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In this paper the automorphism group of the semigroup
of finite complexes of a periodic locally cyclic group is
determined.

l Introduction. Let G be a group, written additively but not
assumed to be abelian, and let F(G) denote the collection of finite
nonempty subsets of G. Then F(G) is a semigroup with respect to
the operation A + JB — {a + b\aeA and beB). The collection of
automorphisms of F(G) is a group under the operation of composi-
tion of functions and we shall denote this group by Aut F(G). The
automorphism group of G will be denoted by Aut G. Since the
collection of singleton subsets of G is the group of units of F(G),
we frequently identify G with {{g} \ g e G}. Each automorphism of
G induces an automorphism of F(G) in the natural way. These
elements of Aut F(G) will be called standard automorphisms. If
a e Aut G and α* is the standard automorphism of F(G) induced by
a, then the mapping which sends a to α* is an isomorphism of
Aut G onto the collection of standard automorphisms of F(G).

Our interest in Aut F(G) comes from our study of retractable
groups. In [1] it was shown that the retractions of a torsion-free
abelian group G generate a large class of nonstandard automorphisms
of F(G). In particular, it was shown that AntF(Z) is countably
infinite, where Z denotes the additive group of integers. Since Aut Z
has only two elements, it was natural to inquire if the semigroup of
complexes of a finite cyclic group admits nonstandard automorphisms.
For a natural number n, let Zn denote the group of integers modulo n.
Clearly AutF(^) and AutF(Z2) have only standard automorphisms.
In §3 we exhibit nonstandard automorphisms for F(Z3), F(Z4), and
F(Z5) and classify their corresponding automorphism groups. The
only automorphisms of F(Z6) are standard. In Theorems 2 and 3
we prove that if n^7, then Aut F(Zn) has only standard auto-
morphisms and hence, Aut F(Zn) is isomorphic to Aut Zn. If Q
denotes the additive group of rationale and G is a subgroup of Q/Z,
we can use the preceding results to characterize Aut F(G) in terms
of AutG. It appears that the absence of retractions (retractable
groups are torsion-free) might restrict the number of nonstandard
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automorphisms. In Theorem 4 we show that an automorphism of
F(G) is standard if and only if the automorphism is inclusion
preserving.

In §2 (Theorem 1) we show that if AeF(Zn) and θeAutF(Zn),
then IA | = \AΘ\. This theorem was crucial for our work. Our
results are computational in nature and are established through a
sequence of lemmas. If X and Y are sets, then X\Y denotes the
set of elements in X but not in Y.

2* Preliminaries* We have been unable to determine if the
elements of Aut F(G) preserve the cardinality of subsets of G. The
purpose of this section is to prove that the elements of Aut F(Zn)
do preserve set cardinality.

LEMMA 1. Let G be a finite group and let A, BeF(G) with
\A\ < \B\ < \G\. Then there exists geG\{0} such that \A + {0, g}\ <
|JS+{0, g}\ and \B\< \B + {0, g}\.

Proof. To prove the lemma it suffices to take |J8| = \A\ + 1.
If G\A = {x19 , xt+ι) and G\B = {ylt , yt}, let

A* = {((xi9 Xj), gia)\i, j e {1, , t + 1}, i Φ j , and -xt + x, = giό)

and

5* = {((yr, Vs\ Qrs)\r, s 6{1, . , t], r Φ s, and -yr + y8 = gr8} .

Then I A* | = t(t + 1) > t(t - 1) = | 5 * | and 0 e A*π2 U B*π2.

Case 1. There exists g e A*τr2\jB*π2. Then # = —xt + xs for some
i ^ j . Since xt$A9 x3- = Xi + g &A + g and since ^ ί A, ^ ί i U
(̂ 1 + g) = A + {0, flr}. Thus | A + {0, g) \ < j G|. If ?/ 6 G\J5, then there
exists z G G such that z -\- g = y, and # ^ 0 implies that z Φ y. Since
# ί JB*TΓ2, we have that 2g6r\Z?. Hence 2 G ΰ a n d so y eB + g. There-
fore we have that

{0,g}\<\G\ = and \B + {0, g}\ .

Case 2. A*7Γ2 Q B*π2. Since \A*\ > \B*\, there exists g e A*ττ2

such that if

J = {(α?o Xj) I ((a?,, a?y), βr) G A * }

and

then \J\ > \K\. Let J - {(xh, xh\ . , (χtm, x3 J} and JΓ = {(yri, ySl),
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• , (Vrn, VsJ}, where m> n. If 1 ^ k ^ m, then xh = xiJe + g and
since xik, xh g A, # 4 ί A + {0, #}. If x e G\(A U {α?yi, , xsj), then
# = z + # for some zeG, z Φ x. Since x g e7τr2, we have that 2 e A.
Thus a ; e i + {0, #}. Consequently, A + {0, g} = G\{xSl, , % J . Simi-
larly, B + {0, ff} - G\{yβι, , y .J and so | A + {0, g}\ < \B +"{0, ff}|.

Suppose (by way of contradiction) that |J5| = \B + {0, g}\. Then
B = B + {0, #} = G\{yβl, , τ/sJ and hence ^ = t and m = ί + 1.
Thus for each xi9 xt + g = α?y for some %. Then xt + 2g = x3- + g = xkf

for some fc, 1 <; fc ig i + 1. It follows, by induction, that &< + <βf> £
G\A for each i, 1 ^ i ^ ί + 1, and so G\A is a union of cosets of
(g). Therefore, o(g)\(t + 1). Similarly, o(g)\t and this is a contra-
diction as ^ φ 0. Hence, | 5 | < \B + {0, ^}|.

If A is an element of the semigroup F(G)f define 1A = A and
for w > 1, define nA = (n — ί)A + A. Note that nA does not neces-
sarily equal {na\as A}.

LEMMA 2. Let G be a finite abelian group. If AeF(G) and
\A + kA\ = \kA\ for some k^ 1, then \IA + kA\ = |fcA| /or αW i ^ 1.

Proof. The equality holds for Z = 1. Assume that I ^ 1 and
that I Li + M | = \kA\. If aelA, then |ZA + kA\ = | - α + Li + M |
and since fcA £ — α + IA + kA, we have that kA = — α + ΪA + fcA.
Therefore, |&A| = |A + &A| = |A + ( - α + IA + kA)\ = |(Z + 1)A + &A|.
By induction, the lemma holds for all I ^ 1.

The proof of the next lemma is straightforward and will be
omitted.

LEMMA 3. Let G be a group and let H be a finite subgroup of
G. If θekutF(G), then

( i ) Θ\F(H) is a semigroup isomorphism of F(H) onto F(HΘ);
(ii) H and Hθ are isomorphic subgroups of G;
(iii) if Θ\G is the identity, then H = Hθ.

LEMMA 4. If G is a finite group, b e G\{0), and θ 6 Aut F(G),
then \{O,b}θ\ =2.

Proof. Let θ e Aut F(G) and η be the standard automorphism
of F(G) induced by {θ\G)~ι. Since rj preserves set cardinality,
IAθηI = IAθI for all AeF(G), and θη\G = c where c denotes the
identity mapping of G. Thus we may assume that θ \ G = c. If
n = o(6) and H - <&>, then H = (n - l){0, 6}. By Lemma 3, £Γ = Hθ =
(% — l)({0, δ}0). Further, n — 1 is the smallest natural number such
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that (n - l)({0, b}θ) = H. UA = {0, b}θ, then A £ H and (n - 1)A = H.
If BQG, | J 9 | > 2 , and ft ^ 1, then by induction and Lemma 2,
I (ft + 1)J5| > ft + 2 or |(ft + 1).B| = \kB\. In particular, if \A\ > 2,
then since | ((n — 2) + 1) A | = n, we must have that n = | (w — 1)A | =
|(w - 2)A|. Thus (n — 2)A = iί, and this is a contradiction.

COROLLARY 1. Let G be a finite group and a, beG with a Φ b.
If θe Aut F(G), then \ {a, b}θ | = 2.

LEMMA 5. If G is a finite group and A e F(G) with \ A | =
1 ίft I401 |A| /or α22 θeAatF(G).

Proof. As in Lemma 4, we may assume Θ\G = c. Let a,beG
with α ^ 6 . Since |{α, 6}| + |A] = |G| + 1, {α, b} + A = G [3, Theorem
1]. Suppose (by way of contradiction) that Aθ — B, where \B\ < \ A\.
Then there exists x, y e G\B with x Φ y. Since x 0 {0, x — y) + B,
{0, x — y) + B Φ G. By the preceding corollary, {0, x — y] = {α, 6}/?
for some a,beG with a Φ b. But then

{α, 6} + A = G - G0 = ({a, b} + A)θ = {0, x - y} + B Φ G ,

a contradiction. Hence, \AΘ\ =

If A, 5 e F(G) and A = ̂  + B f or some g e G, then A is said to
be a (left) translate of i?. Clearly F(G) is the union of mutually
disjoint translation classes. Moreover, if G is abelian and θ e Aut F(G),
then θ is completely determined by it action on the group of units
of F(G) and a system of representatives for the translation classes.

LEMMA 6. Let θ e Aut Zn and {0, 1}Θ = # + {0, 1}. J/ 1 ^ α ^

n — 1, then there exists heZn such that {0, a}θ — h + {0, α}.

Proof. The translation class of {0, α} is the same as the transla-
tion class of {0, n — a}. Thus we may assume that a <* n/2. If %
is even and a = w/2, then {0, α} is the only subgroup of Z% of order
2. By Lemma 3,{0, α}# = {0, a}. Therefore, we may further assume
that 1 ̂  a < w/2. By induction we may assume that we have
verified the lemma for all b such that 1 <; b < α < w/2. If {0, α}# =
y + {0, t}, then, since {0, t} = t + {0, n — ί}, we may assume ί ̂  n/2 and
since ί maps a translation class onto a translation class, a <£ ί. Now
we have the equation (α — l){0,1} + {0, a} = (2α — l){0,1} and, taking
the image of both sides under θ, we obtain

(a - l)g + (α - l){0, 1} + y + {0, t} = (2a - l)g + (2α - l){0, 1} .

Hence, {0,1, , a ~ 1, ί, ί + 1, , t + α — 1} is a translate of
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{0, 1, , 2α — 1}. Since t + a — 1 < n — 1, £ = α is the only possible
solution.

THEOREM 1. // AeF(Zn) and θ e Aut F(Zn), then \AΘ\ = \A\.

Proof. Let {0, 1}Θ = g + {0, 6}. Since (n - l){0, 1} = Z%9 it fol-
lows that b is a generator for Zn. Let Ψ be the standard auto-
morphism of F(Zn) induced by the automorphism of Zn that maps
b to 1. Now Ψ preserves cardinality and hence, ΘΨ will preserve
cardinality if and only if θ preserves cardinality. Thus we may
assume that {0,1}Θ = g + {0,1}. Suppose (by way of contradiction)
that there exists BeF(Zn) such that \BΘ\Φ\B\. We may assume
that if AeF(G) with \A\ > \B\, then \AΘ\ = \A\. Thus, \BΘ\ < \B\
and by Lemma 5, \B\ < n — 1. By Lemma 1, there exists xeZn

such that | B | < \B + {0, x}\ and \BΘ + {0, x}\ < \B + {0, x}\9 and by
Lemma 6, {0, x}θ = h + {0, #}, for some /̂ . Therefore,

1(5+ {0, x))θ\ = |J50 + /* + {O, x}\

This is a contradiction and hence, \AΘ\ = A for all A

3* Determination of Aut F(Zn). Let G be a group, H be the
group of standard automorphisms of F(G), and K be the group of
automorphisms of F(G) that are the identity on the group of units
of F(G). Then K is a normal subgroup of Aut F{G), H f] K = {ή,
and Aut F(G) = .Kff. If 0 6 ϋΓ and G is abelian, then 0 is uniquely
determined by its action on a system of representatives of the trans-
lation classes of F(G). Clearly F(Z2) admits only standard auto-
morphisms. The verification of the following assertions are computa-
tional (some are lengthy) and will be omitted. If G = Zz> then there
exists θe Aut F(G) with Θ\G = c, {0,1}Θ = {0, 2}, {0,1, 2}θ = {0,1, 2};
K = {c, θ, θ2}, H = {t, β} where (1)/S = 2, and /S-^/9 = θ\ Thus,
Aut F(G) — KH and is isomorphic to S8, the symmetric group of
degree 3. If (? = UΓ4, then there exists 6̂ 6 Aut F(G) with ^ | G = r,
{0,1}Θ = {0,3}, {0,2}θ = {0,2}, {0,1,2}θ = {0,2,3}, {0,1,2,3}0 - {0,1,2,3};
K = {̂ , /?, 02, 6>3}, ίZ" = {̂ , β], where (l)/3 - 3, and β~ιθβ = θ\ Thus,
Aut F(G) = KH and is isomorphic to D4> the dihedral group of order
8. If G = Zβ, then there exists 0 eF(G) with θ\G = c, {0, 1}Θ = {2,4},
{0, 2}0 = {3, 4}, {0, 1, 2}θ - {1, 3, 4}, {0, 1, 3}0 = {2, 3, 4}, {0,1,2,8}* =
{0,1,2,3}, {0,1, 2, 3, 4}0 - {0,1, 2, 3, 4}; K = {e, θ}9 H = {c, y, τf9 τf}9

where (1))? = 2, and 0^ == ηθ. Thus, Aut F(G) = KH and is isomorphic
to the direct product of Z2 and Z±. Finally, if G = Ze, then Z" = {̂ }
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and Aut F(G) is isomorphic to AutG.
The remaining portion of this paper is devoted to showing that

Aut F(G) consists only of standard automorphisms if G is a subgroup
of Q/Z and | G | ^ 7, and hence Aut F(G) is isomorphic to Aut G.
The proofs of the next three lemmas are straightforward and will
be omitted.

LEMMA 7. If Ae F(G) and L(A) = {g \ g + A = A], then L(A) is
a subgroup of G and A is a union of right cosets of L(A). If G
is finite, then the number of translates of A is the index of L(A)
in G.

LEMMA 8. If G is a finite group, AeF(G), and \A\ = |6?| — 1,
then L(A) = {0} and all subsets of G of cardinality \G\ — 1 belong
to the translation class of A.

LEMMA 9. If a is a generator of Zn and A = k{0, a}, where
1 < k ^ n - 2, then L(A) = {0}.

For the remainder of this paper we shall assume that n^7.

LEMMA 10. If Θ e Aut F(Zn) and {0, l}θ = {0,1}, then {0, r}θ =
{0, r) for every r e Zn\{0} and θ\Zn is the identity.

Proof. We first assume that 1 < r <̂  n/2. If r = n/2, then
{0, r) is a subgroup of Zn and by Lemma 3, {0, r}θ = {0, r} since it
is the only subgroup of order two. Thus we may suppose that
1 < r < n/2. By Lemma 6, {0, r}θ = h + {0, r} for some h e Zn. Now

(r - l){0, 1} + {0, r} = (2r - l){0, 1} .

If we apply θ to each side of this equation, we have that

(r - l){0,1} + h + {0, r} - (2r - l){0, 1}.

It follows from Lemma 9 that h = 0 and so {0, r}θ — {0, r).

We now show that (1)0 = 1. We do this by considering separate-
ly the cases where n is even and n is odd.

Case 1. n is even. Then {0,1} + {0, 1, 3} = {0,1, 2, 3, 4} = 4{0,1}.
Applying θ to this equation we have {0, 1} + {a, b, c) = 4{0,1}. It
follows that {a, b, c) = {0,1, 3} or {a, b, c} = {0, 2, 3}. Now the follow-
ing equalities hold:

(1) ^ y ^ t ° » 2> + <0> *> 3} = (rc - 1) + (rc - 2){0, 1}
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and

(2) ^ = ^ { 0 , 2} + {0, 2, 3} - 2 + (n - 2){0, 1} .
Δ

Suppose that {0,1, Z}θ = {0, 2, 3}. Then, using (1), we obtain

^ i { 0 , 2} + {0, 2, 3} = (n - 1)0 + (n - 2){0,1} .
Δ

Using this equation, equation (2), and Lemma 9, we have that
(n — 1)0 = 2 which is a contradiction since 2 is not a generator of
Z%. Thus {0,1, 3}0 = {0,1, 3}. Applying θ to equation (1) and by
Lemma 9, we have (n — ϊ)θ = n — I and hence, (1)0 = 1.

Case 2. n is odd. In this case we have the equation

1 + (n - 2){0, 2} - (n - 2){0, 1} .

By applying θ to this equation we conclude that (1)0 = 1.

Next suppose that n/2 < r ^ n. Then {0, r} = r + {0, n — r}, so
that {0, r}0 = r0 + {0, n - r}0 = r + {0, w - r} = {0, r}.

LEMMA 11. If θe Aut jP(Zn) α̂ cZ {0,1}Θ = {0,1},
/or every AeF(Zn).

Proof. By the preceding lemma, {0, r}θ = {0, r} for every r e
Zn\{0} and fl|^n is the identity. If AeF(Zn) and \A\ = n - 1, then
A is a translate of (w — 2){0,1} and so Aθ = A. Suppose (by way
of contradiction) that there exists A e F(Zn) such that Aθ Φ A. Then
\A\Sn — 2 and we may assume that if BeF(G) with \A\ < \B\,
then Bθ = 5. Let w 6 A0\A and u e Zn\A with w Φ u. Then
w ΰ Λ + {0, w - %}, but w e Aθ + {0, w - u} = (A + {0, w — w})5. By
the maximalily of |A|, | A| ^ | A + {0, w — w}| ^ | i l | and so A = A +
{0, w — %}. Therefore, w — u e L(A) and so | L(A) | ^ 2. By Lemma
7, A = ULi (i(A) + αj . Since subgroups of ^ % are fixed by 0, all
cosets of L(A) are fixed by θ. Hence, t ^ 2. Now I/(A) + ^ ^ 4 .
Since we have shown that w — u e L(A) for every u e ^ \ ^ > w e ^ a v e

that ^Λ\A is a single coset of L(A) and hence, A is the union of all
but one coset of L(A). Let a be the smallest positive integer such
that L(A) = <α>. Then a > 2 and a system of representatives for
the cosets of L(A) in ^ w is {0,1, , α — 1}. We may assume that
{al9 , at} £ {0,1, , a — 1}. Let 6 € {0,1, , a — 1} such that
L(A) + b = L(A) + w. If a; = (a - 1) - 6, then K + a, , at + x)
is a system of representatives for all but one coset of L(A). The



34 R. D. BYRD, J. T. LLOYD, F. D. PEDERSEN AND J. W. STEPP

coset not included is L(A) + (a - 1). Then L(A) + {0,1, , a - 2} =
\JU (L(A) + ai + x) = A + x. Now L(A)Θ - L(A) and

{0,1, •• , α - 2 } 0 = (α-2){O, 1}

and consequently, (A + #)# = A + a?. Since xθ - x, we have that
Aθ = A, which is a contradiction. Thus the lemma is proven.

LEMMA 12. If θ e Aut i ^ ( ^ ) and {0,1}0 = c + {0, 1} for some
c 6 Zn, then {0, a}θ = αc + {0, α} /or 1 ^ α < n/2.

Proof. By Lemma 6, {0, α}# = fc + {0, a) for some h e Z Λ . If
2 S a < n/2, then (a - l){0, 1} + {0, a} = (2a - l){0, 1}. If we apply
θ to this equation we obtain (a — l)c + (α — l){0,1} + h + {0, α} =
(2α - l)c + (2α - l){0, 1}. Thus, (a - ΐ)c + h = (2a - l)c(modulo n),
and so h = αc(modulo n).

LEMMA 13. Let aeZn with 2 <* a <ί n/2. Then
( i ) if k and I are positive integers such that fc{0, 1} -f- {0,1, a} =

Z{0,1}, then a - 2 <: k and 2a - 2 <, I;
(ii) if k and I are positive integers such that &{0, 1} +

{0, a — 1, a} = l{0, 1}, then a — 2<kk and 2a — 2 <* I;
(in) if 1 < b < a — 1, then there exist positive integers k and

I such that k < a - 2 and k{0, 1} + {0, 6, a} = ί{0, 1};
(iv) if x, y, ze Zn with x < y < z < n and (a — 2){0,1} +

{x, y, z} = (2α — 2){0,1}, then x — 0 α̂ cZ 2 = α;
( v ) (α - 2){0,1} + {0,1, a} - (2a - 2){0,1};
(vi) (α - 2){0, 1} + {0, a - 1, α} = (2α - 2){0,1}.

Proo/. Clearly (v) and (vi) hold. To see that (i) is true, we
observe that if 1 ^ k < a - 2, then a - 1 0 k{0,1} + {0,1, a} and so
there is no natural number I such that fc{0,1} + {0,1, α} = £{0,1}.
Thus if k and I are natural numbers such that k{0,1} + {0,1, a} =
Z{0,1}, then a — 2 ^ k and so 2α — 2 <; Z. The proof of (ii) is similar
and will be omitted. For (iii), let 1 < b < a — 1 and k = max {6 — 1,
a - (b + 1)}. If fc = δ - 1, then &{0,1} + {0, 6, α} = (a + b - l){0,1}
and & = δ - 1 < a - 2. If k = α - (δ + 1), then &{0,1} + {0, δ, α} =
(2a —b - l){0,1} and k = α — (δ + 1) < α — 2. For (iv) we suppose
that α> < ?/ < z and (α - 2){0,1} + {x, y, z) = (2α - 2){0,1}. Then we
have {x, x + 1, , x + a - 2} U {y, y + 1, , y + a - 2} U {«, z +
1, , z + a - 2} = {0,1, , 2α - 2}. The elements from 2α - 1 to
w — 1 belong to Z% but not to the right hand side. The left hand
side is the union of three consecutive listings and so the elements
from 2α — 1 to n — 1 must occur between x + a — 2 and y, y + a — 2
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and z, or z + a — 2 and x. The first two cases cannot occur as this
would force y or z to be larger than n — 1. Thus, z + a — 2 = 2a — 2
and so z = α. Then a? = 0.

LEMMA 14. Le£ α e Z f t with 1 < α <; w/2 αwcί 0 e Aut F{Zn) such
that {0, 1}0 = c + {0, 1}. Then

( i ) {0, 1, α}0 is in the translation class of either {0, 1, a} or
{0, α - 1, α};

(ii) {0, α — 1, α}# is m the translation class of either {0, 1, a}
or {0, a — 1, α};

(iii) i/ {0, 1, α}0 is in the translation class of {0, 1, α},
{0, 1, a}θ = αc + {0, 1, α} α^cί {0, α — 1, α}0 = αc + {0, a — 1, α};

(iv) if {0, 1, α}0 is in the translation class of {0, a — 1, α},
{0, 1, α}0 = αc + {0, α - 1, a} and {0, a - 1, α}0 = αc + {0, 1, α}.

Proof, (i) Let {0, 1, a}θ = {a?, y,«}. By (v) of Lemma 13,
(a - 2){0,1} + {0, 1, α} = (2α - 2){0, 1}. If we apply θ to this equation
we obtain the equation

(a ~ 2)c + (a - 2){0, 1} + {«, 2/, z) = (2α - 2)c + (2α - 2){0, 1} .

Thus

(a - 2){0, 1} + {x - αc, y - ac, z - ac) = (2α - 2){0, 1} .

Without loss of generality we may assume that 0 <L x — ac < y —
ac<z — ac< n. By Lemma 13 (iv), x -r αc = 0 and « — αc = α. Let
b — y — ac. Suppose (by way of contradiction) that 1 < b < a — 1.
Then by Lemma 13 (iii), there are positive integers k and I such
that & < a - 2 and k{0, 1} + {# — αc, y — ac, z — ac} = i{0, 1}. Thus

(α - 2)c + &{0, 1} + {α?, y, z) = (2α - 2)c + i{0, 1} .

Applying θ~ι to this last equation, we obtain an equation of the
form

d + fc{0, 1} + {0, 1, a} = / + i{0, 1} .

Hence,

((α - 2) - fc){0, 1} + &{0, 1} + {0, 1, a}

and so

(α - 2){0, 1} + {0, 1, a} - ( / - d) + ((a - 2) - k + ί){0, 1} .

Hence, (2a - 2){0, 1} = (/ - d) + ((α - 2) - fc + 0(0, 1}. It follows
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that / Ξ d (modulo n). Therefore, k{0,1} + {0, 1, a} = l{0,1}, but
this contradicts Lemma 13 (i). Consequently, {0,1, a}θ is in the class
of {0,1, a} or {0, a - 1, a}.

The proof of (ii) is similar. Parts (iii) and (iv) then follow from
what has been shown.

The proof of the next lemma is straightforward and will be
omitted.

LEMMA 15. If n is even, a e Zn, a is odd, and 1 < a ^ n/29

then
( i ) (n - 4)/2{0, 2} + {0, 1, a} = (n - 1) + (n - 2){0, 1};
( i i ) (n - 4)/2{0, 2} + {0, a - 1, α} = (α - 1) + (n - 2){0,1}.

LEMMA 16. If n is even, θ e Aut F(Zn), and {0,1}Θ = c + {0,1},
then θ is a standard automorphism and c = 0orc — n~l.

Proof. By Lemma 15,

( 1 ) 1 + IL~-{^ 2} + {0, 1, 8} = (* - 2){0, 1} .

By Lemma 14, {0, 1, 3}# = 3e + {0,1, 3} or {0, 1, 2>}θ = 3c + {0, 2, 3}.

Case 1. {0,1, 3}0 = 3c + {0, 1, 3}. Then {0, 2, 3}0 = 2c + {0, 2, 3}.
If we apply θ to equation (1), then by Lemma 12, we obtain that

(1)0 + -5^1(2c) + - ^ ^ { 0 , 2} + 3c + {0, 1, 3}
Δ 2

= (» - 2)c + (n - 2){0, 1}

so that

(I)* + c + iL^A{0, 2} + {0, 1, 3} = (» - 2){0,1} .
Li

By equation (1), we have that (1)0 + c + (n - 1) + (w - 2){0,1} =
(n — 2){0,1} and hence, (1)0 + c + n — 1 = 0 (modulo ^ ) . Consequent-
ly, (1)0 + c — 1 = 0 (modulo n). By Lemma 15, we have that

( 2 ) ^=-^{0, 2} + {0, 2, 3} = 2 + (w - 2){0, 1} .
z

Applying 0 to this equation we obtain that --2(1)0 + c + 2 s 0
(modulo %). Thus, 3c = 0 (modulo n). If n = 8, then c = 0 and by
Lemma 11, 0 = c Suppose that n ^ 10. Then by Lemma 15, we
have that
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1 + ^ ^ ^ O ' 2} + {0» ! ' 5} = (w - 2){0, 1}
Δ

and

*^A{0, 2} + {0, 4, 5} = 4 + (» - 2){0,1} .
Δ

Subcase 1.1. {0,1, 5}0 = 5c + {0,1, 5}. Then we have that

(1)0 + (Λ - 4)c + ^ = ^ { 0 , 2} + 5c + {0,1, 5}
Δ

= (n - 2)o + (Λ - 2){0, 1} .

Hence, (1)0 + 3c - 1 + (n - 2){0,1} = (n - 2){0,1} and so (1)0 + 3c -
I Ξ O (modulo w). Since 3c = 0 (modulo w), we have that (1)0 = 1
and c = 0. Therefore, by Lemma 11, d •= c.

Subcase 1.2. {0,1, 5}0 = 5c + {0, 4, 5}. By an argument similar
to the one given in Subcase 1.1, we obtain that (1)0 + 3c + 4 = 0
(modulo n). Since 3c = 0 (modulo n), (1)0 = (n — 4) (modulo n), but
this is impossible as n — 4 is not a generator of Zn.

Case 2. {0,1, 3}0 = 3c 4- {0, 2, 3}. Then by Lemma 15 and the
same techniques as above, we obtain the congruences (1)0 + c + 2 = 0
(modulo n) and c - 2(1)0 - 1 == 0 (modulo n). Then 3c = (n - 3)
(modulo n). If n = 8, then c Ξ= 7 (modulo 8) and (1)0 = 7. If 57 is
the standard automorphism of F(Zn) that takes 1 to — 1, then
{0, l}θη = {0,1} and so, by Lemma 11, θη = .̂ Thus, 0 = 7Γ1 and
hence 0 is standard. If n ^ 10, then, as in Case 1, (1)0 = n — 1 and
c = n — 1. Thus, 0 is standard.

THEOREM 2. If n is even, then Aut F(Zn) consists only of
standard automorphisms and so is isomorphic to Aut Zn.

Proof. If 0 6 Aut F(Zn), then {0,1}0 = h + {0, r) for some
h, reZn. Let yj be the standard automorphism of F(Zn) that takes
r to 1. Then {0, l}θη = c + {0,1} for some c 6 ^ w . By Lemma 16,
θη = ψ is s, standard automorphism and hence 0 = ψη'1 is standard.

For n odd, we proceed almost as above.

LEMMA 17. If n is odd, then
( i ) (* - 3)/2{0, 2} + {0,1, 3} = (n - 2){0,1};
(i i) (n - 3)/2{0, 2} + {0, 2, 3} = 2 + (w - 2){0, 1}.
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THEOREM 3. If n is odd, then Aut F(Zn) consists only of stand-
ard automorphisms and so is isomorphic to Aut Zn.

Proof. If θ e Aut F(Zn), then {0, 1}Θ = h + {0, r) for some
h, reZn. Let η be the standard automorphism of F{Zn) that takes r
to 1. Then {0, 1}ΘΎ] = c + {0, 1} for some c e Zn. If {0, 1, Z]θη = 3c +
{0,1, 3}, then we apply #)? to (i) of Lemma 17 and obtain the con-
gruence 2c Ξ 0 (modulo w) and so c = 0 (modulo w). Thus, by
Lemma 11, θrj is a standard automorphism and consequently, θ is
standard. The same conclusion holds if {0, 1, Z}θη — 3c + {0, 2, 3}.

The following theorem gives a characterization of standard auto-
morphisms for arbitrary groups. It was proven in [1, Theorem 5]
and, for completeness, we repeat the proof here.

THEOREM 4. If G is a group and θ e Aut F(G), then θ is a
standard automorphism if and only if A, BeF(G) with AQB
implies that Aθ £ Bθ.

Proof. Clearly if θ is a standard automorphism, then θ preserves
set containment. Conversely suppose that θ is inclusion preserving,
let a = θ IG, and θa be the standard automorphism of F(G) induced
by a. We proceed by induction on the cardinality of the sets in F(G).
If AeF(G) such that \A\ = 1, then Aθ = Aθa. Assume that for all
AeF(G) with \A\ £k, Aθ = Aθa, and let BeF(G) with \B\ = k + 1.
If D = J50α, then there exists C e F(G) such that Cθ = D. Since 0
is inclusion preserving, if b e B, then ba = bθ e Bθ. Hence, Bθa Q Bθ.
If x e C, then xaeCΘ = D. Thus, xa = ba for some b e B and so
x = b. Therefore, CζZB. If C Φ B, then, by the inductive hypothesis,
Cθ = C#α = D = Bθa and so C = B. Therefore, C = # and so #0 =
Cθ — Ώ — Bθa. Thus, # is the standard automorphism #α.

We now extend our results to a larger class of groups.

THEOREM 5. If G is a subgroup of Q/Z such that | G \ > 5, then
Aut F(G) consists only of standard automorphisms and hence
Aut F(G) is isomorphic to AutG.

Proof. If G is finite, then G is cyclic with | G \ > 5 and so
Aut F(G) consists only of standard automorphisms. Suppose that G
is infinite and let A, BeF(G) with A £ B, and let θ e Aut F(G). Then
there is a finite cyclic subgroup Hof G such that i? £ Hand |H\ > 5.
Since i ί is the only subgroup of G of order \H\, we have, by
Lemma 3, H = Hθ. Thus, θ \ F(H) e Aut F(H) and so Θ\F(H) is a
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standard automorphism of F(H). Hence, AΘ £ Bθ. By Theorem 4,
θ is a standard automorphism of F(G).

COROLLARY 2. If P denotes the set of prime integers and qeP,
then Aut F(Z(q°°)) is isomorphic to Aut Z(q°°) and Aut F(Q/Z) is
isomorphic to ΐlPεP Aut

Proof. By [2, p. 221-222], Q/Z is isomorphic to Σpep^P 0 0) and
Aut Q/Z is isomorphic to J[pep Aut Zip00). With these observations
the corollary is an immediate consequence of the theorem.
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