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SCHRODINGER AND DIRAC OPERATORS WITH
SINGULAR POTENTIALS AND

HYPERBOLIC EQUATIONS

PAUL R. CHERNOFF

In an earlier paper we employed techniques from the
theory of hyperbolic partial differential equations to deduce
the self-adjointness of Dirac and Schrodinger operators with
smooth potentials. The present paper applies these techniques
to operators with singular potentials.

I* Introduction* There is a physical idea in back of our argu-
ments which is especially clear in the case of operators of Dirac type.
The Dirac operator H = D + V, a first-order partial differential
operator, is the quantum Hamiltonian governing the dynamics of a
relativistic particle in an external electromagnetic field. Intuitively,
we expect that H (with domain C") should be essentially self-adjoint
if the time evolution is determined by the formal differential expression
alone—that is, no boundary conditions are needed to tell the particle
how to be scattered when it hits a singularity. First of all, we
require that the underlying "physical space" be a complete Riemannian
manifold so that no finite points are missing. Moreover, in a rela-
tivistic system waves propagate at the speed of light; hence compactly
supported data are not propagated to infinity in a finite time, and
thus no boundary conditions at infinity are required. Finally, suppose
that the potential term V is locally well-behaved in a sense which
we will make precise later—roughly that everywhere V is locally
equal to a potential that requires no special boundary conditions.
Then we expect that H is essentially self-ad joint. That is, by ex-
ploiting the finite propagation speed of the Dirac equation, we can
patch together local good behavior to deduce global good behavior.
This is the main result of §2.

In §§3 and 4 we apply analogous ideas to second-order Schrδdinger
operators, by considering the associated wave equations. Although
the underlying ideas are similar to the Dirac case, there are a number
of technical complications, some of which are dealt with in the
preliminary material in §3. The conclusion is, roughly, that a Schrδ-
dinger operator with a locally well-behaved potential, which does
not decrease too rapidly at infinity, is essentially self-adjoint; this
global condition on the potential is needed because the nonrelativistic
Schrδdinger equation has infinite velocity of propagation.

(There is a large literature devoted to conditions which imply
the essential self-adjointness of formally symmetric partial differential
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operators. Some recent general references are the books by Schechter
[11], Faris [4], and Reed and Simon [10, vol. II].)

2 Dirac operators* We work in the setting of our paper [2].
Let M be a complete Riemannian manifold and ξ a Hermitian vector
bundle over M. Form the Hubert space H = L2(ξ) of square inte-
grable sections of ζ. Denote by C?(ζ) the C°° sections of ζ with compact
support. We want to discuss perturbations of a Dirac-type operator
D:C?(ξ)—*Cϊ(ξ), a first-order differential operator which we assume
is symmetric. For x e M let c(x) be the local propagation speed as-
sociated with D (for the precise definition see [2]; roughly, c(x) is
the largest eigenvalue of the symbol of D). Fix a point OeM and
let Br be the ball in M with center 0 and radius r. Define

c(r) = sup {e(x): x e Br) .

Assume that the integral \dr/c(r) diverges. (This is certainly true
if c(r) is constant, as it is for the usual Dirac operator in physics.)
Then it was shown in [2, Theorems 1.3 and 2.2] that D, with domain
CS°(f), is essentially self-adjoint. Moreover, if / 6 C°°(ί) is given, then
the differential equation

(1) $£ = iDu(t), u(fi) = f
at

has a global solution (namely u(t) = eitLf) with u(t) e Cξ°(f) for all t.
Moreover influence in (1) propagates no faster than the "speed of
light." That is, if supp / £ Br Q BR, and c = c(R), then supp u(t) Q
Br+cit) so long as r + c(t) ^ R .

We will deal with perturbations of D by zeroth-order operators
V. Such an operator maps sections of ξ to sections of ξ and is of
the form (Vf)(x) = V(x) f(x) where F(a;) 6 Horn (fβ, fj; in local coord-
inates, V is a matrix-valued function. We require that V(x) be
symmetric for all x, and that x^V{x) be measurable. We say that
F is locally pth power integrable, and write F6Lf0C, provided that
||F(#)||P is locally integrable.

Now we introduct three classes of perturbing potentials V:
1. T(D) is the class of all "D-good" potentials V:VeL2

l0C and
D + V is essentially self-ad joint on CΓ(f). (Note, we require that
V e Lioc in order that Cf(i) be contained in the domain of F as an
operator on L2(ξ).)

2. ΨloJjy) is the class of all V such that for each peM, there
exists a member F p 6 3 (̂D) with V(x) = Fp(a?) on some neighborhood
of p.

3. T^oAD) is the class of all V such that, for every compact
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K £ M, there is a Vκ e 3^(D) with V = Vvon some neighborhood of JBΓ
Obviously T{D) Q Tl0C*(D) £ TιOQ(D). Our main result says that

in fact these classes coincide.

THEOREM 2.1. With the above definitions, T(D) = TιoJ<D\ (That
is, essential self-adjointness of D + V depends only on the local
behavior of V.)

Proof. Let Ve Tioc(D) be given. We write L for D + V with
domain 3f{L) = Q°(f), and L for the closure of L. Then LQLQL*;
L is symmetric. We shall show that L is self-ad joint.

LEMMA 2.2. If ue^(L) and ^eCΓ(M), £fcew ψ ue&(L); simi-
larly, ifue^(L*) then φ u

Proof. Suppose that ue&(L*). This means that neL\ξ) and
that as a distribution Du + Vu = L*ueL2(ξ). Now

(D

= Ẑ>w + (Dxφ)*u + φVu

that is,

(2 ) (2? + V)(φu) = φL*u + (Dxφ) w

where A is a certain first-order differential operator whose coefficients
are related to those of D. The right side of (2) is clearly a member
of L\ξ), and hence ^ % e ^ ( L * ) .

If in addition u e £P(L)9 then there is a sequence {wΛ}Γ in ^(-L)
with uw —>% and L^% —>Lu. Then clearly φ-une &{L), φ-un—>φ u,
and

The right side of (3) converges to φLu + (D$)-u = L* (φu) eL2(ξ).
Hence, by the definition of the closure of an operator, φ ue &(L)
and we have the formula L(φu) = φLu = (Drf)*u.

Note that we used only the local square-integrability of V in the
proof.

COROLLARY 2.3. If ue £&{L) has compact support contained in
an open set Ω, then there is a sequence {un}? in 3${L) with supp unQΩ
such that un-+u and Lun—»Lu.

Proof. Choose a C°° function φ with support in Ω and ^ Ξ l o n
a neighborhood of the support of u. As in the proof of Lemma 2.2,
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take a sequence {vj? in £&(L) with vΛ—>u and Lvn—+Lu. Finally,
let un = ̂ "yΛ. Then %Λ 6 &(L), supp wn £ i2, and the proof of Lemma
2.2 shows that un—*φ'U — u while Lun—»L{φ*u) = Lu.

LEMMA 2.4. Suppose We T{D). Define N= D +W. Then if
and f has compact support, the differential equation

( 4 ) %L
at

has a unique solution, namely u{t) = eitNf. Moreover for each
t, u(t) has compact support; if supp / £ Br Q BR and c — c(R) then
u(t) is supported in Br+C{t) for r + c(t) ^ R.

Proof. All the conclusions are immediate except for the assertion
about the support of u(t). For the latter we consider the Trotter
product formula:

( 5 ) u(t) - lim {eit5/neitw/n)nf .

Because / is supported in Br and eίtw/n is merely a multiplication
operator, it follows that eitw/nf is supported in Br. But then

eitD/neitw/nf j s S Upp 0 rted in Br+e\t\/n. Iterating this process n times,
we see that (β« /̂»β« /̂«) / i s supported in Br+ncltl/n = Br+cltι. Hence
so is the limit vector u{t).

We come next to the heart of argument: The proof of an ana-
logue of Lemma 2.4 for the given potential Ve Ύlo<t(D)

LEMMA 2.5. Fix Ve 2T0C(D). Let f be a compactly supported
member of *&(L) = 1&(D+V). Then the differential equation

(6) $£
at

has a unique global solution u(t)f —°o < t < oo. Moreover u{t) is
compactly supported for all t.

Proof. The uniqueness follows in the usual way from the sym-
metry of L.

For the existence proof, we suppose that / is supported in Br.
We shall show that there exists a solution of (6) for 0 ̂  t <; l/c(r + 2)
with support in Br+1. Proceeding inductively, we can then construct
a solution for allί ^ 0 because the series l/c(r + 2) + l/c(r + 3) + •
is divergent. Similarly we get a solution for all negative t.

We turn to the first step in the construction. Since Br+2 is com-
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pact (by the completeness of M) and V e Ψ[OJJ)) we may find a positive
number 2s with the following property: for each p e Br+2, if ΩP)2ε is
the 2ε-ball with center p, there is a Vp e T{Ό) which coincides with
V on ΩP}2ε. By compactness a finite number of the corresponding
ε-balls {ΩPiε}™ cover Br+2.

Let {θp}™ be a corresponding set of Cξ° functions with #p supported

in ΩP}£ and Σ?=i ^ = 1 on Br+ί.

Returning to the initial vector /, define fp = θp'f for l^p^
Note that /, is supported in Ωp>ε and that fp e <&(L) by Lemma 2.2.
Moreover, if we define LP — ΌΛ- Vp, we have the relations (in the
sense of distributions)

Lf, = Df, + Vfp = Dfp + 7,/, - L*/, = L,/, ,

where the last equality follows from the self-adjointness of Lp. In
particular, /„ e ££f(Lp).

Now let τ = ε/c(r + 2). For 0 <; t ^ τ, define

Σ

Then w(0) = Σ Λ = /» w(*) ^s diίferentiable, and we have the formula

(7) -j-u(t) = ±iLpup(t).
at j»=i

Moreover, Lemma 2.4 implies that up(t) is supported in ΩPf2ε for 0 ^
t ^ τ. It then follows from Corollary 2.3 that Lpup(t) — Lup(t).
Reason: because up(t) is supported in Ωp>2ε, there exist C°° functions vn

supported in ΩP)2ε with vn —* up(t) and Lpvn—> Lpup(t). But since vΛ is
supported in ΩP)2ε we have LpvΛ = Lvn. We can conclude that up(t) e
&(L) and that Lup(t) = Lpup(t).

Thus, from (7), we have, for 0 ^ ί ^ τ,

-^-w(ί) = Σ iLuv{t) = ίL Σ wp(t) = iL^(ί) .

That is, the differential equation (6) is satisfied, 0 ^ t ^ τ. Further-
more, u(τ)e&(L) and is obviously supported in Br+cτJ c = c(r + 2).
This is so because, for all p, fp is supported in Br; hence by Lemma
2.4 (with T7 = yp)wp(ί) is supported in Br+et, 0 ^ ί ^ τ. And so w(ί) =
Σ ^p(ί) is supported in Br+Ct.

Now we start the process over again, assuming that r + cτ <
r + 1, with u(τ) as the new initial data. We thus extend the solution
u(t) throughout the interval τ <̂  t <; 2τ. This may be continued for
n steps, until r + ^cτ ^ r + 1 (the final step is modified by shortening
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τ if necessary so as not to overshoot the mark). Of course the
crucial fact that makes this argument work is that τ does not depend
on the initial data.

Completion of the proof of Theorem 2.1. We can now deduce
that L is self-adjoint by means of the "invariance of domain" method
(cf. [2, Lemma 2.1]). Let Sf consist of the compactly supported
members of £&(L). We have just shown that for every / e 3ί there
is a solution u(t) of the differential equation (6) with u(0) = / and
u(t)e£%f for all t. Moreover ||i&(ί)ll2 is constant because L is sym-
metric.

Denote by A the restriction of L to 3?. Suppose that A*ψ =
±iψ. We claim that ψ must be 0. (This will establish that A is
essentially self-adjoint and hence that L is self-adjoint.) Consider
the case A*ψ = iψ. Given fe£& let nit) be the corresponding
solution of (6). Define

F{t) = (u(t), ψ) .

Then Fit) is bounded, — oo < t < cof and we have

F\t) = (iLu(t), f) = (iu(t), A*ψ) = (m(ί), if) = Fit) .

Hence 2̂ (0 = F(0)e\ Since F is bounded we must have F(0) = 0;
that is, (/, ψ) = 0. Since ^ is dense, ψ must be 0. A similar
argument takes care of the case: A*ψ = — iψ.

Since Theorem 2.1 shows that only the local behavior of V affects
the essential self-adjoitness of D + V, it follows immediately that if
Ve T{D) and W is locally bounded, then V + WeT(D). For explicit
local conditions that guarantee that V belongs to T*(D) see [5] or [6].

3* Abstract wave equations* In this section we collect some
results on second-order operator differential equations which we will
later apply to study Schrodinger operators by means of the allied
wave equations.

We begin by recalling some standard facts. If S ^ a > 0 is a
semibounded self-adjoint operator on a Hubert space β^f we can solve
the second-order equation d2u/dt2 = —Su(t) by transforming it into
a first-order system: du/dt = v, dv/dt = — Su. More precisely, we
form the Hubert space H = 2f (S1/2) φ Sίfy with norm ||(%, i>)||2 =
||S1/2u||2 + I Ml2, and the operator

(1)
0 /

-S 0
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with domain 3f(A) = 3f(S) 0 ^ ( S 1 / 2 ) . Then A is a skew-adjoint
operator on JEΓ and generates the one-parameter unitary group

( 2 ) VΊϊ
tVΈ.cos

If <χjr(t) = β*V(°) h a s components (w(ί), v(t)) then w(ί) = cos tVSf +
sin ίl/T/l/S"^, where / = u(0), g = t (O); if fe&(S) and ^e^(S 1 / 2 )
then u(t) satisfies the second-order equation uit) — — Su(t) with initial
data u(0) = /, ώ(0) = g.

More generally, for any real number a, let §ίfa be the completion
of £έ? in the norm | |S β / | | . Note that ^ t / 2 is just ^(S1/2) with the
graph norm. We have the inclusions

1/2 Ξ= ^ ^ ^

and S extends by continuity to an isometry of <3έ*/2 with c%t1/2. Let
JfiΓ be the Hubert space £ίf 0 <aSt1/2. Then the matrix formula (1)
defines a skew-adjoint operator A, on J£, with ^ ( Λ ) = &(S1/2) 0 Jg^
and the group generated by A1 is given by formula (2). This alterna-
tive conversion of the second-order equation into a first-order system
will be useful later for technical reasons.

Now let C be another operator on £$f which is bounded relative
to S with relative bound less than 1: that is, 3ί(β) £ 2f{β) and
there are constants 7 < 1 and k < oo with | |C/ | | ^ 7 | | S / | | + fc||/||
for all fe&(S). Consider the differential equation

( 3) u{t) = -Su(t) - Cu(t) .

We write this as a first-order system on H = ^(S 1 / 2 ) 0 3ίf as follows:

That is, if ψ =

^ = v
v = —Su — Cu

at

where A is defined by (1) and JB = I ^ Q . Unfortunately B is a

rather bad perturbation of A even though C is a good perturbation
of S; for instance, 5 does not generate a semigroup on H. Never-
theless, the following result is true.

PROPOSITION 3.1. Let S be a positive self-adjoint operator on
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Sίf. Let G be a closed symmetric operator on §{f which is bounded
relative to S with relative bound less than 1. Then the operator L
defined by the relation

0 0'

with domain &(L) = £&(S) φ &(Sιn), generates a (Co) group on
H= ^(S1/2) φ Sίf.

Proof. First, note that by the Kato-Rellich theorem the operator
T=S+C is self-ad joint with domain 3r{T) = £?(S). In addition, T
is semibounded. Indeed, since C has relative bound ^ 7 < 1, there
is a constant k such that

(5) | | C / H ^ 7 | | ( S + k)f\\

for all fe£&(S). Hence, by the monotonicity of the square root on
operators (cf. [7, Th. V. 4.12] we have

(6)

for all fe£&(S). Hence we have the inequalities

(7) S + C ^ S - \C\ = ( i - 7 ) S + τ S - \G\ ̂  -

Also, the operator ~ Λ L where α is any constant, is a bounded
perturbation on /f. Accordingly, by adding a suitable constant a ^
1 + 7k to C, we may arrange that S + C be ^ 1 without affecting
the issue of whether L is a generator.

But then our preliminary remarks show that equation (3) (u= — Tu)
can be solved on the space &(Tin) φ J%*, and that L is a generator
on this space with domain 3ϊ{T) φ ^ ( Γ 1 / 2 ) . So all we have to do
is prove that ^(Γ 1 / 2 ) φ Sίf coincides with H— i.e., that ^(T 1 / 2 ) =
^(S 1 / 2 ). (The graph norms will then automatically be equivalent,
by the closed graph theorem.)

Since &{$) = &{T) and T ^ 1, there is a constant δ such that,
for all f

\\Sf\\£δ\\Tf\\.

Then by another application of [7, Th. V. 4.12] we have

(S/, /) ^ δ(Γ/, /)

for all such vectors /. Similarly there is a constant 3' such that

{Tf, f) ^ δ'(Sf, f) .



SCHRODINGER AND DIRAC OPERATORS 369

Hence the two inner products (Sf, g) and (Tf, g) are equivalent on
3f{S) = &{T). But ^(S 1 / 2 ) is just the completion with respect to
the first inner product, while £&(T1/2) is the completion with respect
to the second inner product. This proves that

We also have a result about approximation of solutions to (3).

COROLLARY 3.2. Let S and C be operators as in Proposition 3.1.
Define χΛ(λ) = λ if |λ | <; n, = 0 otherwise; and consider the "cutoff"
perturbations Cn = X»(C).

0% fl" = ^(S 1 / 2) 0 %̂̂  ίβί eίLπ δe the (Co) group generated by
the operator

0 1"

— oΛ υ

αnώ let L be as in equation (4). Then as n

m tΛβ strong operator topology on H.

Proof. Since \\CJ\\ ^ | |C/ | | for all fe^r(S), the estimates (5),
(6), and (7) of Proposition 3.1 all hold with Cn replacing C. Thus if
we add the constant a = Ίk + 1 to all C/s and C, we may assume
without loss of generality that S + C ^ 1 and S + Cn ^ 1 for all w.

Write Γ - S + C and T% = S + Cn. Then L = [ " _ J J 1 and
LΛ = [°τ QΊ. By Proposition 3.1, we know that ^ ( L J = &{JJ) =
^ ( S ) 0 ^ ( S 1 / 2 ) . Moreover it is trivial that L ^ —> Lψ> for any
f e S ( L ) . Hence the Trotter-Kato theorem [7, Th. IX. 2.16] will
show that etLn—>etL provided that we verify that these groups are
uniformly bounded on H with a bound independent of n.

We know that etLn is a group of isometries relative to the norm
induced from &(TT) Θ ^ We denote this norm by || |L, while
we denote the norm from ^(S 1 / 2 ) 0 £{f by || ||. The proof will be
finished if we can show that there are constants α, β in (0, oo) such
that

(8) α||.||^IHI.^0IHI;

for then we will have the estimate \\etLn\\ ^ β/a for all real t and
all Λ = 1,2, •-..

Because of our normalization, it follows from (7), with C replaced
by Cn, that

Tn = S + Cn ^ (1 - Ύ)S + 1 .
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Similarly, if λ is large enough, we have

Cn^\S

for all n. Hence there are constants a, β independent of n such that

( 9) a2S ^ T% ̂  β2S .

Now (8) is an immediate consequence of (9).

We turn next to some simple facts about time-dependent equations.

PROPOSITION 3.3. Let etΛ be a (Co) group on the Hubert space
H, and let B(t) be a norm-continuous function from the reals to the
bounded operators on H. Assume also that, for each t, the operator
B(t) maps <2?(A) into itself, and that t\-+B(t) is continuous as a
map from the reals into the bounded operators on &(A) (equipped
with the graph norm).

Then, for each fe£&(A), the differential equation

(10) ^fc. = Af{t) + B(t)ψ(t), ψ(0) = /

has a unique solution ψ(t).

Proof. If ψ(t) satisfies (10) then it satisfies the integral equation

(11) ψ(t) = etAf

Uniqueness of solutions to (11) follows in the usual way (GronwalΓs
inequality). As for existence: The additional hypothesis on B{t) shows
that (11) makes sense as an integral equation on £?(A)f and the usual
iteration method shows that it has a solution ψ(t) e &(A).

Since ψ(t) satisfies (11) and ψ(τ) e &(A), we have B{τ)f(τ) e &r(A)
and so we may differentiate under the integral sign in (11) to deduce
that ψ(t) is a solution of the original differential equation (10).

The next proposition deals with second-order equations.

PROPOSITION 3.4. Suppose now that S is a semibounded self-
adjoint operator on a Hilbert space £ίf, and that β(t) is a differentiable
real-valued function on the real line. Consider the time-dependent
wave equation

d2u/dt2 = -Su(t) - β{t)u(t)

u(0) = / 6 3f{β\ ώ(0) = 0 .
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This equation has a global solution u{t). Moreover we have the
"energy" formula

(13) -%-{\\u(t)\\2 + (OS + β{t))u{t), u(t))} = β'(t)\\u(t)\\> .
at

Proof. By adding a constant to S and subtracting it from β(t),
we may assume that S ^ 1. Then we know that the operator A =

Γ_s o] i s s k e w - a d i ° n i t o n t h e Hubert space H = &(Sιn) 0 ^ with
domain ^(A) = ̂ r (S)0^ Γ (S 1 / 2 ) . A generates a (Co) group of operators
etA on Jϊ. Next, consider the operator B(t) on H defined by

Γ o o
5(*) = l Λ/. 0

Obviously tv^B(t) is continuous in operator norm. Moreover, it is
straightforward to verify that B(t) maps Z&(A) into itself and ί—•
J5(t) is norm-continuous on the space £^(A).

By Proposition 3.3 it follows that the equation

(14) ^

has a unique solution. If we write ψ(t) = uS/,\ then w(t) satisfies

the wave equation (10).
Moreover, we have the relation

by the definition of the norm in H. Hence

^ + ((S
at

(15) ^

t ) + 2β(t)Re(u, ύ)

From the differential equation (14), the formula ψ = \w. , and the

definition of the inner product in H, we get the relation

(f, ir) = (Sι/ΐU, Sι/ΐU) + (U, -Su- β(t)u)

= (S1/2u, Sι/2ύ) - (Sι/2ύ, Sι/iu) - β(t)(ύ, u) .

Here we have used the fact that ύ(t) e ^ ( S 1 / 2 ) . It follows that
Re(ψ, ψ>) = —β(t)Re(ύ, u), so that the right-hand side of (15) reduces
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to β'(t)\\u(t)\\2. That is, equation (13) holds.

Finally, we have a strong uniqueness theorem.

PROPOSITION 3.5. Let T be a semibounded symmetric operator
on §ίf. Let β(t) be a continuous real-valued function on the real
line. Suppose that u(t)9 0 ^ t tί £0, is a solution of the differential
equation

d2u/dt> = - Tu{f) - β{t)u(t)

u(0) = ώ(0) = 0 .

Then u(t) is identically 0.

Proof As in Proposition 3.4, we may assume without loss of
generality that T ^ 1. Let S be the Friedrichs extension of T. Form
the Hubert space K = 3ίf 0 Sίf^!% as discussed in the third paragraph

of this section, and consider on K the operator Ax — I H ί\ and the

corresponding one-parameter group etΛl. Also define an operator Bx(t)
on K by the formula

0 0

Then tv^B^t) is a norm-continuous operator-valued function on K.

Consider the curve ψ(t) = ^>.( . It is easy to see that ψ(t) is
[_U{U)J

a diίferentiable curve in K which satisfies the differential equation
ψ(t) = Axψ{t) + S(t)t(^) , f (0) - 0 .

The usual uniqueness proof (reduction to an integral equation plus
GronwalΓs inequality) then shows that ψ(t) is identically 0.

Note. In Proposition 3.5 it was necessary to introduce the space
K because it is not evident a priori that ψ(t) is differentiate as a
curve in the space H = (S1/2)

4* Schrδdinger operators* We begin by recalling some of the
results of [2] concerning second-order operators with smooth coefficients.
Suppose that M is a complete Riemannian manifold and that A is a
symmetric, negative, second-order elliptic operator on M. Let c(x)
denote the local propagation speed associated with Λ; roughly, c{x)
is the square root of the largest eigenvalue of the symbol of A. For
example, if A = Δ, the Laplace-Beltrami operator, then c(x) is identically
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1. Fix a point QeM, and let Br denote the ball of radius r and
center 0. Note that Br is compact because M is complete. Define
c(r) = sup{c(#): % £ Br}. As with the Dirac-type operators discussed
in §2, we assume that the integral I dr/c(r) diverges. Then it was

shown in [2] that Λ, with domain C?(M), is essentially self-adjoint.
Moreover—the point of greatest interest here—the wave equation
u(t) = Λu(t) has the following propagation property: if the initial
data u(0), Λ(0) have compact support then so does u(t) for all t.

We shall state a fairly precise form of this result, which says that
data supported in Br propagates with instantaneous velocity at most

c(r). For r ^ O we define θ(r) = \ ds/c(s). The assumption about
Jo

the divergence of the integral to oo shows that θ is a diffeomorphism
of [0, oo) with itself. Moreover, if R < r then θ(r) - Θ(R) = t gives
a lower bound for the time during which the influence of data sup-
ported in BB remains inside Br. Hence, given t > 0 and R, if u(0)
and ώ(0) are supported in BR then u(t) will be supported in Br,
where r = θ~\t + Θ(JR)). Let us write UR for θ~\t + Θ{R)). Thus
data supported in BB generates a solution supported at time t within
BUR- (Note the identity ί1*(t2*i2) — (ίx + £2)*#> whose interpretation
in terms of support propagation is obvious.)

We are concerned with the Schrodinger equation l/i(du/dt) =
—Λu + Vu, where V is a potential on M which may be rather singular.
We assume henceforth that in local coordinates A has the form Λu =
Έϋj ^iiβisSjU), i.e., Λu = div (α grad u), where a is a smooth matrix-
valued function. (This means that we are neglecting "magnetic fields"
which would appear as lower-order lerms in Λ. Actually, at the cost
of some technical complication, our arguments could cope with arbi-
trary smooth magnetic fields, but we shall stick to the simpler case
in writing out the proofs.) We seek conditions on V which guarantee
that the operator —Λ+V is essentially self-ad joint on the domain
C"{M) We shall use the strategy of [2]; namely, we shall relate
the self-adjointness question for the operator T — —Λ+V to that
of existence of solutions to the wave equation u{t) — —Tu{t). (A
related approach has been explored by Berezanskii [1], who relies
upon a uniqueness theorem for the adjoint wave equation iί(t) —
— T*u(t) rather than an existence theorem for the original equation.
Our method seems to yield stronger results.) We will impose local
conditions on the potential V to guarantee that — Λ + F is "locally"
essentially self-ad joint, together with a global semiboundedness con-
dition, of the form —Λ + V^ — (a + bθ(r)2), which is the analogue
of a classical condition that insures that particle trajectories do not
reach infinity in a finite time. Here r is the function r(x) = d(x, 0),
the distance to the "origin" 0 e M. Note that in case Λ = Δ we have
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c{r) = 1 so that θ(r) — r and our condition reduces to the well known
condition -Δ +V^ -(a + br2).

We turn first to the local problem. There are a number of
techniques in the literature which we might use. We shall employ
the following three known theorems, which we list for the reader's
convenience.

THEOREM A ((Faris) [3, Thm. 4.1], [4, Thm. 8.3]). Let 3ίf =
L\m, μ). Let e e 3ίf> e > 0 a.e. Let Ho Ξ> 0 be a self-adjoint operator
acting in Sίf with Hoe = 0 Assume that (HQ + c)"1 is positivity-
preserving for all c > 0. Let U ^ 0 be a real function in L\M, e2μ).

Let H — Ho + U. Then H is essentially self-adjoint on &(H) =
£&(H0) Π 3f{JJ). Moreover (H + c)~ιLco(e) is a domain of essential
self-adjointness (a "core") for H.

THEOREM B ((Davies-Faris) [3, Thm. 4.4], [10, Thm. X. 31]). Let
HQ be a positive self-adjoint operator on L\M, μ) such that (Ho + c)"1

is positivity-preserving. Let U ^ 0 be a multiplication operator.
Suppose that H — Ho +U is essentially self-adjoint. Let W be a
multiplication operator which is bounded relative to Ho. Then W
is also H-bounded. Indeed, if we have

then we have the estimate

with the same constants a, b.

THEOREM C. Let M be compact Riemannian manifold. Let Λ
be a second-order elliptic operator on M. Let d be the dimension of
M. Following [12], we say that p is "d-canonical" if p = 2 for
d<,3; p>2 if <Z = 4; p = d/2 if d^δ.

Suppose p is d-canonical and WeLp(M). Then the multipli-
cation operator W is bounded relative to Λ with relative bound 0.

Proof. In case Λ = A on Rd, this follows from Sobolev inequalities
(cf. [10, Thms. X. 16, X. 30, X. 21]; the case p = 2, d = 3 is a famous
result of Kato).

In the manifold case the conclusion follows from the "flat" case
by a straightforward argument using a partition of unity to patch
together inequalities in local charts.

PROPOSITION 4.1. Let M be a compact Riemannian manifold,
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dimension d. Let Λ be a second-order elliptic operator on M: Au =
div (a grad u), a smooth. Let U ^ 0 belong to L\M), and let W ^ 0
belong to LP(M), where p is d-canonical. Write V = U — W. Let
H — —A+V. Then H is semibounded and essentially self-ad joint
on C°°(M).

Proof. We shall apply Theorem A, with HQ = - J . The first
step is to check that if c > 0 then ( —Z + c)"1 is positivity-preserving.
This follows from the classical maximum principle. (Indeed, suppose
that φ e C°°(ikf), ^ ^ 0, and ( - J + c)ψ == 0. We must show <f ^ 0.
By elliptic regularity, ψ is C°°. If ψ is negative anywhere then f
attains a negative minimum at some point peM. Then ψ(p) < 0
but Aψ(p) ^ 0, so ^(p) = —Aψ(p) + c^(p) < 0, a contradiction. Thus
( — Λ + c)~ι is positivity-preserving on the positive cone in C°°(M),
which is dense in the positive cone of L\M).)

Now define e(x) = 1. Then e>0 everywhere, eeL\M)f and
Λe = 0. Moreover UeL2(M, e2μ) = L\M). Hence, by Theorem A, it
follows that —A +U = Ho Λ-U is essentially self-ad joint on 2f{Λ) Π

By Theorem C, the multiplication operator W is bounded relative
to fZo with relative bound 0. Hence, by Theorem B, W is bounded
relative to Eγ = HQ + Z7 with relative bound 0. It follows that
Hλ —W =H0 +U —W is semibounded and essentially self-ad joint on
^(iTi) Π ̂ (W). Moreover any core for ΈLX is a core for ί^ — W.

The proof will be finished if we show that C°°(M) is a core for
Hx. Now, by Theorem A, {Ή.γ + cy'L^M) is a core for fli Hence
the larger space ^y£-= L°°(M) Π &( — A) is a core for H^ To prove
that C°°(M) is a core for 22i, we have to show that a given f
may be approximated by a sequence /Λ e C°°(M) so that iϊiΛ
at least weakly. In fact we shall construct such a sequence with

IIΛIU ^ II/IU and Afn-+Xf, Ufn^Uf.

We simply take /Λ = eΛlnf. Then || AIU ^ II/IU by the maximum
principle; fn e C°°(M) by the smoothing properties of the heat equation;
Λ - * / in L2; and Afn~+Af in ZΛ As for 17Λ, note that | | i7/J | 2 ^
II^IUIΛIU^IiσΊMI/lloo, so {Ufn}T is a bounded sequence in L\
Moreover it is obvious that Ufn—>Uf in measure, so Uf is the unique

w

adherent point in L2 of the sequence {Ufn}. Accordingly Ufn~+Uf.

COROLLARY 4.2. Let M be a compact Riemannian manifold.
Let A and V be as in Proposition 4.1. Write H = — A + V. Suppose
that f 6 ϊ2ϊ(H) has support in the ball Br. If s>r there is a sequence
of C°° functions fn with supports in Bs such that fn~+f and
(-Λ+V)fn~+Hf in U.
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Proof. By Proposition 4.1, C°°(M) is a core for H, as well as for
Hx = [-Λ +17]"; moreover, since T7 is .^-bounded, ^ ( £ 0 = &(H).
Accordingly, there is a sequence of C°° functions {#.}" such that
g%-+f, (~Λ + U)gn-+HJ, and Wgn-+Wf; in particular (-4 +

Choose a C°° function ^ such that φ is supported in the ball Bs

and ^ is identically 1 in a neighborhood of the support of / : thus
φf = / and £ff/ = Hf. Define / n = 0#n. Clearly fn is C00, supported
in Bs, and /»—•/. It remains to show that (—A + V)/H —• Hf.
(Actually we will show only weak convergence; but then suitable
convex combinations of the Hfn will converge strongly.)

We have the formula

(1) (~Λ + V)fn - φ{-Λ + V)gn - gnΛφ - 2(aFφ)-Fgn .

The first two terms on the right converge in norm to φHf = Hf
and —fΛφ = 0 respectively. We must show that the remaining term
converges to 0 at least weakly. It obviously converges to 0 in the
sense of distributions, so it is enough to show that the sequence of
I/2 norms \\(aVφ)-Vgn\\ is uniformly bounded. This amounts to showing
that the sequence \\Vgn\\ is bounded.

Now, because of the inequality — A ^ const. — A, we have

l l^. l l 2 - (~Δg%9 gn) ̂  c{-Λgn, gn)

£c((Λ

The right side of (2) converges to c{HJ, f). Hence the sequence
\\Vgn\\ is bounded.

We now consider the wave equation

(3) ^ . = (Λ-V-β(t))u(t).
at

Our aim is to show that under suitable hypotheses on V, equation
(3) has global solutions. We first turn to the case of compact mani-
folds M, where existence of solutions is immediate from our earlier
work on essential self-adjointness of —Λ+V. Here our intent is to
establish support properties of solutions to (3). We treat the time-
independent case first.

PROPOSITION 4.3. Let M be compact Riemannian manifold. Let
A and V be as in Proposition 4.1. Write H for —A +V. Consider
the differential equation

(4) d2u/dt2 = -Hu{t) , u(fi), ώ(0) e
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By the results of §3 we know that (4) has a global solution u(t).

Claim: This solution has the same support properties as the
"free" equation (V = 0). That is, if the initial data are supported
in the ball Br, then, for all t ^ 0, u(t) is supported in the ball BUr.

Proof. Basically this follows from the Trotter product formula
as in the analogous case of Dirac operators in §2. First, suppose
that V is bounded. Without loss of generality we may assume
— Λ^l. Consider, on the space H = &{V^Λ) 0 Sίf, the operators

0

Λ

Γ
0

B =
Γ 0

-V

0

0

Note that B is a bounded operator on H. If ψ(t) = ^>2 where u

is the unique solution to (4) we have ψ(t) = etu+B)ψ(ϋ). Moreover,

by the Trotter product formula,

( 5 ) ψ(t) = lim (et/nΛet/nΣ

Now et/nB does not expand support, while if φ is supported in Br,
et/nAφ is supported in Bt/n^B. Hence the right side of (5) is supported
in 2?ί/n,...,ί/w,r = BUr. The same is true of the limit ψ(t).

Now consider the general case: V = U — W, v, W ^ 0, UeL\M),
WeLp(M). Then H= —Λ + V is semibounded, and the solution to
(4) is given by

u(t) = cos (VlWO) + s i n ^X-H) ύ(0) .
vH

Consider the cut-off potentials: Vn(x) = V(x) if | V(x) \ £n, Vn(x) = 0 other-
wise. Let Hn = —A + Vn. The operators ίί% are uniformly bounded
below, and Hn--*H point wise on &(A)[)£P(V), a core for £T. Hence
by [10, Th. VIII. 20] it follows that cos tVΈn — cos tVΈ and

sin (tVΈn)lVΈn > sin {tVΈ)jVΈ

in the strong operator topology. That is, if un(t) is the solution to
(4) with H replaced by Hn, then un{t) -* u(t) for all t. By the first
part of the proof we know that un(t) is supported in BUr. Hence
u(t) is supported in BUr.

Next we establish the same result for the time-dependent case.

PROPOSITION 4.4. Let M be a compact Riemannian manifold.
Let A and V be as in Proposition 4.1. Let β(f) be a differentiate
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real function of t. Write H = —Λ+V. Then the equation

(6 ) d2u/dt2 = -Hu(t) - β(t)u(t) , %(0), ώ(0) e

a unique global solution u(t). This solution satisfies the energy
equation

(7) d/dt{\\ύ(t)\\2 + ((jff+ β(t))u(t)f u(t))} = β'(t)\\u(t)\\2 .

Moreover if the initial data are supported in the ball Br, then, for
t^O, u{t) is supported in BUr.

Proof. Existence and uniqueness of the solution u(t), as well as
the energy equation (7), all follow from the results of §3. We must
establish the support properties of u(t).

Without loss of generality we may assume H ^ 1. Then consider,
on the space H = &(H1/2) 0 £ίf, the operators

A = -H OJ l-β{t) 0.

Γu(t)~\
If ψ(t) = ./,x we know that ψ satisfies the integral equation

OΠ Γ 0 0
1 and B(t) - '

(8) ψ(t) = etAψ(0)

Moreover, the series expansion from iterating (8) converges because
||2?(τ)|| is bounded on any bounded interval, so that we have the
formula

( 9) f(t) = etAf(0) + Σ \ e ( f- r i ) iB(τ> ( Γ l"Γ" Γ 2 ) i i e^ψ^dτ, ••• dτ

where An is the region 0 <; τn ^ τn_1 ^ ^ τ1 ^ t. It is straight-
forward to check that each term in this series is supported in BUr

if ψ(0) is supported in Br. This follows from the fact that the
operators B(τ) do not expand support, while, by Proposition 4.3, the
operators e{t~τ)Λ expand support from Br to B{t_τUr.

We can now extend the above results to the case of a complete
(not necessarily compact) Riemannian manifold M.

THEOREM 4.5. Let Mbe a complete Riemannian manifold, dimen-
sion d. Let Λ be a second-order elliptic differential operator on M
of the form Λu = F'(aFu). Define the propagation speed c(r) associated

S oo

drjcir)

diverges.
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Let V be a real function on M of the form V = U —W where
U, W^ 0, UeL2

loc(M), VeLfoc(M), and p is M-canonίcal.
Let H = -A +V.
Let β(t) be a real differentiate function of t.
Then the differential equation

(10) d2u/dt2 = -Hu(t) - β(t)u(t) , u(0), ώ(0) e C?{M)

has a global solution u{t). This solution satisfies the energy equation
(7) above. Moreover, u(t) is compactly supported for all t; if the
initial data are supported in the ball Br, then u(t) is supported
in BUr.

Finally, let Ho denote the closure of the restriction of H to C™(M).
Then, for all t, the solution u(t) belongs to 2&(HQ) (and of course
Hou(t) = Hu(t)).

Proof. The idea of the proof is to use the preceding theorems
to construct local solutions of (10) on an increasing sequence of compact
subsets of M. The finite propagation speed guarantees that these
fit together to define a global solution. The details follow.

Suppose that u(O), ύ(0) are C°° functions supported in the ball Br.
For each positive integer n let Ωn be a compact subset of M with
smooth boundary which contains B^r in its interior. Finally, let Mn

be a compact Riemannian manifold (without boundary) in which Ωn

is isometrically embedded. (For example, let Mn be the double
covering of a neighborhood of Ωn; it is easy to see via a partition
of unity argument that the Riemannian metric on Ωn extends to a
Riemannian metric on Mn. The precise choice of Mn is immaterial.)

We extend the operator Λ on Ωn to be elliptic on Mn; call the
extension An. The functions U, W, and V may be extended to Mn

by defining them to be 0 outside Ωn. Since Ωn has compact closure,
we have UneL\Mn), Wn eLp(Mn). Finally the functions u(0), ύ(0)
are extended by setting them equal to 0 outside Ωn.

We define Hn = — A% + Vn. It follows from Proposition 4.4 that
the wave equation (10), with Hn replacing H, has a unique global
solution un(t) in L\Mn), and the energy equation (7) is satisfied.
Moreover, for | t | < n, un(t) is supported in the ball l?^r, so for this
range of t we identify un(t) with a function in L\M). It follows
from Corollary 4.2 that, for \t\ < n, un(t) e^(H0), and Houn(t) =
Hnun(t).

Now suppose m < n, and \t\ < m. From the uniqueness of solu-
tions to the wave equation on Mm it is clear that um(t) = un(t)9 \ t \ <
m. Hence the functions {t6Λ}"=1 fit together to define a global function
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u{t)eL\M) which has all the asserted properties.

We now come to the main theorem.

THEOREM 4.6. Let M be a complete Riemannian manifold. Let
Λ be a second-order elliptic differential operator as in Theorem 4.5.

We assume the integral \ dr/c(r) diverges. Then define r:M—>R+

Jo
by r{x) = d(x, 0), where 0 is the fixed origin in M, and set θ(r) =

S r(x)

ds/c(s). Suppose that V = U —W as in Theorem 4.5.
0

Define Hι = —Λ+Von the domain C™(M). Assume that for some
constants a, b we have the inequality

(11) H, = -A + V ^ - ( α + bθ(r)2) .

Then H1 is essentially self-adjoint.

Proof. We shall employ a simplified version of an argument of
Kato [9].

First note that by using a change of scale if necessary, we can
assume that the constant b in (11) equals 1. Also, the constant a can
be absorbed into the potential V, so we may assume that a = 0.

We have to show that, for some positive λ, the equations H*ψ —
±iλτ/r have no nonzero solutions. It turns out that λ = 18 is a
convenient value. So suppose i ? ^ = — i-lSψ.

Given feC~(M), we know by Theorem 4.5 with β(t) = U2 that
there is a global solution u(t) of the equation

(12) d2u/dt2 = -CHo + 4:t2)u(t) , u(0) = / , ώ(0) = 0 .

Moreover, this solution obeys the energy equation

(13) -JUl|Λ(έ)ll2 + ((Ho + 4ί2Mί), u(t))} = U\\u{t)f •
at

Hence we have, for t > r,

(14) \\ύ(t)\\2 + ((Ho + 4 t > ( t ) , u(t)) - Cr + ^Ss\\u(s)\\2ds

where Cr is the value of the left side when t = r. Now suppose
that the initial value / is supported in the ball BR. Then we know
that u(t) is supported in the ball BUR where t*R = θ~\t + Θ(R)).
Accordingly, by (11) (with a = 0, b = 1) we have

((Ho + U2)u{t\ u(t)) ^ [U2 - θ(t*R)2]\\u(t)\\2

(15) =[U2 - (t + β(R)y]\\u(t)\\2
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provided that t ^ r = 2Θ(R).

Equations (14) and (15) give the inequality

t2\\u(t)\\2 S Cr + [8s\\u(s)\\2ds , t ^ r =
Jr

from which it follows, by GronwalΓs method, t h a t ||w(£)ll = 0(£3).

Now return to our ψ with H*ψ = — 1 8 i ^ and define

F(t) - Of, u(t)) .

Then F(0) - (f, / ) , F(0) = 0, and

F(ί) - (ψ, &'(«)) = Or, -Hou(jb)) - 4t2(^, u(t))

= - ( f l ? ^ , %(*)) - U2(ψ, u(t)) ,

or

(16) F(t) = (18i - 4t2)i^(ί) .

Since F is a solution of (16) with F(0) = 0, it follows that F(t) =
W ~ (3/2)ΐέ2 - (3/16))eίί2 for some constant k. But since \\u(t)\\ =
0(tf) we must have F(t) = 0(£3), and thus k = 0. In particular F(0) =
(Ψf f) ~ 0. Hence ψ is orthogonal to C™(M) and α̂  = 0.

A similar argument works with — 18ΐ replaced by 18i. This
concludes the proof.
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