$W_{\delta}(T)$ IS CONVEX

J. Kyle

Stampfli introduced a generalization of the numerical range for any bounded linear operator T on a Hilbert space \mathscr{H}. This is denoted by $W_{\delta}(T)$ and is defined by

$$
W_{\delta}(T)=\text { closure }\{\langle T x, x\rangle:\|\mathbf{x}\|=1 \text { and }\|T x\| \geqq \delta\} .
$$

Stampfli asked whether $W_{\dot{\delta}}(T)$ is convex. In this short note we provide an affirmative answer to this question.
$\mathscr{L}(\mathscr{H})$ will denote the set of bounded linear operators on the Hilbert space \mathscr{H}.

Lemma 1. Suppose S and A belong to $\mathscr{L}(\mathscr{H})$, and that $S=S^{*}$. Then

$$
S(A, \delta)=\{x \in \mathscr{H}:\|x\|=1 \quad \text { and } \quad\|A x\| \geqq \delta \quad \text { and } \quad\langle S x, x\rangle=0\}
$$

is path connected.
Proof. Suppose x and y belong to $S(A, \delta)$. We may assume that x and y are linearly independent. (If not, they both lie on an arc of

$$
\left\{e^{i \theta} x: 0 \leqq \theta \leqq 2 \pi\right\}
$$

which lies in $S(A, \delta)$ if x does.)
Choose θ in \boldsymbol{R} such that $e^{i \theta}\langle S x, y\rangle$ is purely imaginary and let $a=e^{i \theta} x$.

Choose n such that $(-1)^{n} \boldsymbol{R} e\left\langle\left(A^{*} A-\delta^{2} I\right) a, y\right\rangle$ is positive and let $b=(-1)^{n} y$. Then a and b may be joined by a path in $S(A, \delta)$ to x and y respectively. Thus we need only find a path connecting a to b. Let $y(t)=t a+(1-t) b$ and let $x(t)=\|y(t)\|^{-1} y(t)$. Then $\langle S x(t), x(t)\rangle=0 \Leftrightarrow\langle S y(t), y(t)\rangle=0$ and

$$
\begin{aligned}
\langle S y(t), y(t)\rangle= & t^{2}\langle S a, a\rangle+(1-t)^{2}\langle S b, b\rangle \\
& +2 \operatorname{Re} t(1-t)\langle S a, b\rangle \\
= & 2(-1)^{n} t(1-t) \boldsymbol{\operatorname { R e }} e^{i \theta}\langle S x, y\rangle \\
= & 0 .
\end{aligned}
$$

Also

$$
\begin{aligned}
\|A y(t)\|^{2}= & \left\langle A^{*} A y(t), y(t)\right\rangle \\
= & t^{2}\|A a\|^{2}+(1-t)^{2}\|A b\|^{2} \\
& +2 t(1-t) \boldsymbol{R} e\left\langle A^{*} A a, b\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
\geqq & \delta^{2}\left(t^{2}+(1-t)^{2}+2 \boldsymbol{R} e t(1-t)\langle a, b\rangle\right) \\
& +2 t(1-t) \boldsymbol{R e}\left\langle\left(A^{*} A-\delta^{2} I\right) a, b\right\rangle \\
= & \delta^{2}\|y(t)\|^{2} \\
& \quad+2 t(1-t)(-1)^{n} \boldsymbol{\operatorname { R }}\left\langle\left\langle\left(A^{*} A-\delta^{2} I\right) a, y\right\rangle\right. \\
\geqq & \delta^{2}\|y(t)\|^{2} .
\end{aligned}
$$

Hence $\|A x(t)\| \geqq \delta$ and so $t \rightarrow x(t)$ is a path connecting a to b in $S(A, \delta)$ as required.

Lemma 2. Suppose H and K are self-adjoint elements in $\mathscr{L}(\mathscr{C})$. Let

$$
V(A, \delta)=\{(\langle H x, x\rangle,\langle K x, x\rangle):\|x\|=1 \quad \text { and } \quad\|A x\| \geqq \delta\}
$$

Then $V(A, \delta)$ is a convex subset of \boldsymbol{R}^{2}.
Proof. We need only show that $V(A, \delta) \cap L$ is connected whennever L is a straight line in \boldsymbol{R}^{2}. Suppose L is given by

$$
\alpha \xi+\beta \eta+\gamma=0
$$

Let

$$
S=\alpha H+\beta K+\gamma I
$$

Then the mapping π, given by

$$
\begin{aligned}
& \pi(x)=(\langle H x, x\rangle,\langle K x, x\rangle) \text { is continuous, and } \\
& \quad S(A, \delta)=\{x:\|x\|=1 ;\|A x\| \geqq \delta \text { and } \pi(x) \in L\} .
\end{aligned}
$$

Thus $V(A, \delta) \cap L=\pi(S(A, \delta))$ is connected.
Theorem 3. Suppose T and A are in $\mathscr{L}(\mathscr{H})$. Then

$$
V(T ; A, \delta)=\{\langle T x, x\rangle:\|x\|=1 \text { and }\|A x\| \geqq \delta\}
$$

is convex.

Proof. Suppose $T=H+i K$ with H and K both self-adjoint. Then

$$
V(T ; A, \delta)=\{\xi+i \eta:(\xi, \eta) \in V(A, \delta)\}
$$

Hence $V(T ; A, \delta)$ is convex.
Corollary 4. $W_{\dot{\delta}}(T)$ is convex.
Proof. Take $A=T$. Indeed we have shown that

$$
\{\langle T x, x\rangle:\|x\|=1 \text { and }\|T x\| \geqq \delta\}
$$

is convex.
Remark. It will be noticed that the ideas here are improvements on basic ideas in 1.

References

1. N. P. Dekker, Joint numerical range and joint spectrum of Hilbert space operators, Thesis, University of Amsterdam, 1969.
2. J. G. Stampfli, The norm of a derivation, Pacific J. Math., 33 (1970), 737-747.

Received February 15, 1977.
University of Technology
LOUGHBOROUGH
Leicestershire, England

