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INVARIANT SUBMODULES OF UNIMODULAR
HERMITIAN FORMS

D. G. JAMES

Let M be a unimodular lattice on an indefinite hermitian
space over an algebraic number field. The submodules of
M invariant under the action of the special unitary group
of M are classified. Generators for the local unitary groups
of M are also determined.

1. Introduction. Let F be an algebraic number field of finite
degree and K a quadratic extension of F. Let V be an indefinite
hermitian space over K of finite dimension n» =8 and @: V x V—K
the associated nondegenerate hermitian form on V with respect to
the nontrivial automorphism of K over F. Assume V supports a
unimodular lattice M (in the sense of O’Meara [7; §82G] for quad-
ratic spaces). Denote by U(V) the unitary group of V and by
U(M) the subgroup of isometries in U(V) that leave M invariant.
We will classify the sublattices of M that are invariant under the
action of the special unitary group SU(M). The problem is first
solved locally; the global result is then obtained by applying the
approximation theorem of Shimura [8; 5.12].

We now consider localization (see also [2; §2] and [8]). Let p
be a finite prime spot of F and F, the corresponding local field.
Put K, =KQ®;F, and V, = V@, F,. Making the standard identi-
fications, we have K< K,, F,Z K, and V< V,. The hermitian
form @ on V extends naturally to an hermitian form on V,. Let
o be the ring of integers in F, o, the (topological) closure of o in
F, and O, the integral closure of o, in K,. Put M,=O,McV,.
Locally, we must study the submodules of M, invariant under the
action of SU(M,). Except when K, is a ramified extension of a
dyadic field F,, the classification will be trivial. For ramified dyadic
extensions, it is necessary to determine a set of generators of U(M,)
before the classification can be determined.

We now state the main results.

THEOREM A. Let M be a unimodular lattice on an indefinite
hermitian space of dimension n =38 over an algebraic number field.
Then a sublattice N of M is invarieant under the action of the
special unitary group SUM) if and only if for all finite prime
spots p of F, the localization N, = O,N is invariant under the ac-
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tion of SU(M,).

For z in V,, define 2q(z) = @(x, ), and let M, be the sublattice
of M, generated by the z in M, with ¢(») in o,. Let

M} ={zeV,|0( M, < O,}

be the dual lattice of M,. Then M, & M, < M} and, except when
K, is a ramified extension of a dyadic local field F,, we will show
later that M,. = M}. A sublattice N, of M} is called primitive if
N, is not contained in #M} for any prime element w€O,. Clearly,
if N, is invariant under SU(M,), the lattice a,N, is also invariant
for any fractional ideal a, in ©,. It is therefore enough to classify
locally the primitive invariant sublattices of M}.

THEOREM B. A primitive sublattice N, of My is invariant
under the action of SUM,) if and only if M, = N,, except when
the following three conditions all apply:

(i) K, 1s a totally ramified extension of the 2-adic field @Q,,

(ii) K, is a reamified prime extension of F,,

(iili) dim V, =38 or 4.

In particular, except when K, is a ramified extemnsion of a dyadic
field F,, the only primitive invariant lattice is M,.

Theorem B will be proven for the various cases in §§2-4 and
the exceptional 3 and 4 dimensional cases studied in §5. Theorem
A is established in the final section. The special case where F' is
the field of rational numbers is also studied in detail.

The approach here follows that given for quadratic spaces in
[5] and [6].

2. Local isometries. In this and next three sections we are
only concerned with local problems.

The structure of O, over o, depends on the prime p. If p splits
in K, then K, = F, X F, and ©, =0, X 0,. In this case the involu-
tion * on K becomes (a, B)* = (B, @) on K,. If p does not split in
K, we may take K, = F,({) where (*e¢ F, and {*= —{. Fix a
prime 7 in K, and p in F, and let ¢ = ord, 2. If p is dyadic, there
are now three possible types of extensions of K, over F); the details
are an application of [7; 63.2, 63.3].

(i) K, is an unramified extension of F,. Then *=1+ 40
with 6 a unit in F, and O, consists of all the elements (a + {B)/2
with @, Beo, and @ = 8 mod 2o,.
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(ii) K, is a ramified extension of F, and { is a prime in K,—
the ramified prime case. Now we may assume 7w =, p = 7x* and
O, is generated over o, by 1 and =.

(iii) K, is a ramified extension of F), and { is a unit in K,—the
ramified unit case. We now have {* =1 + p*"§ for some unit ¢ in
F, and some rational integer 2 with 0 < h <e. Put 7 =1 + {p™"
so that nz* = —pd. Here O, consists of the elements (a + {8)p™"
with «, Bep, and = 8 mod p*o,.

In the nondyadic (nonsplit) case O, is generated over o, by 1
and { provided we choose { to be a prime or a unit according as
the extension is ramified or not.

Thus if K,/F, is a quadratic extension of fields, ©, consists of
the elements (a + {B)p™* with @, S€o, and @ = B mod p"o,, where
we define # = 0 in the nondyadic and ramified prime dyadic cases,
and % = ¢ in the unramified dyadic case.

Since M, is a unimodular O,-lattice with rank at least three, it
is split by a hyperbolic plane (if p splits in K this can be easily
verified, otherwise see [4; 7.1, 8.1a, 10.3]). Hence M, = H, | L, where
H,=9u + O, is a hyperbolic plane with ¢(u) =¢q(v) =0 and
@(u, v) = 1. This choice of u and v will be fixed throughout the
local discussion.

We now describe the standard isometries in the unitary group
U(M,) that are needed. The norm and trace mappings from K, to
F, are denoted by .7~ and .7, respectively, and our convention for
the hermitian form @ on V, is &(ax, By) = a*0(x, ¥)5.

Let » in O, have .97 (\) = 0. The transvection T;(u) is defined
by

T (u)z) =2z + NO(u, 2)u , 2z€M,.
Then det T)(w) =1 so that T,(w) is in SU(M,). Similarly, T(v)e
SU(M,).

Let ) in K, satisfy .7 (\) = 2.#°(\). For z in M, with Mg(x)™*
in ©,, define the symmetry Z,(z) by

T(x)z) = 2 — \ND(w, 2)q(x) 2, zelM,.

Then det ¥;(x) = 1 — 2» and ¥y (x) € U(M,).

Recall that M,. is the sublattice of M, generated by those 2 in
M, with ¢(»)eo,. Since 2q(x) = O(x, x), in the nondyadic case M,. =
M,. This is also true when p splits in K; for the involution on
K,=F, x F, is given by (a, B)* = (B, @), so that for » in M,,

q((1, 0)2) = #7(1, O)g(x) =0 .
Thus (1, 0)z € M,. and = = (1, L)z is in M,..



474 D. G. JAMES

PROPOSITION 2.1. Let F, be a dyadic local field with p not split
in K. Then

M»* = {03 € Mplth(x) € Dv} .

In particular, M, = M, when K, is an unramified extension of F,.

Proof. Let S be the set of all elements = in M, with p*q(z) in
o,. Since 7 (L,) € 2p "o, and

q@@ + y) = q@) + q(y) + 7 (0, ¥))/2,

it follows that S is an ©,-module. Hence M,. < S. We now prove
the converse inclusion. For 2 in S, let 2 = y + 2 with y € H, and
ze L,. Clearly, u, v and consequently % are in S. Therefore, z =
2 —yisin S and p*q(z)en,. Let w =u — av + z where a = q(z)(1 + {)
is in ©O,. Then g(w) =0 and we M,. Hence ze M, and S & M,.,
proving the proposition.

Fix ¢ in O, such that . (¢) =2. For z in L, with pg(x) in
9,, define the Siegel transformation E(u, ) by

Eu, 2)(z) = 2 — O(u, 2)x + Oz, 2)u — pq(x)P(u, 2)u .

Then det E(u, 2) =1 and E(w, ) is in SU(M,). Similarly, define
Ew,z). Fix g =1 except when F, is dyadic and K, is either an
unramified or a ramified unit extension of F,. In these exceptional
cagses fix =1+ Lep*O,. Except for the split dyadic case, it is
now sufficient to choose x in L, N M,. for E(u, ) to be an integral
isometry. Let & be the subgroup of SU(M,) generated by the
Siegel transformations.

In the following three sections we classify locally the primitive
sublattices of M} invariant under the action of the special unitary
group SU(M,). We conclude this section with three observations.
Assume that p does not split in K.

2.2. Any lattice N, satisfying M, = N, & M} 1is tnvariant
under the action of .

Proof. Let ze N, and ze L, N M,.. Then &(z, z) €O, and
E(u, 2)(z) = zmod M,. .

Hence E(u, x)(2) and, likewise, E(v, 2)(2) lies in N,. The result follows.

2.3. If N, is invariant under SUM,) and w € N, or v € N,, then
M,. S N,.

Proof. For any z in L, with ¢(z)™* in O,, we have 7 ,(u — v)¥ ()
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is in SU(M,). This isometry interchanges » and v, so that H, C N,.
Let yeL,N M,. Then E(u, y)(v) is in N, and hence y € N,. Thus
M,. = N,.

2.4. Asswme either K, is an unramified extension of F, or F,
is @ nondyadic field. Then M, is the unique primitive sublattice
invariant under the action of SU(M,).

Proof. Let N, be a primitive invariant sublattice. It suffices
by 2.3 to show that ue N,, since under our assumptions M,. = M,.
Since N, & wM,, there exists z in N, with z¢7M,. Let z=au +
Bv + t where teL,. If a and B are nonunits, there exists 7 in L,
such that @(r, t)=1 (since z ¢ 7M}*). The coefficient of v in E(v, r)(2) €
N, is now a unit. Assume, therefore, 8 =1 (or symmetrically,
a=1). If K,=F,({) is an unramified extension of F,, { is a unit.
Then T.(u)(2) =2 + Cu is in N,. Hence we N, and the result fol-
lows. Now assume F), is a nondyadic field. Then E(u, t)(z) = Yu + v
is in N, for some 7 in ©,. Let we L, have ¢g(w) a unit. Applying
E(u, pw) to Yu +ve N, with p =1, —1 gives pw + q(w)u is in N,.
Since 2 is now a unit, it follows that w is in N, and hence N, = M,.

Theorem B has now been established except when either p splits
in K, or K, is a ramified extension of a dyadic field F,.

3. Split extensions. Assume p splits in K so that K, = F, X F,
and O, =0, x 0, Let N, be a primitive invariant sublattice of
My=M,=H,1 L, We wish to prove N, = M,. Since N, <Z nM,
for any prime element 7 in O,, there exists xe€ N, with z¢nlM,.
Let 2 =au + Bv + ¢t with teL,. If B (or @) is a unit in O,, we
may assume B = 1. Then, since .7 (1, —1) = 0, it follows that

To,-n(w)(@) = & + (1, —Lu

is in N,. Thus (1, —1)u and w are in N,. As in 2.3, we now have
H, & N,. Let yeL, Then E(u, (1, 0)y)(v) is in N,. Hence (1, 0)y,
and likewise (0, 1)y, are in N,. Consequently, ¥ € N, and N, = M,.

Now assume that neither « = («,, @,) nor 8 = (B, B,) is a unit.
If @ is a unit in o,, replacing by T _,(v)(z) if necessary, we may
assume B, is also a unit. Hence, unless both «, and 5, are nonunits,
or both @, and B, are nonunits, we arrange that B becomes a unit
in ©, and we are finished. Assume, therefore, «, 8, €po,. Since
x ¢ wM,, there exists ¥ in M, such that @(x, y) = (1, 1). Hence, there
exists re L, such that &(¢t,r) = (2,1). In E(u, (0, 1)r)(xz) the new
coefficient of % has first component a unit. The second component
is unchanged. We can thus arrange that 8 becomes a unit in O,
and consequently N, = M,.
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4. Ramified dyadic extensions. Now let K, be a ramified
extension of the dyadic field F,. Before classifying the primitive
invariant sublattices in this case it is necessary to determine a set
of generators for U(M,). Special cases have already appeared in
the work of Baeza [1] and Hayakawa [3], but it appears better to
modify the approach in [5].

By [4; 10.3], we can split hyperbolic planes and write

M,=H,1J,1B,

where J, is an orthogonal sum of hyperbolic planes and rank B, < 2.
Then J, has dual bases w,, ---, w, and z, ---, 2, such that &(w,, z;) =
015, 1 = 1,7 < m. Recall that & is the subgroup of SU(M,) gener-
ated by the Siegel transformations defined in §2.

ProposITION 4.1. U(M,) ts generated by & and U(H, L B,).

Proof. Let pec UM,. We reduce ¢ to the identity using the
given isometries. Let w,, ---, w, and 2, ---, 2, be dual bases of
J,, as above, and assume for some k < m that o(w;)=w; 17
k —1 (at worst, £ =1). Let

o(u + w,) =ceu + Bv + ¢t

where teJ, | B,, We want ¢ to be a unit. Assume ¢ is not a unit.
If B is a unit, use the isometry in U(H,) which interchanges u and
v. If B is not a unit, let ¢(2,) have component » in J, L B,. Then
O(t,r) is a wunit. Since z,€ M,, it follows that »ecM,. Also,
O(r, w;) = Vp(2), p(w;)) =0 for 1 < j <k —1. Now replace ¢ by
E(u, )¢ and the new coefficient of « is a unit.

We may now assume ¢ is a unit. Let s = ¢ — w,. Then

(s, w;) = Bp(u + w,) — wy, w;) =0

for 1< j7<k— 1. Also, since ¢(¢t) = q(w,) mod p~"o,, we have s € M,..
Put

v = E(u, —e*2,)T:(v)E(v, e's)pE(u, z)

where )\ € O, is to be chosen subject to the restraint .7 (\) = 0. Then
W(w;) = w; for 1 £ j <k — 1. Choose A\ such that

E(v, e7's)pE(u, 2,)(w;) = e(u — M) + wy, .

Then .7 () = 0 and (w,) = w,. If + is generated by the given
isometries, so is . The result now follows by induction on .

This proposition reduces the question of generators for U(HM,) to
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the cases rank M, = 3,4. It can be easily verified that U(H,) is
generated by symmetries and transvections. Also, if rank B, =2
the basis w, z of B, can be chosen such that @(w, z) =1 and z€ M,.

(see [4; 9.2]).

THEOREM 4.2. U(M,) s generated by &, U(H,) and symmetries
on B,.

Proof. We need only consider rank M, = 3, 4.

(i) Let rank M, =4 and M, = H, | B, with B, having a basis
as above. We reduce @ in U(M,) to the identity using the given
isometries. From the proof of Proposition 4.1, we may assume
p(w) = w. In fact, if we M,, the proposition proves the theorem.
Now assume w ¢ M,.. Put r = w — 2¢(w)z so that @(r, w) = 0. Then

p(z) =au + Bv +z+ r
for some «a, 8 in O, and 7 in 7O, (vre M,). Let
A, ={weM|0(x,2) =1} =w + H, L. Oz — 29(z)w)
be the characteristic set of z (ef. [5; p. 429]). Then
U Ao) = Q(A;) = g(w) mod p~*o, .

Since (1 — a*)w + v is in _#,,, it follows that g(aw)ep "o, and
hence aw € M,.. Similarly, Swe M,. Interchanging w and v if neces-
sary, we have 8 = ax with » = (A, + A0p ™" in O, and A, = A\, mod p*.
Using a transvection, we can then arrange that )\ €, in the ramified
prime case and M e7zo, in the ramified unit case. In the ramified
prime case the proof can be completed by modifying the argument
in [5; 2.4]; the symmetry on B, needed is ¥,(r) with d€#,. In
the ramified unit case we proceed as follows. The coefficient of » in
E(v, &r)p(z) is zero if

ax + E*0(r, z + 7r) = peér)a .

Here =1+ =7zp" and ¢ = @(r, z + Yr) is a unit. By Hensel’s
lemma there exists a root & of the form & = ex*a*p with o in o,.
Similarly, the coefficient of % can be made zero and we may assume
@(z) =2z +7r. Put ¢ = vq(w)= —7q(r)®(z, r)"*. Then .7 (§) = 2.47(9)
and ¥,(r)'p acts as the identity on both w and z. This completes
the proof in this case.

(ii) Let rank M, = 3 and M, = H, | O,w where 2g(w) is a unit.
Again, we can reduce ¢ in U(M,) to the identity by the isometries.
Let

p(w) = alu + W) + nw
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where 7 is a unit. Moreover, as in the previous case, we may assume
X is in 7o, (resp. o,) in the ramified unit (resp. prime) case. Since

a(O,p(w)t) = ¢(O,w*) = q(H,) S p~o, ,

it follows that @w e M,.. Using Siegel transformations we can reduce
to the case @(w) = ew, although in the ramified prime case it is
necessary to use the fact that .#°() = 1 mod 4 and hence .#7(7) is
a square. Finally, since .#7(¢) =1, putting 0 =1 —¢)/2 gives
7 (0) = 2.47°(8) and ¥,(w)'p fixes w. This completes the proof.

COROLLARY 4.3. Except in the ramified unit case with the rank
of M, even, all lattices N, satisfying

M, < N, S M

are invariant under the action of U(M,) .

Proof. This follows from 2.2 and the easily verified fact that
U(H,) and the symmetries used in the proof of the theorem preserve
such N,.

COROLLARY 4.4. In the ramified unit case with rank M, even,
all lattices between M, and MY are SU(M,)-invariant.

Proof. Symmetries ¥, in U(H,) have p"e®O, and det?, =
1mod 2p~*. Hence, for ¢ in SU(M,) in the proof of Theorem 2.2,
the only symmetries ¥,(r) on B, needed will also have p*jeD,.
These symmetries leave invariant lattices between M,. and M.

We now investigate the converse. Let N, be a primitive
SU(M,)-invariant sublattice of M. As in 2.4, there exists z = au +
v+ t in N, with te L} (letting M} = H, | L}). In the ramified unit
case { is a unit and .77 ({) = 0. Since T.(u)(x)€ N,, it follows that
tueN, By 2.3, M, < N,, completing the proof of Theorem B in
this case. Finally, the ramified prime case. If dim V, =5, then L,
is split by a hyperbolic plane H, = Ou’ + O,v'. Applying E(u, u’)
to z, we obtain u’ — @(w/, t)u is in N,. Applying E(u, v') now gives
w€ N, and hence M,. = N,. Assume, therefore, the rank of M, is 8
or 4 and that the residue class field of F, has at least four elements.
Let ¢ be a unit in F, with & % 1 mod p. The proof of Theorem B
is now easily completed by using the isometry « i+ eu, vi—>& v on
2 to obtain ve N,. The exceptional case is studied in the next
section.

5. Exceptional invariant lattices. In this section F) is a totally
ramified extension of the 2-adic field @, and K, is a ramified prime



UNIMODULAR HERMITIAN FORMS 479

extension of F,. Thus the residue class fields of both F, and K,
have only two elements.

We consider first the case with dim V, = 8 so that M, = H, | O,w.
Then M, = H, | O,r'w and M} = H, | O, °*w where ¢ = ord,2.
There are now two new invariant lattices

E, =M} + O,u + v + n~°w)

and its dual Ef. It can be easily verified using the generators in
Theorem 4.2 that E, is a SU(M,)-invariant lattice; it follows that
the dual E? is also invariant.

Let N, be a primitive invariant sublattice of M}. As in the
proof of 2.4, there exists an element x = au + v + Bw in N, with
o and 7°B in O,. Since 7w = {, T.(u)(x) is in N,. Hence nM, S N,.
Assume first that 7°8 is a unit. Then wx e N, forces 7'~*w € N, and
tM¥ < N,. If « is not a unit, then the image of v + 7 °*w under
E(w, #*w) is in N,. Hence ve N, and M,. & N,. Assume, therefore,
@ =1modn. We have now shown, when 7°8 is a unit, K, & N,.
Moreover, E, = N, forces M,. < N,. Now assume 7°S is not a unit
and apply E(u, 7°w) to x. This gives u 4+ n°w is in N,. The isometry
w—v, v—u, w— —w is in SUM,). Hence both v — 7°w and u + v
are in N,. Define

G, = M, + O, + v) + O,(v + T°w) .
Then n7'G, = Ef, the dual lattice of E,. Now, if #°8 is not a unit,
G, & N, and if G, # N,, necessarily M,. & N,. In summary,

5.1. The only exceptional three dimensional invariant lattices
are of the form a,E, and a,Ef, with a, a fractional ideal in K,.

Now consider the more complicated situation when dim V =4
and M, = H, | B, with w, 2 a basis of B, having &(w, 2) =1 and
2€ M,. Let f be the minimal integer such that 7w is in M,.. Then

M,=H, 1 (Qrw+ Q,2).

If f=0, then M,. = M, and it is easily verified that M, is the only
primitive invariant lattice. Assume, therefore, 1 < f <e. Now z
can be chosen with ¢(z) in po,. For 1 < g < f, define

E(9), = aM,. + O,n'w + Q,(u + v + n772)
and
G(9), = M, + Oy(u + v) + O 2 + O,(u + 7/w) .
Then G(g), = 7 'E(g)! and using Theorem 4.2 we can check that these
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lattices are all SU(M,)-invariant. However, except when f =1, these
are not the only new invariant lattices that arise. We shall only
consider f =1 in detail; this includes the case where 2 is prime in F,.

Let N, be a primitive SU(M,)-invariant sublattice of M}*. Again
N, contains an element z = au + v + Bw + 7z with «, 8 and 777 in
Q,. Applying T.(u) to & gives nu € N, and hence =M, = N,. Since
E(u, z)(x) is in N,, we can conclude that 8 is in 79O, and z is in N,,
for otherwise M, & N,. Assume first that v is in 7*/Q,. Then
E(u, T"w)(x) € N, gives u + nfw and u + v are both in N,. Hence
G1),< N,. If f=1 and GQ), # N,, necessarily M, < N,. Now
assume 7/7 is a unit. Then E(u, 7/w)(xz) € N, gives twe N, If «
is a nonunit, applying FE(v, n7w) to x leads to M,. <= N,. Hence a =
1mod 7z and now u + v + Bw + n 'z is in N, with feznD,. Again,
if f=1, this gives E(1), £ N, and, if E(1), # N,, necessarily M, <
N,. Hence,

5.2. For f =1 the only exceptional four dimensional invariant
lattices are of the form a,E(l), and a,E(1): with a, ¢ fractional
ideal in K,.

For f = 2, the analysis of the exceptional lattices is more com-
plicated, but could be carried out in the above manner.

6. Global results. We start by proving Theorem A; in fact,
this result remains valid even if M is not unimodular.

First let N be a SU(M)-invariant sublattice of M. We must
prove N, = O,N is SU(M,)-invariant at all finite prime spots p of F.
Fix a finite prime spot q and an isometry «+, in SU(M,). By the
approximation theorem of Shimura [8; 5.12], there exists a @ in
SU(V) with local extension ¢, close to 4, at the spot q and @,(M,) =
M, elsewhere. Since « (M, = M, we have oM, =M, if ¢, is
sufficiently close to +, and hence (M) = M. Thus ¢ is in SU(M)
and hence @(N) = N. Therefore, ¢,(N,) = N, and if ¢, is sufficiently
close to 4r,, necessarily N, is invariant under «,.

Conversely, let N be a lattice in M with N, = Q,N a SU(M,)-
invariant lattice at all finite prime spots p. We must prove p(N) = N
for all ¢ in SU(M). Clearly, however, ¢, € SU(M,) so that ¢(N), =
@y(N,) = N,. The result now follows as in O’Meara [7; §8lE].
Notice that this half of the proof does not require that @ be inde-
finite. This completes the proof of Theorem A.

We can also construct global invariant lattices from local ones
as follows.

PROPOSITION 6.1. At each finite spot p of F assume given a
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SU(M,)-invariant sublattice J, of M, with J, = M, almost always.
Then there exists a sublattice N of M such that for each spot p

N,=9O,N=2,.
Proof. This is an immediate consequence of [2; 2.4].

We conclude this paper by giving more explicitly the invariant
lattices when F is the rational field Q. Now K = Q(vV'm) with m a
square free integer. Let » be a rational prime. Then p splits in
K if either p =2 and m =1mod8, or p is odd and (m/p) = 1.
Otherwise, for » = 2, we have an unramified extension if m =
5mod 8, a ramified unit extension with 2 = 0 if m = 8mod 4, and a
ramified prime extension if m is even.

Let M be a unimodular lattice on an indefinite hermitian space
V over Q1/m). Except when Q,(1/m) is a ramified extension of
Q., the only primitive invariant sublattice is M,. Hence, when
m = 1 mod4, the SU(M)-invariant lattices are the aM with a a frac-
tional ideal in Q(v'm).

When m =3 mod4 or m is even, Q,(1/m) is a ramified extension
of @, and M, can support other local invariant lattices. If the rank
of M is odd, the invariant lattices are the aN with a a fractional
ideal and N, one of the lattices M,., M, or M7}, together with E,
and E! when m is even and dim V = 8.

Finally, when the rank of M is even there are a number of
possibilities. If @ is an even form, namely if M, = M, the only
invariant sublattices are the aM with a a fractional ideal. If @ is
an odd form and m = 3mod4 or m is even, there are five lattices
N, lying between M, and My. If M,= H, 1 J, 1 (Ow + Q) with
O(w, z) = 1, 2qg(w) a unit and ¢(z)€o, these five lattices are M,
M., M,

H, 1 J, L (QOmw + O,m7'z)
and

H, 1 J, 1 (QOmw+ Ow + 77'2)) .

For dim V = 6 and for dim V = 4 when m = 3 mod 4, the invariant
lattices are the aN with a a fractional ideal, N, one of these five
lattices and N, = M, for » odd. When dim V =4 and m is even,
N, can also be one of the dual pair of exceptional lattices (1), and
E(1)? obtained in the previous section.
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