and ε in Lemma 1.2.

Now let B1 denote the space of paths in B with the compact
open topology, and let Δv = {{a, e) eB1 x E\p{e) = α(0)} Just as in
the case of the usual theory of fibrations [4, XX], we have the
following characterization for approximate fibrations.

LEMMA 1.4. p is an approximate fibration if and only if p
has the AHLP for A9.

Sketch of proof. Necessity is clear. For the converse, observe
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that approximate fibrations can be described in terms of approximate
path lifting functions [3], whose existence is equivalent to the AHLP
for Δ9.

IL The equivalence of weak and strong approximate fibra-
tions* In this section, we will show that the AHLP for finite poly-
hedra implies the AHLP for all spaces. For the time being, let us
say that p is a weak approximate fibration if p satisfies the AHLP
for Iq for all q < oo.

THEOREM 2.1. Suppose that p is a weak approximate fibration.
Then p has the AHLP for all countable locally finite polyhedra.

Proof. Let X be a countable (noncompact) locally finite poly-
hedron, and let h: X x I-+B, h: X—> Ebe maps such that ph = h\X.
Write X = (UΓ=0 A%) (J {\J7=, Bt) such that

(1) Bo = 0 , B, Φ 0 , Aj Φ 0 for i ^ 1, j ^ 0,
(2) each Ai9 Bt is a compact polyhedron,
(3) ( ^ Π U ^ ^ c i ^ U Λ for i ^ l ,
( 4) A, Π As = 0 and B.nBj^ 0 if i ^ i .

Given a cover ε of J5, let £< be the cover of 5 promised in Lemma
1.2 for ε and the pair (Bif Bt Π (A^ U -A<)) for each i, and let ^ be
a common refinement of ^ and δi+i. There is an extension of h to
(\Jΐ=o Ai) x I such that λ| At x / is an ̂ -lift of h\ At x I By Lemma
1.2, we can now extend h over each of the B/s to an ε-lift of h
defined on all of X x J.

THEOREM 2.2. Suppose that p has the AHLP for Iq for all
Q ΞS k ^ oo. T%ew p &αs έAe AHLP for all separable metric spaces
of dimension k or less.

Before proving 2.2, we need to develop some terminology and
several lemmas. The strategy of proof is clear. Since we are only
concerned with approximate liftings, we can use nerves of covers
and canonical maps to translate a lifting problem for metric spaces
into one involving polyhedra. For a discussion of nerves and canoni-
cal maps, see [1] or [7]. Our first lemma is a restatement of [7,
Theorem 8.1].

LEMMA 2.3. Let Y be an ANR, ω a cover of Y, and f:X-+Y
a map, where X is metric. Then X has a cover π such that if ξ
is any locally finite refinement of π and Nξ is the nerve of ζ, there
is a map ψξ: \Nξ | —> Y such that f and ψξφζ are ω-homotopic in Y
for any canonical map φζ: X—> \Nξ\.
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The map ψξ is called a bridge map for f relative to ω.

LEMMA 2.4. Let X be a metric space and let co be a cover of
X x I. Then there is a star-finite refinement ξ of ω whose nerve
is a triangulation of P x I, where P is the carrier of the nerve of
ζIX. Furthermore, there is a canonical map φ: X x I—*Px I for
ξ such that φ\X: X~* P is a canonical map for ξ | X.

Proof. By [6, IX, 5.6], we may assume that ω is a cover whose
elements are of the form V x J where the V are the elements of a
star-finite cover 7 of X and J is a subinterval of /. Let K be the
nerve of 7, let P = |J5L|, let g:X-+P be the barycentric map with
respect to 7 [1, p. 76], and let φ:XxI—*PxI be defined by
φ(x91) = (g(x), t). Define the cover p of P x I by st(q, K) x Jep if
and only if V x Jeω and q is the vertex of K corresponding to
F. Choose a subdivision L of P x I such that {st(q, L) \ q a vertex
of L) refines p. Then it is easy to check that φ and ζ = {φ~\st(q, L))\q
is a vertex of L] satisfy the conclusions of lemma.

The next lemma is proved by a slight alteration of the proof of
1.1. We omit the proof.

LEMMA 2.5. Suppose X is a metric space and that p satisfies that
following condition: given covers δ and ε of E and B and maps
h: X x I—>B and g: X-+E with pg — h\X, there is an ε-lift h of h
such that h\X is δ-close to g. Then p has the AHLP with respect to X.

Proof of 2.2. We will apply Lemma 2.5. Suppose that ε, δ, g,
and h are given as above. Let rf be a star refinement of ε. Let
7] be a star refinement of rf which is fine enough to play the role
of δ in Lemma 1.1 for rf. Let ωB be a star refinement of η. Refine
the cover p~ΊωB by a cover ωE which is also a star refinement of δ.
Let τιE{πB) be a cover of X(X x I) obtained from applying Lemma
2.3 to ωE and g(coB and h)9 let πE x I be the cover of X x I defined
by πExI = {VxI\ VeπE}, and let ζ, φ, Pbe as promised be Lemma 2.4
for some common refinement of πExI and πB. We have the diagram

P

Λ.
\

Px I

Xx I >B
h
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where β0, β are bridge maps. By the construction, pβ0 and β\P
are 97-close, so β has an η'Λiit β extending β0 by Lemma 1.1. Then
βφ is an ε-lift of h such that g and βφ \ X are <?-close, so the proof
is complete.

The situation is now as follows. The proof of Theorem 2.2 says
that when we have the AHLP for the nerves of a coίinal family of
covers of a metric space X, we have the AHLP for X itself.
Theorem 2.1 says that the AHLP for cells implies the AHLP for
countable polyhedra. We can put these together to get

THEOREM 2.6. p is a weak approximate fibration if and only
if it is an approximate fibration.

Proof. Suppose p is weak approximate fibration. Since E, B
are second countable, B1 x E is second countable [4], so Δp is a
second countable metric space. By 2.1 and 2.2 p has the AHLP for
ΔPί so the theorem follows by 1.4.

We now obtain a corollary about Serre fibrations (weak fibrations
in [19]). It is known that any two fibers of a Serre fibration over a
path connected base have the same weak homotopy type [19, Cor.
7.8.5]. However, the sin (l/α?)-circle has the same weak homotopy
type as a point. Could these sets be fibers of a Serre fibration?
The corollary answers this question negatively in our setting by
showing that a stronger relationship holds between the fibers.

COROLLARY 2.7. If p is a Serre fibration, p is an approximate
fibration. If, in addition, B is path connected and p is a proper
map, any two fibers of p have the same shape.

Proof. The first conclusion is immediate from 2.6. The second
follows from [3].

Ill* Movability for maps and approximate lifting* If p is a
cell-like map, it follows from [12] that p is an approximate fibra-
tion with no further assumptions. As soon as the fibers of p have
nontrivial shapes, however, it is clear that some consistency condi-
tions must be placed on the fibers if p is to be an approximate fibra-
tion. In this section, we characterize approximate fibrations in terms
of a movability condition which is reminiscent of the notions of
regularity that have been used to advantage in the study of fibra-
tions [5], [13], [17], [18].

Let F be a compactum in the space E, xeF, and ω the inverse
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system of neighborhoods of F in E with inclusions as bonding maps.

Define πk(F, x) = — {πk(U, x)\Ueω} for each k ^ 0. If F c U are
neighborhoods of I*7 and the projection πk(F, x) —> πk( U, x) is an iso-
morphism onto the image of the inclusion induced map πk( V, x) —•
πk( U, x) for every xeF, we say that πkF is realized as the image
of πkV in πkU. This would occur for example if πk(V, x) and π^U, x)
were the first two terms in a constant inverse sequence with inverse
limit πk(F, x) for each xeF. A proper map p: E—+B is a k-movable
map provided that for each b e B and each neighborhood ϋ70 of the
fiber Fb there are neighborhoods U and F of Fb such that Va U(zUQ

and TΓ^ is realized as the image of TΓ^F in πiU, 0 <ί i tί k, for
every fiber Fc c F. The next lemma gives a useful consequence of
immovability.

LEMMA 3.1. Suppose p: E-+B is a k-movable map, k ^ 1. Let
beB, Uo be an arbitrary neighborhood of Fb, and U and V be
neighborhoods of Fb in Uo such that, for any Fc c V, πjFc is realized
as the image of ntf in %$, 0 ̂  i ^ k. Then for any fiber FcaV
and any neighborhood WQ of Fc in V, there exist neighborhoods W
and Z of Fc in Wo such that a%\ πt(V, Z)—*πi(U, W), l^i^k, is
the zero homomorphism where a: (V, Z)~+(U, W) is inclusion.

Proof. Since p is a ^-movable map, there are neighborhoods W
and Z of Fe in Wo such that πJFt is realized as the image of π^
in πtW, O^i^k. Let φ: Z-+ W, χ: W-> V, and ψ: V-> U be the
inclusion maps. By the choice of Z and V, (ψχ\: im φ% —> im <f # is an
isomorphism on πt for 0 <̂  i ^ k. In particular χ#: πi_1W—*πi_1V is
monic on im φ%, and image (ψχ)t = image ^# . Consider the following
diagram in which the vertical arrows are inclusion induced and the
horizontal arrows are part of the exact homotopy sequence of a
pair.

πlV,Z) >πt^Z

T y / -r r ΎXT\ TXT ^ ~\T

It is an easy "diagram chasing" argument to prove that α# is the
zero homomorphism.

Following Kozlowski and Segal [10] we define a metric compac-
tum F to be k-movable (k ̂  0) if for any ANR sequence {Xi9 piό}
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associated with F given i there exists j ^ i such that for any-
mapping /0: K —• Xj from a Λ-complex and for any I ̂  j , there is a
map /i: K-^Xt such that p4 i/0 ^

LEMMA 3.2. Let p: E—+B be a proper map. If p is a k-mova-
ble map, then each fiber F is a k-movable compactum.

Proof. We choose the ANR sequence {XJ associated with F to
be a nested sequence of compact ANR neighborhoods of F x {q} in
E x Q with the inclusions as bonding maps. (See [3], Q denotes
the Hubert cube.) The proof is by induction on k. Let k — 0.
Given i, choose open sets U and V in E and a connected open set
QiCiQ such that

F x {q}<zV x QidU x QiCiXi

and π0F is realized as the image of π0V in π0U. Choose j so that
XjC V x Qi. Suppose /: if —*X, is a map from a 0-complex if and
I ;> j . Select open sets W and Z in E and Qt in Q such that

F x {q} c Z x Qt c W x Qt c Xι

and π0F is realized as the image of π0Z in π0W. For each x in
K the first coordinate of f(x) can be connected by a path in Ϊ7 to a
point in ϋΓ by the π0 realization statements, and the second coordinate
of f{x) can be connected to q by the path connectivity of Qί# Since
U x QidXi, f extends to /: if x I—»X* such that f(x, 1) e Z x

Now suppose k > 0. Given i, choose open sets U and V* in E
and a contractible open set Qt in Q such that

F x {q}czV x QiCzU x QidXi

and TΓfcF is realized as the image of πkV in πkU. Choose ir such
that Xi> c V x (?;,, and choose i ^ ί' by induction so that for V ̂ > j
each map of a (& — l)-complex into X3 is homotopic in Xt, to a map
of the complex into Xv. Suppose f:K—>X3- is a map from a &-
complex K and ϊ ^ j . Select open sets Z and W m E and a con-
tractible open set Qt in Q such that

F x {q} c Z x Qt c W x Qι c Xz

and the inclusion induced homomorphism a%: τck(V, Z)—*πk{U, W) is
zero. Choose V such that XvczZ xQt. Then / extends to f:K x{0}
Uif*"1 x I-*Xv such that /(#, l ) e l r for each ^eif^"1. For each
simplex A in if, f\ (A x {0} U Bd A x I) defines an element of



APPROXIMATE FIBRATIONS AND A MOV ABILITY CONDITION FOR MAPS 49

Kk( V x Qif Z x Qι) which maps to zero in πk{ U x Qif W x Qt) since
a$ is zero and Qt and Qt are contractible. Hence / extends to
f:K x I~>U x QiCzXt and f(x,l)eW x QιaXι for each x e K as
desired to complete the proof.

On the other hand, the converse of Lemma 3.2 is false. For
example define f:SkxBk+1~+Bk+1 by f(x,y) = \y\x where xeS\

y e Bk+1 and | y | denotes the norm of y. Each point-inverse of / is
homeomorphic to Sk which is fc-movable compactum, but / fails to
be a A -movable map at f~\0).

THEOREM 3.3. If p: E—>B is a k-movable map, then p has the
approximate homotopy lifting property for P, 0 ^ i ^ k.

Proof. The proof is by induction on k. We thus first take
k = 0. Let g: {0}-+ E and G: {0} x I—>B be given maps such that
pg(0) = G(0, 0), and let ε > 0 be a given number. For each beB,
choose Ub c p-\N(b, ε/2)) and an open set Vb such that FbdVbcz Uh

and π0Fc is realized as the image of π0Vb in π0Ub for every fiber
FcaVb. Choose a finite subcollection ω of {Vb\beB} such that ω
covers p~λG(I). Let O = ί o < * i < < ί » = l be a partition of I such
that the image of each subinterval p'^Glt^ ti+1] lies in some element
of co which we denote V,. (These need not be distinct.) Suppose
g has been extended to Gό: [0, t3\ -> E, 0 ^ j ^ n — 1 such that
<?*•([*« ti+A) ^Ui for 0 ^ i ^ i - 1, and Gs(ts) e Vd. (GQ = gr begins
this induction.) If j < n — 1, let W3- = F, Π Fy+1; and if i = n - 1
let TFy = Vy. Choose an open set Zό such that p~\G(tj+1)) c £ , c TΓy

and πop~\G{tj+1)) is realized as the image of πo(Zs) in TCJ^WJ). Hence,
every point in V3 can be joined by a path in U3 to a point in Z3 .
Thus, (?, can be extended to G3+1: [0, tj+1] —»- jδ/ such that

and

Let G = GΛ: [0, 1] —»£/. Then G extends g; and if ί e [έΛ, ί i + 1], then
G(t) e p(Vi) (Z p(Ui) and pG(t)ep(Ux), so d(pG, G) < ε by the choice

of IT,.

Now assume A; > 0 and that the theorem is true for integers
less than k. Let g:P-+E and G:P x I—*B be given maps such
that j)0r(£) = G(ί, 0), and let ε > 0 be a given number. For each
beB choose Ub c p~\N(b, ε/2)) and an open set Vb such that Fb c
Vb(Z Ub and τrfeFc is realized as the image of πkVb in πkUb for every
fiber FcaVb. Choose a finite subcollection ω of {FδlδeE} which
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covers p^G^P x I ) . Subdivide P x I into rectangles each one of
whose images is contained in some Vb e ω. We order the collection
of rectangles lexicographically and denote the result as {Ri \ i — 1, 2,
•—,n}. For each rectangle Rt choose an element of ω denoted Vt

such that p~xG{R%) c Vt. (These need not be distinct.) Each Rt —
Ji x [Si, U] where J{ is a rectangle in P and [sif tt] c I. Let m« =
(m'if tt) where m\ is the center of Jt. If tt Φ 1, m, e Ri n Rj for some
j > i. In this case define Wt = V< Π Fy. If £< = 1, let TΓ, = F,.
Now choose a neighborhood Z, of p~ιG{m%) in TF< such that the con-
clusion of Lemma 3.1 holds. There is a number ζ > 0 such that if
eeEand d[p(e\ G{Jt x {£*})] < ζ for some i then β e TF*. Also, there
is another number η > 0 such that if eeE and d[p(e), G(mέ)] < η
for some i then e e Z<. Corresponding to εx — min {̂ /2, ζ}, there is
a <?! satisfying the conclusion to Lemma 1.1.

Let A = Ifc x {0} U {Bd J, x I\ i = 1, 2, , w}. By the inductive
hypothesis r̂ can be extended to G'\ A—>E such that G\Rt Π 4 ) c 7 4

for each i and d{pG\ G \ A) < min {<5X, ζ}. Now suppose G' has been
extended to G'5: A U {Rti = 1, 2, , i - 1} such that (?;•(#,) c U, and
Gy(Ji x (tj) c Wi for 1 ^ i ^ i - 1 . Let Ss be a rectangle in Jά x {̂ }
containing my such that diam G(S y) < 57/2. By the inductive hy-
pothesis and the choice of δlf G'ό extends to G": A U {Ri = 1, 2, ,
i - 1} U (Bd 22, - Int Sy) -^ E such that ώfpG Xa;), G(a?)] < ε1 for
a? e Jj x {ίi} - Int S, . Now G71 Bd Rj - Int Sy defines an element of
πk(Vi9 Zs) since if α G B d ^ then

d[pG'/(x), G(ms)] ^ d[pGf;(x), G(x)] + d[G(x), G{mό)\ < η .

Hence by Lemma 3.2, G'f extends to G's+1: A U {Rti = 1, 2, , j} —> E
such that GJ+Xδy) c Ud and Gy+^Jy x {ty}) c Wά.

The map G = G'n+1: P x I—> £/ is the desired map since G extends
βf and if teRt then both G{t) and 3>δ(t) are elements of p(U%) so

, G) < ε.

COROLLARY 3.4. If p: E—*B is a k-movable map for all ft, then
p is an approximate fibration.

Proof. By Theorem 3.3, p has the approximate homotopy lifting
property for cells of all dimensions. Hence by Theorem 2.6, p is
an approximate fibration.

Using the argument of [3, Theorem 2.4] we also have the
following proposition.

PROPOSITION 3.5. If p:E—+B is a proper map with the ap-
proximate homotopy lifting property for cells of dimension ^ ft + 1,
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then p is a Immovable map.

REMARK. If the definition of fc-movability for a map were
changed to require only an epimorphism in dimension k rather than
an isomorphism, then Theorem 3.3 would still be true as stated and
Proposition 3.5 would be true without assuming the approximate
Ίiomotopy lifting property for cells of dimension k + 1. This added
generality is not however worth the added complication.

We now give another condition on a map, similar to Λ -movability
for all k but more geometric, which also implies that the map is
an approximate fibration. A proper map p:E-+B is a completely
movable map provided that for each b e B and each neighborhood U
of the fiber Fb there is a neighborhood V of Fb in U such that if
Fc is any fiber in V and W is any neighborhood of Fc in V then
there is a homotopy H: V x I—> U such that H(x, 0) = x and
Ή(x, l)eW for each xeV and H(x, t) = x for each xeFc. We say
that V is a movability choice for U and δ.

PROPOSITION 3.6. Let p:E—*B be a proper map. Then p is
completely movable if and only if p is an approximate fibration.

Proof. If p is an approximate fibration, the argument of
Theorem 2.4 of [3] shows that p is completely movable. Suppose
that p is completely movable. We shall show that p is A -movable
for all k and apply 3.4. Let b e B be given and let Uo be a neigh-
borhood of Fb. Let C7Ί be a movability choice for Z70 and b and let
U2 be a movability choice for ΪTL and b. We claim U = Z70 and
V = Z/j. satisfy the definition of ά-movability for Uo and δ. To show
this, let c be such that Fc c [72. Construct a sequence {ί7jSL0 of
neighborhoods of Fc as follows. Uo, Uίf U2 have been chosen. Ui9

i > 2 is chosen as a movability choice for [T^ and c such that
/l£=o Dt = Fc. Note that £7* is also a movability choice for Ut^ and
•c, i = 1, 2. Let i t : £7* —> t / ^ be the inclusion. First we show that
for i > 1, ji*iKk(Ui)-+Kk(Ui-i) takes im ii+1* isomorphically onto
im it* for each base point in Fc. The proof that im j i W maps onto
im ji* is an immediate consequence of the movability choices, so we
only show that j , * is 1-1 on image j < + 1 . To this end, let a: Sk —• Ui+ι

be a pointed map which represents the zero element in πk{Ui^.
Let ht be a homotopy of Ut-ι in Z7ΐ_2 which is fixed on Fc and is
such that h0 = inclusion, λx( Z/^J c Z7ί+1. There is a neighborhood W
of F c such that ht( W) c J7ί+1 for all t. Using the movability choice
of Z7m, we can find a pointed map β: Sk-+W such that [a] = [/3]
in ϊ/i. There is a pointed homotopy ^ t: S

fc —> Ui_1 such that βr0 = β,
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g1 — constant map. Then hxgt is a homotopy of hβ to a constant
map in Ui+1 and htβ is a homotopy of β to hβ in ί7i+1. Thus
[β] = [a] = 0 in πk(Ut). To complete the proof of the proposition,
note that we have shown that the sequence —> πk( Ui+1) —• πh( Ut) —•
is constant, so that the inverse limit πk(Fc) projects isomorphically
onto each image jt* for each i > 1.

Next we prove that λ -movability up to the dimension of the
fibers plus one is sufficient to get an approximate fibration.

THEOREM 3.7. If p:E~+B is a (k + l)-movable map and
dim Fb 5* k for each fiber Fb, then p is an approximate fibration.

Proof. We will show that p is completely movable. Let b eB.
Since p is a (k + l)-movable map, Fb is a (k + l)-movable compactum
by Lemma 3.2. Thus by [10, Theorem 4], Fb is movable. Given a
neighborhood U of Fh, we may assume that U — p~\U) for some
neighborhood U of b. By standard homotopy constructions, there
is a neighborhood Uo of b in U such that if δ' e Uo, Uo can be
contracted to 6' in U keeping V fixed. Let Uo — p~\UQ). By the
movability of Fb there is a neighborhood V of Fb in f/0 so that V
deforms into each neighborhood of Fb staying in Uo. Again we may
assume that V= P~\V), where V is a compact connected neighbor-
hood of b in Uo. Let bf 6 V be any point and let W be any neigh-
borhood of b' in V. It suffices to show that V deforms into
W = jΓ^TF) in C7 keeping JP6, fixed. By our choice of Uo, there is
a homotopy K: Uo x I~+ U which fixes bf and such that Ko = 1UQ9

Ki(U0) = δ'. Let ΐ^o be a neighborhood of V such that Kt(W0)aW
for all £, and let WQ — p~xWQ. Let a:I~+V be a path from b
to &'. Let h:Fb x I-+B be the homotopy given by h(x, t) = α(ί),
let flf: F 6 x {0}->£; be given by g(x, 0) = a?, and let G:Fhx I-+V
be an approximate lifting of h extending g such that G(Fb x {1}) c WQ
By [1, IV, 8.1], there is a neighborhood W of F 6 and an extension
G: W x I— V such that G(W x l ) c Wo. Let JΪ F x ί - [70 be a
homotopy such that Ho = lί? and ^ ( F J c W7. Then φ:V x I~->U0

given by

φ{xy t) =

ίs, 2ί) , 0 ^ t ^ — and

), 2t - 1) , ^ * ^

is a homotopy of F which deforms V into TF in UQ. It remains to
alter φ so as to hold Fb, fixed. Define f:Fb,xIxI-+Ubγ
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f(x, t, s) = K(pφ(x, t), s)

and let f:Fy x I—>E be defined by / = Φ\(Fy x I). By our choice
of WQ, we can find an approximate lifting K:Fb, x Ix I—>U of
/ which extends / and such that K(Fb, x I x {1}) c W and
K(Fb, x {1} x I)aW. By stationary lifting we may make K{x, 0, s) = x
for all s.

By reparameterizing Ix I, we can use K to get a map K": Fb, x
I x I~*U such that K"(x, t, 0) = φ(x, t), K"{x, t, s) = x if έ = 0 or
* = 1, and K"(x, l,s)eW for all t, xeFb>.

Consider the map φ': V x {1} x {0} \J Fb, x {1} x I~-> W given by

0'(α?, 1, s) = 4 «& 'S v S ~ττr By [1, IV, 8.1] φr extends to a map
^ ( ϋ ^$, j . , s), x e r br.

φr: V x {1} x I—+W. Now define
φ": (V x I x {0}) U (V x {0, 1} x /) U (F'b, x I x I) > ϋ

by

'φ{x, ί), β = 0;

a;, t = 0; and

By [1] again, φ" extends to φ": V x I x I-»U. Then ψ:V x I-*U,
given by ψ(x, t) = φ"(x, t, 1) is a homotopy which deforms V into J^
in U keeping Fb> fixed.

PROPOSITION 3.8. Let p: E—+B be a proper map. If p is a k-
movable map and a (k + 1)-UV map, k ^ —1, then p is a (ft + 1)-
movable map.

Proof. Given a neighborhood ?7o of some fiber Fb choose neigh-
borhoods U and V of F δ in Uo such that each singular (ft + l)-sphere
in V is null-homotopic in C7. Then πk+1Fe is realized as the image
of πk+1(V) in πk+1(U) for any fiber JP C C V since both are zero.

Finally, we summarize the results of this and the previous
section:

THEOREM 3.9. Forp:E—>Ba proper map between locally com-
pact, separable ANR's, the following are equivalent:

(1) p is completely movable,
( 2 ) p is an approximate fibration,
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( 3) p is k-movable for all k, and
( 4 ) p has the AHLP for Iq, 0 ^ q < oo.

IV. An application* In this section, we combine the results
of §§2 and 3 with the geometric results of L. Husch in [8] to give
some conditions under which a map between manifolds can be ap-
proximated by locally trivial fibrations.

THEOREM 4.1. Suppose E is a closed connected 3-manifold such
that each innessential tame 2-sphere in E bounds a Z-cell and let
B be a connected 2-manifold. If f: E—>B is a surjective map such
that f is 1-movable and each fiber of f has fundamental dimension
less than or equal to 1, then f is the uniform limit of locally trivial
fiber maps.

Proof. Each fiber has property k-UV for k ^ 2 since each fiber
has a shape representative X in the Menger universal curve and we
can use [15, L. 2] to write X as the intersection of cubes-with
handles. Hence, / is an approximate fibration by 3.9, 3.3, and 3.4.
The theorem thus follows from [8, Theorem A].

THEOREM 4.2. Let f: E-+S1 be an n + 1-movable map where E
is a closed, connected n-manifold, n — 3 or n ^ 6. Ifn — Z suppose
that each tame innessential 2-sphere in E bounds a Z-cell and that
for some b e S\ π^Fj,) Φ Z2; if n ^ 6, suppose that for some b e S\
the Whitehead and protective class groups of TI^F^ are trivial.
Then f can be uniformly approximated by locally trivial fibrations.

Proof. By 3.7 and 3.4 / is an approximate fibration, so the
theorem follows by [8, Theorems A and B].

Finally, we give a characterization of the ̂ -sphere, n ^ 5, similar
to McAuley's version of the Reeb-Milnor theorem [14].

THEOREM 4.3. Suppose Mn is a closed (connected) manifold,
n^5, and f: Mn —»[0, 1] is a surjective map such that f\f~\Of 1)
is completely movable and f~\i) is UV°° for i = 0, 1. Then Mn is
homeomorphic to Sn.

Proof. Let A = f-\0), B = f~\l). We first show that M - A
and M — B are contractible. Since A is UV™, there exists an
ε > 0 so that the inclusion of f~\[0, s)) into M — B is null-homotopic.
By Proposition 3.6, f\M — (A U B) is an approximate fibration. Let
ht be a homotopy of (0, 1) such that h0 = identity, /^(0,1) c (0, ε),
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and ht is stationary on some interval (0, δ) c (0, ε). Let

g:(M~(A\jB)) x {0} >M-(Al)B)

be given by g(x, 0) = x, G: (M - (A\J B)) x I-+ (0, 1) by G(x, t) =
htf(x). By choosing a suitable stationary approximate lift of G, we
get a homotopy Ht of M — (A U B) which deforms M — (A U B) into
f~\09 ε) and is stationary on some neighborhood of A. Thus iί*
extends to a deformation of ikf — B into /"^[O, ε)) so M — J5 is con-
tractible. A similar argument shows that M — A is contractible.
Since M — {A U B) is connected by duality, M is 1-connected by the
Van Kampen theorem. To complete the proof, we need only show
that M has the homology of Sn. By duality,

Hk(M - A, M - (A U B)) = fr~\A U B, A) ̂  if ' f = n

(0, kΦ n .

Then Jlί - (A U δ) has the homology of S^"1 by the homology sequence
of the pair (M - A, M - (A U B)), and M has the homology of Sn

by the Mayer-Vietoris sequence of (M, M — A, M — B).

The authors thank J. Maxwell for a helpful discussion concerning
Theorem 4.3.
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