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ALGEBRAIC AUTOMORPHISMS OF ALGEBRAIC GROUPS
WITH STABLE MAXIMAL TORI

SARAH J. GOTTLIEB

Let T1 and T2 be maximal tori of a connected linear
algebraic group G Q GL(n, tc), and suppose some (algebraic
group) automorphism σ of G stabilizes both Tx and Γ2.
Suppose further that σ also stabilizes two Borel subgroups,
2?i and B2, of G. This paper is about the following natural
questions:

(1) Are Tx and T2 conjugate by a <7-fixed point of G?
(2) Are Bx and B2 conjugate by a σ-fixed point of G?
(3) If Ti c ft, (ί = 1, 2), are the Γ< and Bι respectively

conjugate by a single σ-fixed point of G?
(4) Are at least TΊ and T2 described in (3) above con-

jugate by a σ-fixed point of G?

In this paper is treated the case in which σ is an algebraic
automorphism. If either p = char tc = 0 or σ is semisimple, then
the answer to (4) above is yes; but there are counterexamples for
(1), (2), and (3). (See below, Counterexamples A-l and B.) More-
over, if both p > 0 and σ is not semisimple, then there is also a
counterexample for question (4). (See below, Counterexample C.)

Incidental in the proofs is the simple result that when σ is
algebraic, a σ-stable maximal torus is pointwise fixed by some finite
power of σ, and by σ itself for p = 0, σ unipotent (Theorem 1).

Robert Steinberg has studied the questions above in [3], for the
case that σ has finite fixed-point set in G, finding that the answers
to questions (2), (3), and (4) are all yes. There is a counterexample
for question (1) in the finite fixed-point set case, when the ^-stable
maximal tori are not respectively contained in σ-stable Borel sub-
groups. (See below, Counterexample A-2.)

When σ is an algebraic automorphism of a general algebraic
group G, its fixed-point set may be infinite. In fact, Steinberg
shows (by [3], 10.10) that if σ is algebraic with finite fixed-point
set, then G is necessarily solvable.

Throughout the paper the (now standard) terminology and basic
results of Borel ([1] and [2]) are used, including the name Borel
subgroup for a maximal solvable connected subgroup. In addition
the mnemonic dag is used for a connected linear algebraic group,
and the expression "the pair T £ 2?" for a maximal torus T and a
Borel subgroup B containing T.

In all of the following theorems, G is a clag and σ an algebraic
automorphism of G.
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THEOREM 1. // G has a σstable maximal torus T, then T is
pointwise-fixed by some power σn of σ. Ifp = 0 and σ is unipotentf

then T is pointwise fixed by σ.

Proof. Since σ is an algebraic automorphism of G, there is a
closed linear algebraic group ^ with G Δ ^ 7 and an element s e ?
such that σ(g) = sgs'1 for each geG. (In fact this may be taken
as the definition for an algebraic automorphism of G.)

Form the algebraic group generated by T and s, J%f{T, s) =
in <& (see [1], §3). T is normalized by s, so T is normal in
Moreover, T is a torus in J<, and so is contained in a maximal
torus of j*fQ. Thus T is contained in every maximal torus of J>/0,
hence is contained centrally in every Borel subgroup of J*fo by ([1],
§18, 18.1). T is therefore central in J^o by ([1], §18, 18.5).

Now s 6 j y => some power sn of s is in J ^ , whence s% centralizes
T. Equivalently, σn fixes T pointwise.

Suppose now that p = 0 and σ is unipotent. Since sn centralizes
T; so does J%f(sn). Now σ unipotent => s unipotent; and for p = 0,
J^(sn) = J^f{s) (see [1], 8.2). Thus s also centralizes T, i.e., σ fixes
T pointwise.

THEOREM 2. Le£ G be solvable, and let either p — 0 or σ be
semisimple. Then two σ-stable maximal tori Tt of G (i = 1, 2) are
conjugate by a σ-fixed point of G.

Proof. (1) Since σ has finite order, say n (n is prime to p
when p > 0), on ϊ\ and Γ2, it may be assumed without change in
hypothesis that σ has such finite order on all of G, by replacing G
with (Gαn)0> the connected component of the set of σ̂ -fixed points in
G.

( 2 ) Let U be the unipotent part of G, and let V be the uni-
potent part of C(Γ0, the Cartan subgroup of Γ lβ There exists ueU
such that uTiU'1 = Γ2, and for any such w, ^ " ^ c r ^ e V. Therefore
it suffices to show that whenever there is a u with u~ι σ(u)eV,
then there must exist veV with u^ σiu) = /y~1 (7('v). For in that
case, wv"1 is σ-fixed with w^jfVrar1 = T2.

In view of (1) and (2) it suffices to prove the following lemma:

LEMMA 3. Let G be a unipotent dag with automorphism σ of
finite order n (prime to p when p > 0). If G has a σ-stable subclag
H, and an element geG such that g~γ σ(g) eH, then iheH such
that g~ι-σ(g) = h~ι-σ(h).

Proof. For any subset X of G, denote by Xσ the σ-fixed point
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set of X; and for any element xeG, set a(x) = x~1-σ{x). There is
no non-identity element of the form a{x) in Gσ, because if a(x) e Gσ

for some xeG, then

(«(»))• = a(x) σ(a(x)) σXa(x)) . . . σ*-\a{x))

but only the identity element can be both unipotent and of order n.

Case I. i ϊ normal in G. H is unipotent, hence nilpotent, so
one may use induction on the length £ of the lower central series
for H.

If £ = 1, then if is commutative, so α | H is an endomorphism of
H with kernel Hσ and image α(iϊ). Therefore dim H = dim iϊ0 +
dim α(ff), and Hσ Π α( ff) = {e}. So if = Hσ-a(H) as a direct product.

Thus 3/̂  6 Hσ, h2eH such that a(g) = h^aQi^). That is, g~ι-σ{g) =
); and this implies that

So a(ghϊι) = e = fex and
Now suppose i > 1. If α(gr) e if1, then by induction 3fe e if1 with
= α(fe). So suppose α(flr) g fl"1. Then α(flr) ^ e in 5 = πHi(H),

where Γ Î is the projection of G with kernel H1. H is commutative,
and a(g) = g~ι σ{g) = g~ι σ(g) = ^(^), so as in the case for £ = 1,
iheH such that α(#) = α(fe). That is,

g~ι-σ{g) = h-'-σih) , and (gh-1)-1 - σ{gh~ι) = e .

In other words, a(gh~ι) e H1, whence by induction 3Λ/ e H1 such that
'1) = a(h'). We now have {gh~ιyιo{gh-1) = hg~1σ{g)σ{hγι =
σW), implying g'^σ{g) = h-ιh'-ι.σ{h')σ(h) = (K'hY^Qΐh). Hence
- a(h'h)ea(H).

Case II. If if is not normal in G, set if = Gx, and let Ĝ  be the
connected normalizer in (? of ©<_„ for i ^ 2. Since a proper subclag
of a nilpotent clag is properly contained in its connected normalizer
by ([1], 20.3), there is a chain of tf-stable subclags of G:

each of which is a normal and proper subclag of the following one.
Now the element g e G with which we are concerned is contained

in Gi for some (minimal) i, with i ^ 2 . Since a(g) eHζZG^, and G^
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is normal in Gi9 there is by Case I an element g^ e G ^ for which

If (i — 1)̂ > 2, apply Case I again to obtain an element ^ - 2 ^ G i _ 2

for which a{gt^ = α(flr<_8), since «(#,_!) e f ί £ Gi_2, and G<_2 is normal

in GU-
Similarly, by a total of (i — 1) application of Case I, one obtains

an element h e H = GL = (?,_«_!>, for which α(fe) = <%(#2) =

This completes the proof of Theorem 2.

THEOREM 4. Lβ£ G Aαve £wo σstable pairs, Tt Q Bi (i = 1, 2).
// p = 0, or i/ σ is semisimple, then the Tt (i = 1, 2) are conjugate
by a σ~fixed point of G.

Proof. Let Γ £ 5 be any σ-stable pair of G.
First consider tfs, the semisimple component of σ. (Any ^-stable

clag is also σs-stable.)
Let S be a maximal torus of (Gσs)0. By ([3], 7.4), S £ α ^-stable

Borel subgroup R of G. S is also a maximal torus of (JSσs)0.

G

σs-stable Borel

σg-stable max. tor. —• T

Borel

(Ros)o Q <—σs-stable max. tor.

By ([3], 7.6), R has a σs-stable maximal torus Q. Now JB = Q F
(semi-direct product), where V is the unipotent part of R. So any
σs-fixed point feR has Jordan decomposition f = q-v for some # 6 Q,
veV. Thus / = σ£f) = σs{q)σ8(v), with <7β(g) e Q, <7,(t;) e F, whence
tf.(ff) = ff a n d o9{v) = v. Hence (JSσβ)0 = (Qσs)0 (F σ s) 0, and (Q,β.)0 is a
maximal torus of (Rσs)Q. Thus dim (Qσs)0 = dim S, so (Q<J0 is also a
maximal torus of (G,β)0.

Now 3̂ r e G such that ^i?^"1 = B, gQg~ι = Γ, and (since Q Q R,
T Q B are all σ.-stable), g^-σJίg) e NG(R) f] NG(Q) = R n ΛΓG(Q) = C(Q),
the Cartan subgroup of Q in G. This implies that giQoJdJ"1 = (^s)o>
so that dim ( T ^ = dim (Qσg)0, and (Ta )0 is itself a maximal torus of

(G.s)o
Moreover, (TOs)0 is a torus of (GσJ0> because Γ C (Gσu)0. There-

fore (TOs)0 is a maximal torus of (Gσs)0 Π (GσJ0 = (Gσ)0. Thus the
l(Tt)as]o are both maximal tori of (Gσ)Q; so they are conjugate by a
fixed'point ye{Gσ\, t h a t i s , y(T1)oy-1 = ( T 2 ) o . S e t Tz^
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Both T2 and Γ3 belong to the connected centralizer Z of (Γ2ffβ)o *n G.
By ([4], Cor. 4), Z is solvable. Also, Z is σ-stable with maximal
tori T2 and T3, so by (Thm. 2), T2 and T3 are conjugate under a σ-
fixed point zeZ; that is, zϊ^" 1 = Γ3. Then for # == y~ιz, g is a σ-
fixed point of G for which gT2g~ι = Tlβ

[Note on the field of definition tc: If Λ: is algebraically closed,
the point of conjugacy in Theorems 2 and 4 may be taken to be
/c-rational; and theorems analogous to Theorems 2 and 4 hold for
/r-groups. The proofs are mechanical glosses on those here and are
found in the author's Ph. D. thesis.]

Counterexample A-l. σ is semisimple; G has two σ-stable
maximal tori which are not both contained in σ-stable Borel sub-
groups, and are not conjugate by a σ-Άxed point:

Take G = SL(2, Ω), p Φ 2. Let Tx consist of matrices of the
form

'a 0"

0 JL_ , a Φ 0
α_

and let T2 be given by matrices of the form

a

a a

a Φ 0 .

2\ is the maximal torus of G which has diagonal form; T2 is

the conjugate of T1 by the element

2 L - 1

Take σ = lnnG g, where g = L Q L The effect of σ is to inter-
change diagonally the corner entries in each matrix of G. The σ-
fixed point set Gσ of G is therefore

a
- 62 = 1

Gσ is infinite; and since σ2 — 1 and p Φ 2, σ is semisimple.
Now T2 is pointwise tf-fίxed, and TΊ is not, although it is σ-

stable. So 2\ and Γ2 cannot be conjugate by a σ-fixed point of G.
(Note. The only Borel subgroups of G containing T1 are the
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upper and lower triangular matrix groups in G, and σ leaves neither
of these stable, but maps one onto the other.)

Counterexample A-2. σ (nonalgebraic) is the Frobenius map for
p = 2, having finite fixed-point set; G has two σ-stable maximal tori
which are not both contained in a σ-stable Borel subgroup, and are
not conjugate by a σ-fixed point.

Take G = SL(2, Ω), p = 2. Let

[\a 0

: 0 Φ a e Ω

and let

1 9. =

+aα+-, + —

(a + — ) , — + αfα + —)
\ a) a \ a)

α fixed such that α2 + α + 1 = 0.

For σ take the Frobenius map σ: (xu) —•> (a?fy). TΊ is clearly σ-
stable. Γa = xT^x'1, where

a? =
a (a + 1)

(α + 1) α
and

so Γ2 is σ-stable too.
It can easily be seen that 2\ and Γ2 are not conjugate by a σ-

fixed point of G, since there are only 6 fixed points.

Counterexample B. σ is semisimple; G has two σ-stable pairs;
but the σ-stable Borel subgroups are not conjugate by a σ-fixed
point.

Take G and σ as in Counterexample A-l (p Φ 2). Let

T= Γ2 =
a

a

: 0

Set Δ = |ΓQ J^/^1: α, /9 e ΰ , α ^ θ | S G, a Borel subgroup of G. Set
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X =

Take

t = xAx~ι =

1 -±
2

1 ±
2

6 G , and y =

1 ±
2

-1 λ-
2

: a, βeΩ, a Φ 0

and

= yjy ι =

f , /3 e Ω, a Φ 0

Recalling that σ diagonally interchanges the entries of a matrix,
one sees that Bt and 5 2 are σ-stable, and T is pointwise σ-fixed.
Moreover, T is clearly a maximal torus of both B1 and i?2 (i.e.,
when β = 0). So Γ g ^ and T ^ B2 are σ-stable pairs.

Suppose now that JBX, J52 are conjugate by a σ-fixed point feGσ,
i.e., that A = fBJ-\ Then J5X = α Jα?-1 = fBJ~γ = fyΔy't1 =>J =
χ-γfyΔy-χt'x => a;"1/?/ e iV̂ Cz/) = J.

Say that α;"1/^ = δ = [Q i/f ] e ^ a n d / = [J 7] G ̂ , for some
a, β, Ύ, deΩ with 72 - δ2"= 1, and α ^ 0. Then

= b = xb

7 δl

β ΎJ

1

- 1

2

1

2_

1

1

_ 1
2
1

2_

0

β~

a

7

— 7

+

+ S)

a β

a β

2a

+ ~2a

a contradiction of the fact that Ύ2 — δ2 = 1.
Thus B1 and B2 cannot be conjugate by a σ-fixed point of G.

Counterexample C. G solvable, σ unipotent, and p > 0. G has
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two σ-stable maximal tori which are not conjugate by a σ-fixed
point.

Take p = 2.
Let T be the torus £ GL(6, i2) consisting of diagonal matrices

t of the form

t = , τ19 τ 2 e Ω9 τγr2 Φ 0 .

Let U be the unipotent clag consisting of upper triangular
matrices u of the form

'lax

1 β
1

u = , a9β,x,yeΩ ,

satisfying: α? + y — aβ = 0.
The reader may verify that U is closed under multiplication,

and since w4 = e, VueU, U is also closed under inverses. Hence Z7
is well-defined.

Moreover, U is normalized by 2\ as the reader again may verify.
One may therefore form the solvable clag G = T U (semi-direct

product).
Let the automorphism σ on t-ueG be given by the following

action on the entries of t and u

σ:

a

> τ2

>β

y

σ is thus conjugation by the permutation matrix:

8 =
1

0

0

1

0

1

1

0

1

0

0

1
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So s and σ are unipotent of order 2.
T is a σ-stable maximal torus of G, whose Cartan subgroup is

C(T) = T x C(Γ)., where

Γl

0

0
1

0

X

0

1

1

0

0

0

1

X

0

1

xeΩ

Now iί ueU, then wTw 1 is σ-stable if and only if u ι σ(u) e C(T)U.
Moreover, 3 a σ-fixed element fsUσ such that uTu"1 — fTf~γ if and
only if /-^eC(T)%; i.e., if and only if lceC(T)u such that uc'1 =f
is tf-fixed.

However, all ceC(T)u are cr-fixed; So a ^-stable maximal torus
uTu~ι of G is conjugate to T by a σ-fixed point if and only if u
itself is tf-fixed.

However, for the unipotent matrix

u =

1

0

a

1

0

X

a

1

1

0

0

a

1
y

a
1

satisfying a? + 7/ — α2 = 0, a Φ 0, one gets

u~ι-σ(u) =

1

0

0

1

0

—x +
0

1

y

1

0

0

0

1

-X +

0

1

y

That is, u 1 σ(u)eC(T)u, so uTu 1 is σ-stable. But u is not σ-ίixed,
so T and uΓ^"1 are not conjugate by a σ-fixed element of G.

(Note. This counterexample in p — 2 is due to D. Winter. The
present author has generalized it in a separate paper for all p > 0.
The resulting group may be of some interest in itself.)
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