INFINITE TENSOR PRODUCTS OF C^{*}-ALGEBRAS

Bruce E. Blackadar

Abstract

The infinite tensor product $A=\otimes\left(A_{i}, p_{i}\right)$ of a family of C^{*}-algebras A_{i} with respect to projections $p_{i} \in A_{i}$ is examined. The primitive ideal space and the characters of A are completely described in the case where each A_{i} is simple, or separable and nuclear. If A is not type I, an explicit construction is given of a factor representation of A generating an arbitrary hyperfinite factor. In addition, new results are obtained about primitive ideals and characters of a tensor product of two C^{*}-algebras. Examples are given of various phenomena, providing solutions to previously published problems.

In this paper, the structure of an infinite tensor product $A=$ $\boldsymbol{\otimes}\left(A_{i}, p_{i}\right)$ of a family of C^{*}-algebras A_{i} with respect to projections $p_{i} \in A_{i}$ is studied. Most structural questions about such algebras can be reduced to analogous questions about the structure of finite tensor products. In particular, the primitive ideal space and characters of A can be completely described in the case where each A_{i} is simple, or separable and nuclear. If A is not type I , an explicit construction is given of a factor representation of A generating an arbitrary infinite hyperfinite factor.

More detailed information about A is available if each A_{i} is type I. Conditions are given for when A is type I, CCR, GTC, or continuous trace, and examples are given of various phenomena, some of which are new. In addition, some new results are obtained about characters of finite tensor products.

There has been considerable work recently studying the struture of certain non-type-I C^{*}-algebras. The work of Glimm on UHF C^{*} algebras and Dixmier on matroid C^{*}-algebras led to the study of $A F$ algebras (inductive limits of finite-dimensional C^{*}-algebras) by Bratteli and others. It seems possible that a reasonable structure theory for inductive limits of type I C^{*}-algebras can be developed, although the situation can become quite complicated. In this paper, we discuss a particular type of inductive limit of C^{*}-algebras, the infinite tensor product. It is hoped that some of the results and methods of this paper will be useful in studying the general situation.

The results of this paper have immediate application to the representation theory of restricted direct product groups (such as adele groups), since the group C^{*}-algebra of such a group is an infinite tensor product of the C^{*}-algebras of the coordinate groups.

The organization of the paper is as follows:

Section 2 is a summary of the constructions and notation used. Section 3 contains results on finite tensor products. The two main results are a complete description of the primitive ideals (Theorem 3.3) and characters (3.7, 3.8) of a tensor product of two C^{*}-algebras under the hypothesis that one of the algebras be separable and nuclear, or that both be simple.

Section 4 is a description of the primitive ideal space of an infinite tensor product of type I algebras. Conditions are given for the product to be type I, CCR, GTC, or continuous trace and several examples are included, such as a CCR C^{*}-algebra with no finite composition series $\left\{J_{n}\right\}$ such that $\left(J_{n+1} / J_{n}\right)^{\wedge}$ is Hausdorff, solving an open question.

Section 6 contains an infinite product weight construction which is used to describe all characters of an infinite tensor product of C^{*}-algebras in certain cases, including products of type I algebras, simple algebras, or separable nuclear algebras. It is shown that a primitive ideal of an infinite tensor product of type I C^{*}-algebras is the kernel of a (necessarily unique) traceable factor representation if and only if it is locally closed.

Section 7 is an explicit construction of a large family of factor representations of an infinite tensor product of C^{*}-algebras. If A is an infinite tensor product of a countable number of separable type I C^{*}-algebras, and if A is not type I, then an explicit construction is given of a representation of A generating a given infinite hyperfinite factor.

The work of this paper generalizes results of Guichardet [6] and Moore [9]; many of the results extend those of Tomiyama [11] to infinite tensor products. Some of this paper was part of the author's doctoral dissertation at the University of California, Berkeley (1975), and he expresses his appreciation to his adviser, Calvin C. Moore, for a great deal of help and guidance. He is also grateful to the referee for pointing out a number of errors and obscurities in the original draft.
2. Definitions and notation. In this section we will briefly review some constructions which have appeared before in the literature, in order to establish notation.
(a) Let $X_{i}(i \in I)$ be locally compact topological spaces with compact open subspaces Y_{i}. Let $X=\left\{\left(\cdots x_{i} \cdots\right) \in \Pi X_{i}: x_{i} \in Y_{i}\right.$ a.e. $\}$. (In this paper, "almost everywhere" will always mean "for all but a finite number.") If F is a finite subset of I, set $X_{F}=\prod_{i \in F} X_{i}$, $Y_{F}^{*}=\Pi_{i \notin F} Y_{i}, Z_{F}=X_{F} \times Y_{F}^{*} . \quad Z_{F}$ is locally compact, and if $E \subseteq F$, Z_{E} is an open subset of Z_{F}. Topologize $X=\cup Z_{F}$ by letting $S \subseteq X$ be open if and only if $S \cap Z_{F}$ is open for all $F . \quad X$ is then locally
compact, and each Z_{F} is open in X.
Definition. $X=\Pi_{i \in I}^{\prime}\left(X_{i}, Y_{i}\right)$ is the restricted direct product of the X_{i} with respect to Y_{i}.

If G_{i} are locally compact topological groups with compact open subgroups K_{i}, then $G=\Pi^{\prime}\left(G_{i}, K_{i}\right)$ is a locally compact topological group under coordinatewise multiplication, and $K=\Pi K_{i}$ is a compact open subgroup. If each G_{i} is second countable and I is countable, then G is also second countable.
(b) If B and C and C^{*}-algebras, the algebraic tensor product $B \odot C$ can be completed with respect to the least C^{*}-cross norm to give the C^{*}-tensor product $B \otimes C$. This is the only tensor product we will consider in this paper; we will mostly be concerned only with nuclear C^{*}-algebras, for which all C^{*}-cross norms coincide. If B and C are von Neumann algebras, we can also form the von Neumann algebra tensor product $B \bar{\otimes} C$. The symbol \odot will always denote algebraic tensor product, \otimes the C^{*} product, and $\bar{\otimes}$ the von Neumann product. Also, if B is a C^{*}-algebra, we will use the notation $\operatorname{Pr}(B)$ to denote the set of ideals of B which are kernels of factor representations of $B . \operatorname{Pr}(B)=\operatorname{Prim}(B)$ for most, if not all, C^{*}-algebras, including all separable or GCR C^{*}-algebras. We will also write \widetilde{B} for the smallest C^{*}-algebra with an identity containing B (i.e., $\widetilde{B}=B$ if B has an identity, otherwise \widetilde{B} is B with identity adjoined.)
(c) Let $A_{i}(i \in I)$ be C^{*}-algebras, and let p_{i} be a nonzero projection in A_{i}. If $F \subseteq I$ is finite, let $A_{F}=\boldsymbol{\otimes}_{i \in F} A_{i}$ as above. Write $p_{F}=\boldsymbol{\otimes}_{i \in F} p_{i}$. If $E \subseteq F$, define an isomorphic embedding $\sigma_{E F}$ of A_{E} into A_{F} by $\sigma_{E F}(a)=a \otimes p_{F \sim E}$. Then $\left\{A_{F}, \sigma_{E F}\right\}$ form a directed system of C^{*}-algebras; let $A=\underset{\longrightarrow}{\lim }\left\{A_{F}, \sigma_{E F}\right\}$.

Definition. $A=\boldsymbol{\otimes}_{i \in I}\left(A_{i}, p_{i}\right)$ is the infinite tensor product of the A_{i} with respect to p_{i}.

If each A_{i} is separable and I is countable, then A is separable. There is a canonical embedding σ_{F} of A_{F} into A, such that if $E \subseteq F$, $\sigma_{E}=\sigma_{F} \circ \sigma_{E F}$. Also, there is a projection $p \in A$ with $p=\sigma_{F}\left(p_{F}\right)$ for all F. For any F, we will use the notation $B_{F}=\boldsymbol{\otimes}_{i \notin F}\left(A_{i}, p_{i}\right), q_{F}$ the distinguished projection of B_{F}; then $A \cong A_{F} \otimes B_{F}, p=p_{F} \otimes q_{F}$.

Examples. (1) If each A_{i} has an identity $\mathbf{1}_{i}$, then $\boldsymbol{\otimes}\left(A_{i}, \mathbf{1}_{i}\right)$ is the ordinary infinite tensor product $\boldsymbol{\otimes} A_{i}$.
(2) If $X_{i}(i \in I)$ are locallyc ompact Hausdorff spaces with compact open subspaces Y_{i}, let $A_{i}=C_{0}\left(X_{i}\right)$, continuous functions vanish-
ing at infinity; then $\boldsymbol{\otimes}\left(C_{0}\left(X_{i}\right), \chi_{r_{i}}\right) \cong C_{0}\left(\Pi^{\prime}\left(X_{i}, Y_{i}\right)\right)$ under the obvious identification of functions.
(3) Let $G=\Pi^{\prime}\left(G_{i}, K_{i}\right)$; assume that $C^{*}\left(G_{i}\right)$ is nuclear for all i (see Theorem 3.2). Then we may identify $C^{*}\left(G_{F}\right)$ with $\boldsymbol{\otimes}_{\varepsilon \in F} C^{*}\left(G_{i}\right)$. Let $H_{F}=G_{F} \times K_{F}^{*} \subseteq G$; define an isomorphic embedding ϕ_{F} of $C^{*}\left(G_{F}\right)$ into $C^{*}\left(H_{F}\right) \subseteq C^{*}(G)$ by $\phi_{F}(a)=a \otimes \chi_{R_{F}^{*}}$. If $E \cong F, \phi_{E}=\phi_{F} \circ \sigma_{E F}$, so there is an embedding of $\otimes\left(C^{*}\left(G_{i}\right), \chi_{K_{i}}\right)$ into $C^{*}(G)$, which is surjective since, for any F, the image contains all functions supported on H_{F} which depend on only a finite number of coordinates.
(d) If $\mathscr{C}_{i}(i \in I)$ are Hilbert spaces with unit vectors $\xi_{i} \in \mathscr{H}_{i}$, write $\mathscr{H}=\boldsymbol{\otimes}_{i \in I}\left(\mathscr{H}_{i}, \xi_{i}\right)$ for the infinite tensor product of the \mathscr{C}_{i} with respect to ξ_{i}, as in [9]. If M_{i} is a von Neumann algebra on \mathscr{H}_{i}, write $M=\overline{\boldsymbol{\otimes}}_{i \in I}\left(M_{i}, \mathscr{\mathscr { C }}_{i}, \xi_{2}\right)$ for the von Neumann algebra on \mathscr{C} generated by the images of the M_{i}. If each M_{i} is a factor, M is a factor.

The above constructions depend, of course, on the parameters (Y_{i}, p_{i}, ξ_{i}) chosen; however, the parameters may be changed or left undefined in a finite number of coordinates without changing the product. For convenience, we will usually assume they are defined everywhere.
3. Finite tensor products. In this section, we discuss the primitive ideal space and the characters of a tensor product of two C^{*}-algebras. Some of the most basic questions about finite tensor products are still unsolved, but the recent work of Connes, Effros and Choi, and Lance allows us to solve the relevant problems for separable nuclear C^{*}-algebras, which are by far the most important ones in applications.

Let B and C be C^{*}-algebras. If π is a factor representation of B and ρ of C, then $\pi \otimes \rho$ is a factor representation of $B \otimes C$. The map $j:(\operatorname{ker} \pi, \operatorname{ker} \rho) \rightarrow \operatorname{ker}(\pi \otimes \rho)$ gives a well-defined injective map from $\operatorname{Pr}(B) \times \operatorname{Pr}(C)$ into $\operatorname{Pr}(B \otimes C)$, which maps $\operatorname{Prim}(B) \times \operatorname{Prim}(C)$ homeomorphically onto a dense subspace of $\operatorname{Prim}(B \otimes C)$.

If $(I, J) \in \operatorname{Pr}(B) \times \operatorname{Pr}(C), j(I, J)$ is the kernel of the composite map $B \otimes C \rightarrow(B \otimes C) /(I \otimes C+B \otimes J) \rightarrow(B / I) \otimes(C / J)$; if B / I or C / J is nuclear, then $j(I, J)=I \otimes C+B \otimes J$. (See $[6, \S \S 6$ and 7$]$.) There is also a map $r: \operatorname{Pr}(B \otimes C) \rightarrow \operatorname{Pr}(B) \times \operatorname{Pr}(C)$ defined as follows: if π is a factor representation of $B \otimes C, \pi$ extends uniquely to $\widetilde{B} \otimes \widetilde{C}$, since $B \otimes C$ is an ideal in $\widetilde{B} \otimes \widetilde{C}$. Set $\pi_{1}(b)=\pi(b \otimes 1), \pi_{2}(c)=$ $\pi(1 \otimes c) . \quad \pi_{1}$ and π_{2} are factor representations of B and C respectively, called the restrictions of π to B and C. Set $r(\operatorname{ker} \pi)=$ $\left(\operatorname{ker} \pi_{1}\right.$, $\left.\operatorname{ker} \pi_{2}\right)$. If $K \in \operatorname{Pr}(B \otimes C), r(K)=(I, J)$, where I and J are the kernels of the composite maps $B \rightarrow B \otimes \widetilde{C} \rightarrow(B \otimes \widetilde{C}) / K$ and $C \rightarrow \widetilde{B} \otimes C \rightarrow(\widetilde{B} \otimes C) / K$, so r is well defined. $r \circ j$ is the identity.

If ϕ is a character on B and ψ a character on C, then $\phi \otimes \psi$ is defined to be the character on $B \otimes C$ corresponding to the factor representation $\pi_{\phi} \otimes \pi_{\psi}$.

Definition 3.1. A pair (B, C) of C^{*}-algebras is said to have property (Pr) if the map $j: \operatorname{Pr}(B) \times \operatorname{Pr}(C) \rightarrow \operatorname{Pr}(B \otimes C)$ is surjective. (B, C) is said to have property (Ch) if every character on $B \otimes C$ has the form $\phi \otimes \psi$, for characters ϕ and ψ on B and C respectively.

Properties (Pr) and (Ch) are closely related, although it is not clear that either one implies the other. Properties (Pr) was studied by Tomiyama [11], who called it property (F). Wassermann [12] has shown that if B is the group C^{*}-algebra of the free group on two generators, then (B, B) does not satisfy (Pr); no examples are known of C^{*}-algebras not satisfying (Ch). Itis shown below that if either B or C is separable and nuclear, or if both B and C are simple, then (B, C) satisfies both properties.

Recall that a C^{*}-algebra B is nuclear if the algebraic tensor product $B \odot C$ has a unique C^{*}-cross norm for every C^{*}-algebra C. We summarize some recent results of Connes [3], Choi and Effros [2], and Lance [7], in the following theorem.

Theorem 3.2. Let B be a separable C^{*}-algebra. Then B is nuclear if and only if every factor representation of B generates a hyperfinite factor. If J is an ideal of B, then B is nuclear if and only if both J and B / J are nuclear. Furthermore, the class of nuclear C^{*}-algebras is closed under finite tensor products, inductive limits (hence under infinite tensor products), and crossed products by arbitrary amenable groups. The group C^{*}-algebra of any locally compact (second countable) group which is amenable or connected is nuclear.

Theorem 3.3. Let B be a nuclear C^{*}-algebra, C any C^{*}-algebra. Then (B, C) satisfies (Pr).

Proof. Follows immediately from [11, Theorem 5] and [2]. It is reasonable to conjecture that, for a fixed C^{*}-algebra B, (B, C) satisfies (Pr) for every C if and only if B is nuclear.

We now turn to the property (Ch). We first need two lemmas, the first of which is closely related to Lemma 13 of [6].

Lemma 3.4. Let N_{1} and N_{2} be factors on a Hilbert space \mathscr{H}, with $N_{2} \subseteq N_{1}^{\prime}$; suppose the map $\Phi: N_{1} \odot N_{2} \rightarrow \mathscr{L}(\mathscr{C})$ given by $n_{1} \otimes$ $n_{2} \rightarrow n_{1} n_{2}$ extends to an isometry of the C^{*}-tensor product $N_{1} \otimes N_{2}$
into $\mathscr{L}(\mathscr{C})$. Suppose that the von Neumann algebra N generated by N_{1} and N_{2} is a semifinite factor, and that the C^{*}-algebra generated by N_{1} and N_{2} has nonzero intersection with the ideal J of N which is the norm-closure of the "trace-class" operators of N. Then N_{1} and N_{2} are semifinite, and if N has a cyclic and separatng vector, then \mathscr{H} can be written $\mathscr{H}_{1} \otimes \mathscr{H}_{2}$ with $N_{1}=\bar{N}_{1} \otimes 1, N_{2}=$ $1 \otimes \bar{N}_{2}, N=\bar{N}_{1} \bar{\otimes} \bar{N}_{2}$.

Proof. There are two cases: (1) N is finite. Then N_{1} and N_{2} are finite, and the result is well known (see [6, Lemma 13]). (2) N is not finite, in which case $J \neq N . \quad \Phi\left(N_{1} \otimes N_{2}\right) \cap J \neq\{0\}$, so $\Phi^{-1}(J)$ is a nontrivial ideal in $N_{1} \otimes N_{2}$. Therefore, either N_{1} or N_{2} is not simple. We will reduce to case (1) in two steps. First, write $\mathscr{H}=\mathscr{V} \otimes \mathscr{W}$ with $N_{1}=\mathscr{L}(\mathscr{V}) \bar{\otimes} M_{1}$, with M_{1} a factor which is a simple C^{*}-algebra. (Every factor can be written as a tensor product of a type I factor and a factor which is a simple C^{*}-algebra.) $N_{2}=1 \otimes M_{2}$ for a factor M_{2} on $\mathscr{W} ; N=\mathscr{L}(\mathscr{V}) \bar{\otimes} M$, where M is the von Neumann algebra generated by M_{1} and $M_{2} . \quad M$ is a semifinite factor; let I be the norm-closure of the ideal of "trace-class" elements of M. Let J_{1}, J_{2}, I_{2} be the minimal nonzero norm-closed (not necessarily proper) ideals of N_{1}, N_{2}, and M_{2} respectively. $J_{1} \otimes J_{2}$ is a simple C^{*}-algebra and hence is the minimal nonzero ideal of $N_{1} \otimes N_{2}$, so $\Phi\left(J_{1} \otimes J_{2}\right) \subseteq J$. Let $m_{1} \in M_{1}, m_{2} \in I_{2}$, be nonzero, and let s be a rank 1 projection in $\mathscr{L}(\mathscr{V})$. Then $s \otimes m_{1} \in J_{1}, 1 \otimes m_{2} \in J_{2}$, and so $s \otimes m_{1} m_{2}=\left(s \otimes m_{1}\right)\left(1 \otimes m_{2}\right) \in \Phi\left(J_{1} \otimes J_{2}\right) \subseteq J . \quad$ Thus $\quad m_{1} m_{2} \in I_{2}, \quad$ and $m_{1} m_{2} \neq 0$ by [6, Prop. 0], so the C^{*}-algebra generated by M_{1} and M_{2} has nonzero intersection with I_{2}, and so M_{1}, M_{2}, M, and I satisfy the hypotheses of the lemma. If M is finite, we are in case (1) and so we are finished; otherwise $M_{?}$ is not simple and we can reduce again in the same way. After the second reduction, we must be in case (1).

Lemma 3.5. Let N_{1} and N_{2} be semifinite factors with minimal ideals J_{1} and J_{2}; let $N=N_{1} \bar{\otimes} N_{2}$, J the minimal ideal of $N, K=$ $J \cap\left(N_{1} \otimes N_{2}\right)$. If $\varphi \in N_{1}^{*}, \psi \in N_{2}^{*}$ with $\varphi \mid J_{1} \equiv 0$ or $\psi \mid J_{2} \equiv 0$, then $(\varphi \otimes \psi) \mid K \equiv 0$.

Proof. We use the language and notation of [10]. Let τ_{1} and τ_{2} be traces on N_{1} and N_{2}, and $\tau=\tau_{1} \otimes \tau_{2}$ a trace on N. (See §5.) If $\varphi \in N_{1 *}, 0 \leqq \varphi \leqq \tau_{1}$, then $\varphi \otimes \tau_{2}=\tau_{2} \circ R_{\varphi} \leqq \tau$, and so $R_{\varphi} \operatorname{maps} J$ into J_{2}. Similarly, if $\psi \in N_{2 *}, 0 \leqq \psi \leqq \tau_{2}, L_{\psi}$ maps J into J_{1}. Linear combinations of such functionals are weak-* dense in N_{1}^{*} and N_{2}^{*}; this can be seen as follows. Let π be the GNS representation of N_{1} on \mathscr{H} with respect to τ_{1}. Any normal state φ of N_{1} is a vector
state from $\mathscr{H}\left[\pi_{\varphi}\left(N_{1}\right)\right.$ has a cyclic and separating vector, thus is spatially isomorphic to $\pi\left(N_{1}\right)$]. If $\varphi=\varphi_{a}$ is the vector state corresponding to the vector $\eta(a)$ for some $a \in \mathfrak{N}_{\tau_{1}}$, then $\varphi_{a}(x)=\tau_{1}\left(a^{*} x a\right) \leqq$ $\|a\|^{2} \tau_{1}(x)$ for $x \in N_{1}^{+}$, and so $0 \leqq 1 /\|a\|^{2} \varphi_{a} \leqq \tau_{1}$. Since $\left\{\eta(\alpha): a \in \mathfrak{N}_{\tau_{1}}\right\}$ is dense in $\mathscr{H},\left\{\varphi_{a}: a \in \mathfrak{R}_{\tau_{1}}\right\}$ is weak-* dense in $\left(N_{1}\right)_{*}^{+}$, and so linear combinations are dense in N_{1}^{*}; similarly for N_{2}^{*}. So it follows from the argument in [10, Prop. 3.8] that $J \subseteq F\left(J_{1}, J_{2}\right)$.

If N_{1} and N_{2} are hyperfinite with separable preduals, then it may be proved that $K=J_{1} \otimes J_{2}$. It would be interesting to know if this is true in general.

Corollary 3.6. Let B and C be C^{*}-algebras with factor representations π and ρ respectively. If $\pi \otimes \rho$ is a traceable representation of $B \otimes C$, then π and ρ are traceable.

Proof. Let $N_{1}=\pi(B)^{\prime \prime}, N_{2}=\rho(C)^{\prime \prime}, J_{1}$ and J_{2} the minimal ideals of N_{1} and N_{2}. If $\pi(B) \cap J_{1}=\{0\}$ or $\rho(C) \cap J_{2}=\{0\}$, then for any nonzero element x of $\pi(B) \otimes \rho(C) \subseteq N_{1} \otimes N_{2}$ there are linear functionals $\varphi \in N_{1}^{*}, \psi \in N_{2}^{*}$ with $\varphi \mid J_{1} \equiv 0$ or $\psi \mid J_{2} \equiv 0$, and $(\varphi \otimes \psi)(x) \neq 0$. But by Proposition 3.5, $(\varphi \otimes \psi) \mid K=0$, so $x \notin K$. Thus $\pi(B) \otimes \pi(C) \cap J=\{0\}$.

The author is indebted to L. Brown for pointing out an error in an earlier proof of 3.6.

Theorem 3.7. Let B and C be C^{*}-algebras. If B is separable and nuclear, then (B, C) satisfies (Ch).

Proof. Let π be a traceable factor representation of $B \otimes C$ on \mathscr{H}, and let $N=\pi(B \otimes C)^{\prime \prime}, \quad N_{1}=\pi(B \otimes 1)^{\prime \prime}, \quad N_{2}=\pi(1 \otimes C)^{\prime \prime} . \quad N$, N_{1}, N_{2} are factors, $N_{2} \subseteq N_{1}^{\prime}$, and N_{1} and N_{2} together generate N. We may assume that N has a cyclic and separating vector. Since B is nuclear, N_{1} is semidiscrete, so the map $\Phi: N_{1} \odot N_{1}^{\prime} \rightarrow \mathscr{L}(\mathscr{H})$ extends to an isometry of $N_{1} \otimes N_{1}^{\prime} \rightarrow \mathscr{L}(\mathscr{H})$, and by restriction to an isometry of $N_{1} \otimes N_{2} \rightarrow \mathscr{L}(\mathscr{H})$. So N, N_{1}, N_{2} satisfy the hypotheses of Lemma 3.4, and thus we can write $\mathscr{H}=\mathscr{H}_{1} \otimes \mathscr{H}_{2}$, $\pi=\pi_{1} \otimes \pi_{2} \cdot \pi_{1}$ and π_{2} are traceable by Corollary 3.6.

Theorem 3.8. Let B and C be simple C^{*}-algebras. Then (B, C) satisfies (Ch).

Proof. Let π be a traceable factor representation of $B \otimes C ; \pi$ is faithful since $B \otimes C$ is simple. Let $N=\pi(B \otimes C)^{\prime \prime}, J=\overline{\mathfrak{m}_{\tau}(N)}$. $\pi(B \otimes C) \cap J \neq\{0\}$, so $\pi(B \otimes C) \subseteq J$. Let $b \in B^{+}, c \in C^{+}$; let f be a continuous function from $[0, \infty)$ to $[0,1]$ with $f \equiv 0$ in a neighborhood of 0 and $f(b) \neq 0, f(c) \neq 0$. Then $\pi(f(b) \otimes f(c)) \in \mathfrak{m}_{+}(N)^{+}$, and
$\pi(f(b) \otimes f(c)) \neq 0$, so $0<\tau(\pi(f(b) \otimes f(c)))<\infty$. Thus, Lemma 13 of [6] shows that $\pi \cong \pi_{1} \otimes \pi_{2}$, and Corollary 3.6 shows that π_{1} and π_{2} are traceable.
4. Primitive ideals and irreducible representations. In this section, we characterize the primitive ideal space of an infinite tensor product of C^{*}-algebras in terms of the primitive ideals of the coordinate algebras.

Let B be a C^{*}-algebra, q a projection in B. Set $\operatorname{Pr}^{q}(B)=$ $\{J \in \operatorname{Pr}(B): q \notin J\}, \operatorname{Prim}^{q}(B)=\{J \in \operatorname{Prim}(B): q \notin J\}, \widehat{B}^{q}=\{\pi \in \widehat{B}: \pi(q) \neq 0\}$.

Proposition 4.1. \hat{B}^{q} is a compact open subset of $\hat{B} ; \operatorname{Prim}^{q}(B)$ is compact and open in Prim (B).

Proof. It suffices to prove the proposition for \hat{B}^{q}. \hat{B}^{q} is open in \hat{B} by definition of the topology of $\hat{B} . \quad \hat{B}^{q}=\{\pi \in \hat{B}:\|\pi(q)\|=1\}$, so \hat{B}^{q} is compact by [5, Prop. 3.3.7.]

Let G be a locally compact group, and K a compact open subgroup of G. We may identify \widehat{G} with $C^{*}(G)^{\wedge}$. Let q be the characteristic function of K. Set $\widehat{G}^{K}=\{\pi \in \widehat{G}: \pi \mid K$ contains the trivial representation of $K\}$. $\hat{G}^{K}=\widehat{C^{*}(G)^{q}}$. If G is abelian, $\hat{G}^{K}=K^{\perp}$.

For the rest of this section, let $A_{i}(i \in I)$ be a collection of C^{*} algebras with projections p_{i}, and $A=\boldsymbol{\otimes}_{i \in I}\left(A_{i}, p_{i}\right)$. For each F, we write $A=A_{F} \otimes B_{F}$ as in $\S 2(\mathrm{c})$. We will assume that $\left(A_{F}, B_{F}\right)$ satisfies (Pr) for each F; in particular, if each A_{i} is nuclear, this condition will be satisfied.

There is a map $r: \operatorname{Pr}(A) \rightarrow \Pi \operatorname{Pr}\left(A_{i}\right)$, defined as in $\S 3$.
Lemma 4.2. Let $J \in \operatorname{Pr}(A), r(J)=\left(J_{i}\right)$. Then $J_{i} \in \operatorname{Pr}^{p_{i}}\left(A_{i}\right)$ for almost all i.

Proof. Let $F \cong I$ be finite, and suppose there is an $i \notin F$ with $p_{i} \in J_{i}$. Then if $E=F \cup\{i\}, \quad \sigma_{F}\left(A_{F}\right)=A_{F} \otimes p_{i} \otimes q_{E} \cong A_{F} \otimes J_{i} \otimes$ $B_{E} \subseteq J$. Since $\bigcup \sigma_{F}\left(A_{F}\right)$ is dense in A, there must be an F with $\sigma_{F}\left(A_{F}\right) \not \equiv J$, so $p_{i} \notin J_{i}$ for all $i \notin F$.

The following lemma provides a general method for constructing representations of inductive limits of C^{*}-algebras.

Lemma 4.3. Let $\left\{B_{\alpha}, \sigma_{\alpha \beta}\right\}$ be a directed system of C^{*}-algebras, and $B=\lim \left\{B_{\alpha}, \sigma_{\alpha \beta}\right\}$. Let α_{0} be fixed, and let \mathscr{K} be a Hilbert space with \vec{a} set $\left\{\mathscr{K}_{\alpha}: \alpha>\alpha_{0}\right\}$ of closed subspaces, directed by inclusion, with $\cup \mathscr{K}_{\alpha}$ dense in \mathscr{K}. For $\alpha>\alpha_{0}$, let π_{α} be a repre-
sentation of B_{α} on \mathscr{K}_{α}, with $\pi_{\alpha}=\left(\pi_{\beta} \circ \sigma_{\alpha \beta}\right) \mid \mathscr{K}_{\alpha}$ for $\alpha_{0}<\alpha<\beta$. Then there is a unique representation π of B on \mathscr{K} with $\pi_{\alpha}=$ $\left(\pi \circ \sigma_{\alpha}\right) \mid \mathscr{K}_{\alpha}$ for each $\alpha>\alpha_{0}$, where σ_{α} is the canonical embedding of B_{α} into B. If each π_{α} is nondegenerate, π is nondegenerate.

Proof. Let $\alpha>\alpha_{0}$ be fixed, and let $b \in B_{\alpha}$; for $\beta>\alpha$, set $\pi\left(\sigma_{\alpha}(b)\right)=\pi_{\beta}\left(\sigma_{\alpha \beta}(b)\right)$ on \mathscr{K}_{β}. If $\alpha<\beta<\gamma, \pi_{\gamma}\left(\sigma_{\alpha \gamma}(b)\right)=\pi_{\beta}\left(\sigma_{\alpha \beta}(b)\right)$ on \mathscr{K}_{β}, so the definition of $\pi\left(\sigma_{\alpha}(b)\right)$ is unambiguous. $\pi\left(\sigma_{\alpha}(b)\right)$ is defined on $\cup \mathscr{K}_{\beta}$, and $\left\|\pi\left(\sigma_{\alpha}(b)\right)\right\| \leqq\|b\|$, so $\pi\left(\sigma_{\alpha}(b)\right)$ extends to an operator on \mathscr{K}. π defines a norm-decreasing homomorphism of $\bigcup \sigma_{\alpha}\left(B_{\alpha}\right)$ into $\mathscr{L}(\mathscr{K})$, hence extends to a homomorphism of B into $\mathscr{L}(\mathscr{K})$. The uniqueness of π is clear. If each π_{α} in nondegenerate, each \mathscr{K}_{α} is in the essential subspace of π, so π is nondegenerate.

Lemma 4.4. Let $\left(J_{i}\right) \in \Pi \operatorname{Pr}\left(A_{i}\right), J_{i} \in \operatorname{Pr}^{p_{i}}\left(A_{i}\right)$ for almost all i. Then there is a $J \in \operatorname{Pr}(A)$ with $r(J)=\left(J_{i}\right)$. If $J_{i} \in \operatorname{Prim}\left(A_{i}\right)$ for all i, then $J \in \operatorname{Prim}(A)$.

Proof. Let π_{i} be a factor representation of A_{i} on \mathscr{H}_{i} with kernel J_{i}; choose π_{i} irreducible if $J_{i} \in \operatorname{Prim}\left(A_{i}\right)$. Let $E \subseteq I$ be a finite set with $p_{i} \notin J_{i}$ for $i \notin E$. Let ξ_{i} be a unit vector in \mathscr{H}_{i} with $\xi_{i} \in$ range $\pi_{i}\left(p_{i}\right)$ for $i \notin E$. Let $\mathscr{K}=\boldsymbol{\otimes}\left(\mathscr{H}_{i}, \xi_{i}\right)$, and if $F \supseteq E$ is finite, let $\mathscr{K}_{F}=\mathscr{H}_{F} \otimes\left(\boldsymbol{\otimes}_{i \in F} \xi_{i}\right)$. We may consider $\pi_{F}=\boldsymbol{\otimes}_{i \in F} \pi_{i}$ as being defined on \mathscr{K}_{F}. If $E \subseteq F \subseteq D, \pi_{F}=\left(\pi_{D} \circ \sigma_{F D}\right) \mid \mathscr{K}_{F}$, so we may form the representation π as in Lemma 4.3. $\pi(A)^{\prime \prime}=\overline{\boldsymbol{\otimes}}\left(\pi_{i}\left(A_{i}\right)^{\prime \prime}, \mathscr{H}_{i}, \xi_{i}\right)$, so π is a factor representation, and if each π_{i} is irreducible, then π is irreducible. It is clear that $r(\operatorname{ker} \pi)=\left(J_{i}\right)$.

The following lemma is well known, but apparently does not appear in this general form in the literature. It is the most important tool in reducing questions about infinite tensor products to ones about finite products.

Lemma 4.5. Let B be a C^{*}-algebra, $\left\{B_{\alpha}\right\}(\alpha \in \Omega) a$ set of C^{*} subalgebras of B with $\cup B_{\alpha}$ dense in B. Let J be a closed 2-sided ideal of B. Then J is the closed ideal generated by $\cup\left(J \cap B_{\alpha}\right)$. If $\cup B_{\alpha}$ is an algebra (in particular, if the B_{α} are nested), then $\bigcup\left(J \cap B_{\alpha}\right)$ is dense in J.

Proof. Let J_{0} be the closed ideal generated by $U\left(J \cap B_{\alpha}\right)$ and let Φ be the quotient map of B onto $\bar{B}=B / J_{0}$. Set $\bar{B}_{\alpha}=\Phi\left(B_{\alpha}\right)$, $\bar{J}=\Phi(J)$. It suffices to show $\bar{J}=0$. Let Ψ be the quotient map of \bar{B} onto $\bar{B} / \bar{J} . \quad \bar{J} \cap \bar{B}_{\alpha}=0$, so $\Psi \mid \bar{B}_{\alpha}$ is injective, hence an isometry. So Ψ is an isometry on \bar{B}, hence injective.

Corollary 4.6. If each B_{α} is simple, B is simple. $\operatorname{So} \boldsymbol{\otimes}\left(A_{i}, p_{i}\right)$ is simple if and only if each A_{i} is simple.

Corollary 4.7. Let $J \in \operatorname{Pr}(A), r(J)=\left(J_{i}\right)$. Then J is generated by $\cup\left(J_{i} \otimes \boldsymbol{\otimes}_{i \neq j}\left(A_{j}, p_{j}\right)\right)$. So the map r is injective.

Corollary 4.8. If $\operatorname{Pr}\left(A_{i}\right)=\operatorname{Prim}\left(A_{i}\right)$ for each i, then $\operatorname{Pr}(A)=$ Prim (A).

Putting together 4.2, 4.4, 4.7 and 4.8, r gives a (set-theoretic) bijection between $\operatorname{Pr}(A)$ and $\Pi^{\prime}\left(\operatorname{Pr}\left(A_{i}\right), \operatorname{Pr}^{p_{i}}\left(A_{i}\right)\right)$.

Now assume that $\operatorname{Pr}\left(A_{i}\right)=\operatorname{Prim}\left(A_{i}\right)$ for each i (this assumption will be satisfied, for example, if each A_{i} is separable, simple, or type I). Then r gives a bijection between $\operatorname{Prim}(A)$ and $X=$ $\Pi^{\prime}\left(\operatorname{Prim}\left(A_{i}\right), \operatorname{Prim}^{p_{i}}\left(A_{i}\right)\right)$. Give X the restricted direct product topology ($\operatorname{Prim}\left(A_{i}\right)$ is locally compact, and $\operatorname{Prim}^{p_{i}}\left(A_{i}\right)$ is compact and open by Prop. 4.1).

Theorem 4.9. $r: \operatorname{Prim}(A) \rightarrow X$ is a homeomorphism.
Proof. $A \cong A_{i} \otimes B_{i}$ and $\operatorname{Prim}(A)=\operatorname{Prim}\left(A_{i}\right) \times \operatorname{Prim}\left(B_{i}\right)$ with the product topology, so the composite of r with each coordinate projection is continuous. Let $F \subseteq I$ be a finite set. If $J \in \operatorname{Prim}(A)$ with $r(J)=\left(J_{i}\right)$, then $\left(J_{i}\right) \notin Z_{F}=\Pi_{i \in F} \operatorname{Prim}\left(A_{i}\right) \times \Pi_{i \notin F} \operatorname{Prim}^{p_{i}}\left(A_{i}\right)$ if and only if $\sigma_{F}\left(A_{F}\right) \subseteq J$ (see Lemma 4.2).

So $r^{-1}\left(X \sim Z_{F}\right)=\left\{J \in \operatorname{Prim}(A): \sigma_{F}\left(A_{F}\right) \subseteq J\right\}$, a closed set in $\operatorname{Prim}(A)$, so $r^{-1}\left(Z_{F}\right)$ is open. Therefore, r is continuous, since X has the weakest topology making each Z_{F} open and all the coordinate projections continuous. It remains to show that if $\left\{J^{\alpha}\right\}=r^{-1}\left(\left\{\left(J_{i}^{\alpha}\right)\right\}\right)$ is a subset of $r^{-1}\left(Z_{F}\right)$, and $J=r^{-1}\left(J_{i}\right)$ with J_{i} in the closure of $\left\{J_{i}^{\alpha}\right\}$ for each i, then J is in the closure of $\left\{J^{\alpha}\right\}$. Set $J_{0}=\bigcap_{\alpha} J^{\alpha}$; then J is in the closure of $\left\{J^{\alpha}\right\}$ if and only if $J_{0} \cong J$. If $E \supseteqq F$, then $J^{\alpha} \cap \sigma_{E}\left(A_{E}\right)=\sigma_{E}\left(J_{E}^{\alpha}\right)$, where J_{E}^{α} is the ideal of A_{E} corresponding to $\left\{J_{i}^{\alpha}: i \in E\right\} . \quad J_{E}$ is in the closure of $\left\{J_{E}^{\alpha}\right\}$ for each E, so $J_{0} \cap \sigma_{E}\left(A_{E}\right)=$ $\bigcap_{\alpha} \sigma_{E}\left(J_{E}^{\alpha}\right) \subseteq \sigma_{E}\left(J_{E}\right)=J \cap \sigma_{E}\left(A_{E}\right)$. So by Lemma 4.5, $J_{0} \cong J$.

Corollary 4.10. If each A_{i} is type I , then $\operatorname{Prim}(A) \cong$ $\Pi^{\prime}\left(\hat{A}_{i}, \hat{A}_{i}^{p_{i}}\right)$.

Corollary 4.11. (a) If $G=\Pi^{\prime}\left(G_{i}, K_{i}\right)$ with each G_{i} type I , then $\operatorname{Prim}(G) \cong \Pi^{\prime}\left(\widehat{G}_{i}, \hat{G}_{i}^{K_{i}}\right)$.
(b) If $G=\Pi^{\prime}\left(G_{i}, K_{i}\right)$ is abelian, then $\hat{G}=\Pi^{\prime}\left(\hat{G}_{i}, K_{i}^{\perp}\right)$.
4.11(b) is undoubtedly well known, and is readily proved directly. It appears as Corollary 12 of [6]. It should also be noted that Example 2 of Section 2(c) is a special case of Theorem 4.9.
5. Infinite tensor products of type I algebras. This section describes some of the finer structure of an infinite tensor product of type I algebras. Theorems 5.1 and 5.3 are previously known results included for completeness.

If B is a C^{*}-algebra with projection q, and if n is a cardinal set $\left(\hat{B}^{q}\right)_{n}=\{\pi \in \hat{B}: \operatorname{dim} \pi(q)=n\}$.

Theorem 5.1. $A=\boldsymbol{\otimes}\left(A_{i}, p_{i}\right)$ is type I if and only if each A_{i} is type I and $\hat{A}_{i}^{p_{i}}=\left(\hat{A}_{i}^{p_{i}}\right)_{1}$ a.e.

Proof. See [6, Theorems 7 and 8].
A sharper form of one direction of this theorem is given next, while a strong form of the converse will be proved in Theorem 7.4.

THEOREM 5.2. Suppose each A_{i} is type I. Let $\left(\pi_{i}\right) \in \Pi^{\prime}\left(\hat{A}_{i}, \hat{A}_{i}^{p_{i}}\right)$ with $\pi_{i} \in\left(\hat{A}_{i}^{p_{i}}\right)_{1}$ a.e. Construct $\pi \in \hat{A}$ as in Lemma 4.4. Then if ρ is any factor representation of A with $\operatorname{ker} \rho=\operatorname{ker} \pi$, then ρ is a multiple of π.

Proof. The proof is similar to the proof of Theorem 6 of [9].
THEOREM 5.3. If, for each i, the elements of $\hat{A}_{i}^{p_{i}} \sim\left(\hat{A}_{i}^{p_{i}}\right)_{1}$ separate the points of A_{i}, then $\boldsymbol{\otimes}\left(A_{i}, p_{i}\right)$ is NGCR.

Proof. See [6, Theorem 7.]

Example. Let \mathscr{H} be a separable Hilbert space, $B=\mathscr{L} \mathscr{C}(\mathscr{H})+$ $C 1, q$ a rank 1 projection in $\mathscr{L} \mathscr{C}(\mathscr{H})$. Let I be a countable index set, and let $A_{i}=B, p_{i}=q$ for each $i, A=\boldsymbol{\otimes}\left(A_{i}, p_{i}\right)$. A is separable, and A is type I by Theorem 5.1. \hat{A} contains no closed points, i.e., A has no maximal closed ideals. (Of course, other examples of such C^{*}-algebras are known: see [5, 4.7.17].)

Proposition 5.4. $A=\boldsymbol{\otimes}\left(A_{i}, p_{i}\right)$ is $F D$ (all $\pi \in \hat{A}$ finite-dimensional) if and only if each A_{i} is $F D$ and, for almost all i, every element of $\hat{A}_{i}^{p_{i}}$ is one-dimensional. A is $B D$ ($\operatorname{dim} \pi$ bounded for all $\pi \in \widehat{A}$) if and only if each A_{i} is $B D$ and all but finitely many A_{i} are commutative.

Now we examine when A is CCR, GTC, or has continuous trace. If B is a C^{*}-algebra and $\pi \in \widehat{B}, \pi$ is CCR if $\pi(b)$ is compact for every $b \in B$, as in [5, 4.7.12.]. Use the notation $J(B)$ to denote the ideal which is the closure of the ideal $\mathfrak{M}(B)$ of elements of continuous trace; denote by $K(B)$ the union of the transfinite sequence J_{α} where $J_{\alpha+1} / J_{\alpha}=J\left(B / J_{\alpha}\right) ; K(B)$ is the smallest ideal of B such that $J(B / K)=0 . \quad B$ has continuous trace if $J(B)=B ; B$ is GTC if $K(B)=B$.

We assume from now on that each A_{i} is type I , and $A=$ $\boldsymbol{\otimes}\left(A_{i}, p_{i}\right)$.

Theorem 5.5. Let $\pi \in \hat{A}, r(\operatorname{ker} \pi)=\left(J_{i}\right), \pi_{i} \in \hat{A}_{i}$ with $\operatorname{ker} \pi_{i}=J_{i}$. Then π is CCR if and only if each π_{i} is $C C R$ and $\pi_{i} \in\left(\hat{A}_{i}^{p_{i}}\right)_{1}$ a.e. So A is CCR if and only if each A_{i} is $C C R$ and $\widehat{A}_{i}^{p_{i}}=\left(\widehat{A}_{i}^{p_{i}}\right)_{1}$ a.e.

Proof. See [9, Theorem 8]. The last assertion also follows from 4.10 and 5.1 , since A is CCR if and only if A is type I and $\operatorname{Prim}(A)$ is a T_{1} space.

Now assume that $\hat{A}_{i}^{p_{i}}=\left(\widehat{A}_{i}^{p_{i}}\right)_{1}$.
THEOREM 5.6. If $p_{i} \in J\left(A_{i}\right)$ a.e., then $J(A)=\left[\bigcup_{F} \sigma_{F}\left(J\left(A_{F}\right)\right)\right]^{-}$, $K(A)=\left[\bigcup_{F} \sigma_{F}\left(K\left(A_{F}\right)\right)\right]^{-}$; if $p_{i} \notin J\left(A_{i}\right)$ for infinitely many i, then $J(A)=K(A)=\{0\}$.

Proof. Let E be a finite set such that $\hat{A}_{i}^{p_{i}}=\left(\hat{A}_{i}^{p_{i}}\right)_{1}$ and $p_{i} \in J\left(A_{i}\right)$ for all $i \notin E . \quad \mathfrak{M}\left(A_{i}\right)$ is a dense hereditary ideal of $J\left(A_{i}\right)$, and so contains all projections of $J\left(A_{i}\right)$. So $p_{i} \in \mathfrak{M}\left(A_{i}\right)$ for all $i \notin E$. If $F \supseteq E$, it can then be readily verified that $q_{F} \in \mathfrak{M}\left(B_{F}\right)$. It follows from [11, Lemma 4] that $a \otimes q_{F} \in J(A)$ if and only if $a \in J\left(A_{F}\right)$; so $J(A) \cap \sigma_{F}\left(A_{F}\right)=J\left(A_{F}\right)$. By Lemma 4.5, $J(A)=\left[\bigcup_{F}\left(J(A) \cap \sigma_{F}\left(A_{F}\right)\right)\right]^{-}=$ $\left[\bigcup_{F} \sigma_{F}\left(J\left(A_{F}\right)\right)\right]^{-}$. Similarly, it may be verified that $K(A) \cap \sigma_{F}\left(A_{F}\right)=$ $\sigma_{F}\left(K\left(A_{F}\right)\right)$, so $K(A)=\left[\bigcup_{F} \sigma_{F}\left(K\left(A_{F}\right)\right)\right]^{-}$. Conversely, if $J(A) \neq 0$, by Lemma 4.5 there is a finite set F such that $J(A) \cap \sigma_{F}\left(A_{F}\right) \neq 0$. If $a \otimes q_{F} \in J(A)^{+}, a \neq 0$, let f be a continuous function from $[0, \infty)$ to $[0,1]$, vanishing in a neighborhood of 0 , with $f(a) \neq 0 ; f\left(\alpha \otimes q_{F}\right)=$ $f(\alpha) \otimes q_{F} \in \mathfrak{M}(A)^{+}$, so $f(\alpha) \in \mathfrak{M}\left(A_{F}\right)$ and $q_{F} \in \mathfrak{M}\left(B_{F}\right)$. But this implies $p_{i} \in \mathfrak{M}\left(A_{i}\right)$ for every $i \notin F$.

Corollary 5.7. $A=\boldsymbol{\otimes}\left(A_{i}, p_{i}\right)$ has continuous trace if and only if each A_{i} has continuous trace and $\widehat{A}_{i}^{p_{i}}=\left(\widehat{A}_{i}^{p_{i}}\right)_{1}$ a.e.

It is interesting and instructive to examine the situation where A has continuous trace. More generally, if each A_{i} is a C^{*}-algebra
defined by a continuous locally trivial field of C^{*}-algebras over a locally compact space X_{i}, then p_{i} will correspond to a compact open subspace Y_{i} of X_{i}, and $A=\boldsymbol{\otimes}\left(A_{i}, p_{i}\right)$ will be the C^{*}-algebra defined by a continuous field of C^{*}-algebras over $\Pi^{\prime}\left(X_{i}, Y_{i}\right)$, where the C^{*} algebra at the point $\left(\cdots x_{i} \cdots\right) \in \Pi^{\prime}\left(X_{i}, Y\right)$ is $\boldsymbol{\otimes}\left(A_{i}\left(x_{i}\right), p_{i}\left(x_{i}\right)\right)$. (See [10, Lemma 3.3].)

Corollary 5.8. $A=\boldsymbol{\otimes}\left(A_{i}, p_{i}\right)$ is $G T C$ if and only if (1) each A_{i} is $G T C$ (2) $\hat{A}_{i}^{p_{i}}=\left(\hat{A}_{i}^{p_{i}}\right)_{1}$ a.e. (3) $p_{i} \in J\left(A_{i}\right)$ a.e.

Examples. (a) Let B be the C^{*}-algebra of sequences of 2×2 matrices converging to a diagonal matrix, as in [5, 4.7.19], and let q be a projection in B with $\hat{B}^{q}=\left(\hat{B}^{q}\right)_{1}$; for example,
$q=\left(\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right), \ldots\right) \quad$ or $\quad q=\left(\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), \ldots\right)$.
Let I be a countable index set, and let $A=\boldsymbol{\otimes}_{i \in I}\left(A_{i}, p_{i}\right)$ where $A_{i}=B, p_{i}=q$ for each i. A is CCR, but there cannot be a finite sequence $\left\{\mathscr{U}_{n}\right\}$ of increasing open sets in \hat{A} with $\hat{A}=\cup \mathscr{U}_{n}$ and $\mathscr{U}_{n} \sim \mathscr{U}_{n-1}$ Hausdorff. For if B_{k} denotes the tensor product of k copies of B, \widehat{A} contains a copy of \hat{B}_{k} for each k, and the restriction of $\left\{\mathscr{U}_{n}\right\}$ gives such a sequence for \hat{B}_{k}. But if \mathscr{U} is a Hausdorff open subset of $\hat{B}_{k}, \hat{B}_{k} \sim \mathscr{U}$ contains a copy of \widehat{B}_{k-1}, so such a sequence for \hat{B}_{k} must contain at least $k+1$ elements by induction. In particular, there cannot be a finite composition series $\left\{J_{n}\right\}$ for A with $\left(J_{n+1} / J_{n}\right)^{\wedge}$ Hausdorff. This provides a solution to Problem 4.7.25 of [5]. A is GTC if and only if $q \in J(B)$, which is the set of sequences converging to 0 . Thus, if $q=\left(\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), \cdots\right), J(A)=$ $K(A)=0$, and \hat{A} contains a dense set of points which are not separated (see [5, 3.9.4 and 4.7.9]).
(b) Let B be the C^{*}-algebra of sequences of 2×2 matrices converging to a scalar multiple of the identity, and let q be a projection of B with $\hat{B}^{q}=\left(\hat{B}^{q}\right)_{1}$; for example, $q=\left(\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right), \cdots\right)$, and let A be the tensor product of a countable number of copies of B with respect to q. \hat{A} is Hausdorff, so A is GTC (this also follows from Corollary 5.7), but the GTC composition series for A does not have finite length. In fact, A does not have a finite composition series $\left\{J_{n}\right\}$ such that J_{n+1} / J_{n} has continuous trace.
(c) In (a) and (b) above, let each $A_{i}=B \oplus C, p_{i}=(0,1)$; then $A=\boldsymbol{\otimes}\left(A_{i}, p_{i}\right)$ has the same properties as before, and has only finitedimensional irreducible representations.

Remark. All of the above C^{*}-algebras are $A F$ algebras.

Finally, we examine the question of when a primitive ideal of an infinite tensor product is locally closed (i.e. open in its closure). If B is a C^{*}-algebra and $K \in \operatorname{Prim}(B)$, set $K^{0}=\bigcap\{J \in \operatorname{Prim}(B): J \supsetneq K\}$. (set $K^{0}=B$ if K is closed in Prim (B)). Then K is locally closed if and only if $K^{0} \neq \mathrm{K}$; in this case K^{0} / K is a simple C^{*}-algebra, said to be the simple C^{*}-algebra lying above K. If K is the kernel of a traceable irreducible representation π on a Hilbert space \mathscr{H}, $K^{0}=\pi^{-1}(\mathscr{L} \mathscr{C}(\mathscr{C})) \neq K$, so K is locally closed, and K^{0} / K is an elementary C^{*}-algebra. In particular, if B is type I, every element of $\operatorname{Prim}(B)$ is locally closed.

Proposition 5.9. The point $\left(\cdots x_{i} \cdots\right) \in \Pi^{\prime}\left(X_{i}, Y_{i}\right)$ is locally closed if and only if x_{i} is locally closed in X_{i} for each i and x_{i} is closed in Y_{i} for almost all i. Hence, if $A=\boldsymbol{\otimes}\left(A_{i}, p_{i}\right)$ such that $\left(A_{F}, B_{F}\right)$ satisfies (Pr) for each F, and $J \in \operatorname{Prim}(A), r(J)=\left(J_{i}\right)$, then J is locally closed in Prim (A) if and only if J_{i} is locally closed in Prim $\left(A_{i}\right)$ for all i and $p_{i} \in J_{i}^{0} \sim J_{i}$ for almost all i.

Proof. The proof of the first assertion is straightforward, and is omitted. The second assertion follows from the fact that the closure of $\left\{J_{i}\right\}$ in $\operatorname{Prim}^{p_{i}}\left(A_{i}\right)=\left\{K \in \operatorname{Prim}(A): K \supseteqq J, p_{i} \notin K\right\}$; for almost all $i, p_{i} \notin J_{i}$; and if $p_{i} \notin J_{i},\left\{J_{i}\right\}$ is closed in $\operatorname{Prim}^{p_{i}}\left(A_{i}\right)$ if and only if $p_{i} \in J_{i}^{\mathrm{o}}$.

Corollary 5.10. If $A=\boldsymbol{\otimes}\left(A_{i}, p_{i}\right)$, each A_{i} type $I, J \in \operatorname{Prim}(A)$, $r(J)=\left(J_{i}\right)$, and $\pi_{i} \in \hat{A}_{i}$ with $\operatorname{ker} \pi_{i}=J_{i}$, then J is locally closed in $\operatorname{Prim}(A)$ if and only if $0<\operatorname{dim} \pi_{i}\left(p_{i}\right)<\infty$ for almost all i.

The author thanks Philip Green for valuable discussion concerning 5.9 and 5.10.
6. Infinite product weights and characters. In this section, we define an infinite product weight construction on an infinite tensor product of C^{*}-algebras which is a generalization of the construction of an infinite product state, which is then used to determine all the characters on such a C^{*}-algebra. This construction was done independently for traces by Guichardet [6].

Let ϕ be a lower semicontinuous (lsc) weight on a C^{*}-algebra B. Write $\mathfrak{n}_{\phi}=\left\{x \in B: \phi\left(x^{*} x\right)<\infty\right\}, \mathfrak{M}_{\phi}=\mathfrak{N}_{\phi}^{*} \mathfrak{n}_{\phi}, N_{\phi}=\left\{x \in B: \dot{\phi}\left(x^{*} x\right)=0\right\}$, π_{ϕ} the representation from the GNS construction on $\mathscr{H}_{\phi}=\overline{\mathfrak{M}_{\phi} / N_{\phi}}, \eta_{\phi}$ the canonical map of \mathfrak{N}_{ϕ} into \mathscr{H}_{ϕ}. $\quad \phi$ extends a weakly lower semicontinuous weight $\bar{\phi}$ on the universal enveloping von Neumann algebra \bar{B} by setting $\bar{\phi}=\sup \left\{\bar{f}: f \in B_{+}^{*}, f \leqq \dot{\phi}\right\}$, where \bar{f} is the canonical extension of f to \bar{B}. (See [3] for details.)

Definition. ϕ is said to be weakly semifinite if $\bar{\phi}$ is semifinite.
For example, if ϕ is semifinite, or if \mathfrak{N}_{ϕ} is dense in B, then ϕ is weakly semifinite. If ϕ is weakly semifinite, $\pi_{\phi}, \mathscr{H}_{\phi}$ can be identified with $\pi_{\bar{\phi}}, \mathscr{H}_{\bar{\phi}}$, and $\pi_{\bar{\phi}}(\bar{B})^{\prime \prime}=\mathscr{L}(\mathscr{B})$, where \mathscr{B} is the left Hilbert algebra $\left(\mathfrak{R}_{\bar{\phi}} \cap \mathfrak{N}_{\bar{\phi}}^{*}\right) / N_{\bar{\phi}}$.

If $\dot{\phi}$ and ψ are lsc weights on B and C respectively, we can define a lsc weight $\dot{\phi} \otimes \psi$ on $B \otimes C$ as follows. Let $F=\left\{f \in B_{+}^{*}\right.$: $f \leqq \phi$ on $\left.B^{+}\right\}, G=\left\{g \in C_{+}^{*}: g \leqq \psi\right.$ on $\left.C^{+}\right\}$, and for $x \in(B \otimes C)^{+}$, set $(\phi \otimes \psi)(x)=\sup _{\substack{f \in F \\ g \in G}}(f \otimes g)(x)$. If ϕ and ψ are weakly semifinite, $\phi \otimes \psi$ can be described alternatively as the weight defined by the full left Hilbert algebra corresponding to $\mathscr{B} \odot \mathscr{C}$, where $\mathscr{B}=$ $\left(\mathfrak{R}_{\bar{\phi}} \cap \mathfrak{N}_{\bar{\phi}}^{*}\right) / N_{\bar{\phi}}, \mathscr{C}=\left(\mathfrak{N}_{\bar{\phi}} \cap \mathfrak{N}_{\bar{\psi}}^{*}\right) / N_{\bar{\psi}}$, so that $\pi_{\phi \otimes \psi} \cong \pi_{\phi} \otimes \pi_{\phi}$.

Now let $A=\boldsymbol{\otimes}\left(A_{i}, p_{i}\right)$, and let ϕ_{i} be a lsc weakly semifinite weight on A_{i}. Suppose that, for almost all $i, \phi_{i}\left(p_{i}\right)=1$; let $E=$ $\left\{i: \phi_{i}\left(p_{i}\right) \neq 1\right\}$. Let \mathscr{A}_{i} be the left Hilbert algebra $\left(\mathfrak{R}_{\bar{\phi}_{i}} \cap \mathfrak{N}_{\bar{\phi}_{i}}^{*}\right) / N_{\phi_{i}}$; let $\eta_{i}=\eta_{\bar{\phi}_{i}}\left(p_{i}\right)$ for $i \notin E$; let $\mathscr{A}=\odot\left(\mathscr{A}_{v}, \eta_{i}\right)$ be the set of linear combinations of elementary tensors of the form $\boldsymbol{\otimes} \xi_{2}$, where $\xi_{i}=\eta_{i}$ a.e. Then \mathscr{A} has a natural structure as a left Hilbert algebra. Let ϕ be the weight on A defined by the corresponding full left Hilbert algebra.

Definition. ϕ is called the infinite product weight of the ϕ_{i}, denoted $\boldsymbol{\otimes}_{i \in I} \phi_{i}$.
$\dot{\phi}$ is lsc and weakly semifinite; ϕ is a semifinite trace if and only if each ϕ_{i} is a semifinite trace. If each ϕ_{i} is a positive linear functional, ϕ is not necessarily a positive linear functional:

Proposition 6.1. ϕ is a positive linear functional if and only if each ϕ_{i} is bounded and $\Pi\left\|\phi_{i}\right\|<\infty$. In this case, $\|\phi\|=\Pi\left\|\phi_{i}\right\|$.

If $\left\{\phi_{i}\right\}, \dot{\varphi}$, and \mathscr{A} are as above, then the completion of \mathscr{A} is $\mathscr{H}_{\phi}=\boldsymbol{\otimes}\left(\mathscr{H}_{\phi_{i}}, \eta_{i}\right)$ and the representation π_{ϕ} is the representation $\boldsymbol{\otimes} \pi_{\phi_{i}}$ on \mathscr{H}_{ϕ} defined as in Lemma 4.4; $\pi_{\phi}(A)^{\prime \prime}=\overline{\boldsymbol{\otimes}}\left(\pi_{\phi_{i}}\left(A_{i}\right)^{\prime \prime}, \mathscr{H}_{\phi_{i}}, \eta_{i}\right)$. Thus ϕ is factorial if and only if each ϕ_{i} is factorial. In particular, ϕ is a character if and only if each $\dot{\phi}_{i}$ is a character, so we have a way of constructing characters on A.

Now we will show that, if $\left(A_{F}, B_{F}\right)$ satisfy (Ch) for each F (in particular, if each A_{i} is type I, or if each is separable and nuclear, or if each is simple), then every character on A is an infinite tensor product. Let ψ be a character on A; for each F, write $A=A_{F} \otimes B_{F}$, $\psi=\phi_{F} \otimes \psi_{F}$ for characters ϕ_{F} on A_{F}, ψ_{F} on $B_{F} . \quad \phi_{F}=\boldsymbol{\otimes}_{i \in F} \phi_{i}$, where ϕ_{i} is a character on A_{i}.

Lemma 6.2. For almost all $i, 0<\phi_{i}\left(p_{i}\right)<\infty$.

Proof. Let $J_{\psi}=\overline{\Re_{\psi}} ; J_{\psi}$ is a closed 2 -sided ideal of A, and $J_{\psi} \supsetneq$ N_{ψ}. By Lemma 4.5, there is a finite set $F \subseteq I$ for which $J_{\psi} \cap \sigma_{F}\left(A_{F}\right) \supseteqq$ $N_{\psi} \cap \sigma_{F}\left(A_{F}\right)$. Let $a \in A_{F}^{+}$have $\sigma_{F}(a) \in J_{\psi}, \psi\left(\sigma_{F}(a)\right)>0 . \quad a \otimes q_{F}=$ $\sigma_{F}(a) \in J_{\psi}=J_{\phi_{F}} \otimes J_{\psi_{F}}$, so $a \in J_{\phi_{F}}, q_{F} \in J_{\psi_{F}}$ (see [6, Lemma 7]). For $i \notin F$, let $E=F \cup\{i\} ; B_{F} \cong A_{i} \otimes B_{E}, \psi_{F}=\phi_{i} \otimes \psi_{E}, J_{\psi_{F}}=J_{\phi_{i}} \otimes J_{\psi_{E}}$. $q_{F}=p_{i} \otimes q_{E} \in J_{\phi_{i}} \otimes J_{\gamma_{E}}$, so $p_{i} \in J_{\phi_{i}}$. But $\mathfrak{R}_{\phi_{i}}$ contains all projections of $J_{\phi_{i}}$, so $\phi_{i}\left(p_{i}\right)<\infty$. Also, $\psi\left(\sigma_{F}(\alpha)\right)>0$, so $\psi_{F}\left(q_{F}\right)>0$, and so $\phi_{i}\left(p_{i}\right)>0$.

Let $F \neq \varnothing$ be a finite set with $0<\psi_{F}\left(q_{F}\right)<\infty$ as above; then $0<\phi_{i}\left(p_{i}\right)<\infty$ for $i \notin F$. For $i \notin F$, renormalize ϕ_{i} so that $\phi_{i}\left(p_{i}\right)=1$, and form $\phi=\boldsymbol{\otimes} \phi_{i}$. Let $a \in A_{F}^{+}$with $0<\phi_{F}(\alpha)<\infty$; then $\psi\left(\sigma_{F}(\alpha)\right)=$ $\phi_{F}(a) \psi_{F}\left(q_{F}\right)$, so $0<\psi\left(\sigma_{F}(\alpha)\right)<\infty$. Also, $0<\phi\left(\sigma_{F}(\alpha)\right)=\phi_{F}(a)<\infty$. Renormalize ϕ so that $\phi\left(\sigma_{F}(a)\right)=\psi\left(\sigma_{F}(a)\right)$ by renormalizing one of the $\phi_{i}, i \in F$. Then $\dot{\phi}$ is still $\boldsymbol{\otimes} \phi_{i}$, and if $E \supseteq F, \phi$ and ψ agree on $\sigma_{E}\left(A_{E}\right)$.

Lemma 6.3. $\quad \dot{\phi}=\psi$.
Proof. ϕ and ψ agree on $\mathfrak{R}_{\dot{\phi}} \cap\left(\bigcup \sigma_{E}\left(A_{E}\right)\right)$, which is dense in \mathfrak{R}_{ϕ} in its pre-Hilbert space structure, so the lemma follows from the argument in the proof of [5, Lemma 6.5.3].

We summarize the previous considerations in a theorem.
Theorem 6.4. Let $A=\boldsymbol{\otimes}\left(A_{i}, p_{i}\right)$; suppose, for each $F \cong I$ finite, $\left(A_{F}, B_{F}\right)$ satisfies (Ch). Then every character of A is of the form $\otimes \phi_{i}$, where ϕ_{i} is a character on A_{i} with $\phi_{i}\left(p_{i}\right)=1$ a.e.

If each A_{i} is type I, the situation is very nice, since there is a one-one correspondence between primitive ideals and characters. The result can be stated as follows:

Theorem 6.5. Let $A=\boldsymbol{\otimes}\left(A_{i}, p_{i}\right)$ such that $\left(A_{F}, B_{F}\right)$ satisfies (Pr) and (Ch) for each F; let $J \in \operatorname{Prim}(A), r(J)=\left(J_{i}\right)$. Suppose, for each i, J_{i} is the kernel of a traceable irreducible representation π_{i} of A_{i} (in particular, if A_{i} is type I). Set $n_{i}=\operatorname{dim} \pi_{i}, r_{i}=\operatorname{dim} \pi_{i}\left(p_{i}\right)$. There is a finite set E with $r_{i}>0$ for $i \notin E$. Then
(a) J is the kernel of at most one traceable factor representation.
(b) J is the kernel of a traceable factor representation if and only if J is locally closed in Prim (A), i.e., if and only if $r_{i}<\infty$ for almost all i. The corresponding character is $\boldsymbol{\otimes} \phi_{i}$, where ϕ_{i} is the character of A_{i} corresponding to π_{i}, normalized so that $\phi_{i}\left(p_{i}\right)=1$ a.e.
(c) J is the kernel of a traceable factor representation with finite trace if and only if $n_{i}<\infty$ for all i and $\Pi_{i \notin E} n_{i} / r_{i}<\infty$.
(d) J is the kernel of a traceble irreducible representation if
and only if $r_{i}=1$ for almost all i.
Proof. (a) and (b) have been proved above and in 5.10. (c) follows from 6.1, since if ψ is the trace on a I_{n} factor normalized so that an r-dimensional projection has trace 1 , then $\|\psi\|=n / r$. Proof of (d): (\curvearrowleft) follows from (b) and 5.2; (\Rightarrow) follows from 6.7.5 and 4.1.10 of [5], since if $r_{i}>1$ for infinitely many i, then two nonequivalent irreducible representations with kernel J can be constructed by the method of Lemma 4.4 (see [6], or [9, p. 170]).

Theorem 6.5(c) clarifies and generalizes Proposition 12 of [6].
It is worth noting that if J is locally closed in $\operatorname{Prim}(A)$ then $J^{0} / J=\left[\boldsymbol{\otimes}\left(J_{i}^{0}, p_{i}\right)+J\right] / J \cong \boldsymbol{\otimes}\left(J_{i}^{0} / J_{i}, \bar{p}_{i}\right)$. If J_{i} is the kernel of a traceable irreducible representation, then J_{i}^{0} / J_{i} is elementary. So under the hypotheses of Theorem $6.5(\mathrm{~b}), J^{0} / J$ is a matroid C^{*}-algebra. The existence and uniqueness of trace on a matroid C^{*}-algebra was proved by Dixmier. Thus, 6.5(a) and (b) can be restated as follows: J is the kernel of a (necessarily unique) traceable factor representation of A if and only if there is an ideal K of A containing J with K / J a matroid C^{*}-algebra. This observation is due to Philip Green.

Without the hypothesis that J_{i} be the kernel of a traceable irreducible representation, all four conclusions can fail. (a) can fail if one of the A_{i} 's has two nonequivalent traceable factor representations with the same kernel; (d) will fail if one of the J_{i} 's is not the kernel of a traceable irreducible representation. (b) can fail as follows. If J is not locally closed it can still be the kernel of a traceable factor representation: let B be a separable C^{*}-algebra with identity which is not simple, but which has a faithful II_{1} factor representation (e.g., $B=C^{*}(G)$, where G is a countable discrete amenable group with infinite conjugacy classes), and let $A=\boldsymbol{\otimes}\left(A_{i}, 1_{i}\right)$ with $A_{i} \cong B$. A has a faithful $I I_{1}$ factor representation, but 0 is not locally closed in Prim (A). Conversely, a separable simple C^{*} algebra need not have any characters, so J could be locally closed but not the kernel of a traceable factor representation. (c) can be rephrased as follows.

Proposition 6.6. Let $A=\boldsymbol{\otimes}\left(A_{i}, p_{i}\right)$ such that $\left(A_{F}, B_{F}\right)$ satisfies (Pr) and (Ch) for each F. Let $J \in \operatorname{Prim}(A), r(J)=\left(J_{i}\right)$. Let E be a finite set for which $p_{i} \notin J_{i}$ for $i \notin E$. Then J is the kernel of a traceable factor representation of A with finite trace if and only if there is a traceable factor representation π_{i} of A_{i} with finite normalized trace τ_{i} for each i, with $\operatorname{ker} \pi_{i}=J_{i}$, such that $\Pi_{i \notin E} 1 / \tau_{i}\left(p_{i}\right)<\infty$.

Theorem 6.5 shows that an infinite tensor product of type I C^{*} algebras has only a limited number of characters. On the other hand, we will now show that such a C^{*}-algebra has enough characters to separate points. We first need a lemma which is almost certainly known.

Lemma 6.7. Let B be a type $I C^{*}$-algebra, q a projection in B. Then there is $a \pi \in \hat{B}$ with $0<\operatorname{dim} \pi(q)<\infty$. Hence there is a (suitably normalized) character ϕ on B with $\phi(q)=1$.

Proof. Let $\left\{J_{\alpha}\right\}(1 \leqq \alpha \leqq \sigma)$ be a composition series for B, with $J_{\alpha+1} / J_{\alpha}$ CCR. Let β be the first ordinal for which $q \in J_{\beta}$. If γ is a limit ordinal for which $q \in J_{\gamma}, \mathbf{U}_{\alpha<\gamma} J_{\alpha}$ is dense in J_{γ}, so there is an $\alpha<\gamma$ and $r \in J_{\alpha}$ with $\|q-r\|<1$. Let Φ be the quotient map of J_{γ} onto $J_{\gamma} / J_{\alpha} ;\|\Phi(q)-\Phi(r)\|=\|\Phi(q)\|<1$. But $\Phi(q)$ is a projection, so $\Phi(q)=0$, i.e., $q \in J_{\alpha}$. So β is not a limit ordinal. Let Ψ be the quotient map of J_{β} onto $J_{\beta} / J_{\beta-1} ; \Psi(q) \neq 0$, so there is a $\pi_{0} \in\left(J_{\beta} / J_{\beta-1}\right)^{\wedge}$ with $\pi_{0}(\Psi(q)) \neq 0$. But $J_{\beta} / J_{\beta-1}$ is CCR, so $0<\operatorname{dim} \pi_{0}(\Psi(q))<\infty$. Let $\pi_{1}=\pi_{0} \circ \Psi, \pi$ the extension of π_{1} from J_{β} to B.

THEOREM 6.8. Let $A=\boldsymbol{\otimes}\left(A_{i}, p_{i}\right)$, each A_{i} type I. Then the characters of A separate the points of A, i.e., if $\alpha \in A^{+}$, there is a character ϕ of A with $\phi(\alpha)>0$.

Proof. Let ψ_{i} be a character on A_{i} with $\psi_{i}\left(p_{i}\right)=1$. Let $a \in A_{F}^{+}$, and let ϕ_{F} be a character on A_{F} with $\phi_{F}(\alpha)>0\left(A_{F}\right.$ is type I). Let $\phi=\phi_{F} \otimes\left(\boldsymbol{\otimes}_{i \notin F} \psi_{i}\right) ; \phi\left(\sigma_{F}(\alpha)\right)>0$. Let $J=\bigcap\left\{N_{\phi}: \phi\right.$ a character on $\left.A\right\}$. J is a closed 2 -sided ideal of A, and $J \cap \sigma_{F}\left(A_{F}\right)=\{0\}$ for each F, so $J=0$ by Lemma 4.5.

A particular application of 6.5 and 6.8 is to Adele groups.
Theorem 6.9. Let G be an algebraic group defined over \boldsymbol{Q}, G_{p} the points rational over $\boldsymbol{Q}_{p}, G_{A}$ the adele group of G. (It is known that each G_{p} is type I.)
(a) An element of $\operatorname{Prim}\left(G_{A}\right)$ is the kernel of a traceable factor representation if and only if it is locally closed, and the representation, if it exists, is unique. The traceable factor representations of G_{A} separate the points of $C^{*}\left(G_{A}\right)$.
(b) If each G_{p} is CCR (for example, if G is nilpotent), then every ideal of Prim $\left(G_{A}\right)$ is the kernel of a unique traceable factor representation.

Examples. (a) Let \mathscr{H} be a separable Hilbert space, $B=$ $\mathscr{L} \mathscr{C}(\mathscr{O})+C 1, I$ a countable index set, $A_{i}=B, K_{i}=\mathscr{L} \mathscr{C}(\mathscr{H}) \cong$
$A_{i}, A=\boldsymbol{\otimes}\left(A_{i}, 1_{i}\right) . \quad \hat{A}_{i}=\left\{\lambda_{i}, \omega_{i}\right\}$, where ω_{i} is faithful and λ_{i} is onedimensional; $\operatorname{ker} \lambda_{i}=K_{i}$. If $J \in \operatorname{Prim}(A), r(J)=J_{i}, \pi_{i} \in \hat{A}_{i}$ with $\operatorname{ker} \pi_{i}=J_{i}$, then J is the kernel of a traceable factor representation if and only if $J_{i}=K_{i}$ a.e., i.e., if and only if π_{i} is one-dimensional for almost all i. Thus, $0 \in \operatorname{Prim}(A)$, but 0 is not the kernel of a traceable factor representation. From 6.5(d), every traceable factor representation (hence every traceable representation) is type I, and A has enough traceable irreducible representations to separate the points of A. But A is not type I; in fact, A is NGCR by Theorem 5.3.
(b) A slightly more complex version of the same phenomenon occurs in the context of group representations. Let $\left\{p_{i}\right\}$ be an arbitrary sequence of prime numbers; let G_{i} be the p_{i}-adic $a x+b$ group, K_{i} the compact open subgroup of integral points, and $G=$ $G\left(\left\{p_{i}\right\}\right)=\Pi^{\prime}\left(G_{i}, K_{i}\right)$. (See [1].) $\quad \hat{G}_{i}$ consists of a family of one-dimensional representations and one faithful infinite-dimensional representation ω_{i}, and there is an infinite-dimensional space of vectors invariant under $\omega_{i}\left(K_{i}\right)$. As above, every traceable factor representation of G is type I, and there are enough to separate the points of $C^{*}(G)$, although $C^{*}(G)$ is NGCR.
7. Construction of factor representations. In this section, we show how to construct representations of $A=\boldsymbol{\otimes}\left(A_{i}, p_{i}\right)$ generating a given hyperfinite factor. We do not make any restrictions on the C^{*}-algebras A_{i}.

Definition. Let M be a factor. A generating system for M is a family of mutually commuting type I subfactors of M which together generate $M . M$ is said to be hyperfinite if it has a generating system.

Since any type I factor has a generating system consisting of finite-dimensional factors, every generating system for a factor M has a "refinement" consisting of finite-dimensional subfactors. Thus, if M has a separable predual, the above definition is easily seen to be equivalent to the usual definition of a hyperfinite factor.

For a factor M, we will use the notation $w(M)$ to denote the smallest cardinal of a σ-weakly dense subset of M ($=$ topological weight of M_{*}). For notational convenience, we will alway assume that hyperfinite factors are infinite-dimensional, and that a generating system $\left\{M_{i}\right\}(i \in I)$ for a factor M satisfies card $I=w(M)$.

Definition. A von Neumann algebra M is called maximally infinite if $M \cong M \bar{\otimes} \mathscr{L}(\mathscr{C})$, where $\operatorname{dim} \mathscr{H}=w(M)$. If M has separable predual, "maximally infinite" is the same as "properly infinite".

Definition. Let $\left\{P_{i}\right\}(i \in I)$ be a set of projections in a von Neumann algebra M. Set lim inf $\left\{P_{i}\right\}=\sup _{F}\left(\inf _{i \notin F} P_{i}\right)$, where F runs over finite subsets of $I .\left\{P_{i}\right\}$ is said to be fundamental if $\lim \inf P_{i}=1$.

Lemma 7.1 Let M be a hyperfinite factor with generating system $\left\{M_{i}\right\}$, and let $P_{i} \in M_{i}$ be a projection with inf $P_{i} \neq 0$. Then $\left\{P_{i}\right\}$ is fundamental.

Proof. For any finite F, $\left.\operatorname{(inf}_{i \notin F}\left\{P_{i}\right\}\right) \in\left\{M_{i}: i \in F\right\}^{\prime}$, so $\lim \inf \left\{P_{i}\right\}$ is in $\left\{M_{i}: i \in I\right\}^{\prime}=M^{\prime} ;$ also $\lim \inf \left\{P_{i}\right\} \geqq \inf \left\{P_{i}\right\} \neq 0$.

Lemma 7.2. Let M be a maximally infinite hyperfinite factor, I an index set with card $I=w(M)$. For each i, let $A_{i} \cong \mathscr{L} \mathscr{C}\left(\mathscr{C}_{i}\right)$, $\operatorname{dim} \mathscr{H}_{i} \leqq w(M)$. Let p_{i} be a 2-dimensional projection in A_{i}, and let $A=\boldsymbol{\otimes}\left(A_{i}, p_{i}\right)$. Then there is a representation π of A with $\pi(A)^{\prime \prime} \cong M$.

Proof. The proof is virtually identical to the proof of [8, p. 850], which is essentially Glimm's proof that a non-GCR C^{*}-algebra has a non-type-I factor representation.

Lemma 7.3. Let M be a maximally infinite hyperfinite factor; let $\left\{n_{i}\right\}(i \in I)$ be cardinals with $n_{i} \leqq w(M)$, card $I=w(M)$. Then M has a generating system $\left\{M_{i}\right\}$ with M_{i} a $I_{n_{i}}$ factor, and a fundamental set of projections $\left\{P_{i}\right\}$ with $P_{i} \in M_{i}$, $\operatorname{dim} P_{i}=2$ (dimension in M_{i}).

Proof. Let $A=\boldsymbol{\otimes}\left(A_{i}, p_{i}\right)$ with $A_{i} \cong \mathscr{L} \mathscr{C}\left(\mathscr{H}_{i}\right), \operatorname{dim} \mathscr{H}_{i}=n_{i}$, $\operatorname{dim} p_{i}=2$, and let π be as in Lemma 7.2. For each i, let π_{i} be the restriction of π to A_{i} as in $\S 3$ (regarding $A=A_{i} \otimes\left[\otimes_{j \neq i}\left(A_{j}, p_{j}\right)\right]$), and set $M_{i}=\pi_{i}\left(A_{i}\right)^{\prime \prime} .\left\{M_{i}\right\}$ is a generating system for M. Put $P_{i}=\pi_{i}\left(p_{i}\right) ;$ then $\inf P_{i}=\pi\left(\otimes p_{i}\right) \neq 0$, so $\left\{P_{i}\right\}$ is fundamental by Lemma 7.1.

Theorem 7.4. Let $A=\boldsymbol{\otimes}\left(A_{i}, p_{i}\right)(i \in I), \operatorname{card} I=n$. Let $\pi_{i} \in \hat{A}_{i}$, $\pi_{i} \in \hat{A}_{i}^{p_{i}}$ a.e., with $n_{i}=\operatorname{dim} \pi_{i} \leqq n$. Set $I_{1}=\left\{i: \operatorname{dim} \pi_{i}\left(p_{i}\right) \geqq 2\right\} ;$ suppose card $I_{1}=n$. Then, if M is any maximally infinite hyperfinite factor with $w(M)=n$, there is a representation π of A with $\pi(A)^{\prime \prime} \cong M$, such that the restriction of to A_{i} is a multiple of π_{i}.

Proof. Let $I_{2}=\left\{i: \operatorname{dim} \pi_{i}\left(p_{i}\right)<2\right\} ; \quad$ card $I_{2} \leqq n . \quad$ Set $A_{1}=$ $\boldsymbol{\otimes}_{i \in I_{1}}\left(A_{i}, p_{i}\right), A_{2}=\boldsymbol{\otimes}_{i \in I_{2}}\left(A_{i}, p_{i}\right)$. Form $\pi_{2} \in \hat{A}_{2}$ on \mathscr{C} as in Lemma 4.4. If π_{1} is a representation of A_{1} with $\pi_{1}\left(A_{1}\right)^{\prime \prime} \cong M$, then let $\pi=$
$\pi_{1} \otimes \pi_{2}$ be the corresponding representation of $A=A_{1} \otimes A_{2} . \quad \pi(A)^{\prime \prime} \cong$ $M \otimes \mathscr{L}(\mathscr{H}) \cong M$ since $\operatorname{dim} \mathscr{L} \leqq n$. Thus, we may assume $I_{1}=I$. Let M_{i} and P_{i} be as in Lemma 7.3, and let \mathscr{L}_{i} be the Hilbert space of π_{i}. Since $\operatorname{dim} \pi_{i}\left(p_{i}\right) \geqq 2$, we may identify $\mathscr{L}\left(\mathscr{L}_{i}\right)$ with M_{i} in such a way that $P_{i} \leqq \pi_{i}\left(p_{i}\right)$. Let M act on a Hilbert space \mathscr{K}; set $Q_{F}=\inf _{i \notin F}\left\{P_{i}\right\}$, and let $\mathscr{K}_{F}=Q_{F} \mathscr{K}_{\text {. }}$. Since $\left\{P_{i}\right\}$ is fundamental, $\cup \mathscr{K}_{F}$ is dense in \mathscr{K}. Let $M_{F}=\left\{M_{i}: i \in F\right\}^{\prime \prime} \cong \overline{\boldsymbol{Q}}_{i \in F} M_{i}$, a type I factor.

For each i, we may write $\mathscr{K} \cong \mathscr{H}_{i} \otimes \mathscr{V}_{i}, M_{i} \cong \mathscr{L}\left(\mathscr{H}_{i}\right) \otimes 1$ using the above identification of M_{i} and $\mathscr{L}\left(\mathscr{H}_{i}\right)$; more generally, we can write $\mathscr{K} \cong \mathscr{H}_{F} \otimes \mathscr{\mathscr { C }}_{F}, M_{F} \cong \mathscr{L}\left(\mathscr{C}_{F}\right) \otimes 1$ with $\mathscr{H}_{F}=\boldsymbol{\otimes}_{i \in F} \mathscr{\mathscr { L }}_{i}$. Let ρ_{F} be the representation $\left(\otimes_{i \in F} \pi_{i}\right) \otimes 1$ of A_{F} on K. If $E \supseteq F$, $Q_{E} \in\left\{M_{i}: i \in F\right\}^{\prime}$, so \mathscr{K}_{E} is an invariant subspace for ρ_{F}. Also, if $a \in A_{F}, \rho_{E}\left(\sigma_{F E}(\alpha)\right)$ is of the form $\rho_{F}(\alpha) \otimes\left(\boldsymbol{\otimes}_{i \in E \sim F} \pi_{i}\left(p_{i}\right) \otimes 1\right)$. But $P_{i} \leqq \rho_{i}\left(p_{i}\right)$ for each i, so $\rho_{E}\left(\sigma_{F E}(\alpha)\right)$ and $\rho_{F}(\alpha)$ agree on $\mathscr{K}_{F}=$ $\left(\prod_{i \in E \sim F} P_{i}\right) \mathscr{K}_{E}$. Thus, the subspaces \mathscr{K}_{F} and the representations ρ_{F} satisfy the conditions of Lemma 4.3, so we may form the corresponding representation π of A on \mathscr{K}. The restriction of π to A_{i} is ρ_{i}, so $\pi(A)^{\prime \prime} \supseteqq \rho_{2}\left(A_{i}\right)^{\prime \prime}=M_{i}$; Thus $\pi(A)^{\prime \prime} \supseteqq M$. But if $a \in A_{F}$, $\pi\left(\sigma_{F}(\alpha)\right)=R_{F} \rho_{F}(\alpha)$, where $R_{F}=\inf _{i \notin F} \rho_{i}\left(p_{i}\right)$, so $\pi\left(\sigma_{F}(\alpha)\right) \in M, \pi(A)^{\prime \prime} \subseteq M$.

This theorem is closely related to Marechal's theorem [8] which states that, if B is a separable C^{*}-algebra which is not type I, and if M is an infinite hyperfinite factor with separable predual, there is a representation π of B with $\pi(B)^{\prime \prime} \cong M$. If A is a infinite tensor product, Theorem 7.4 gives an explicit construction of such a representation, whereas Marechal's method is somewhat nonconstructive.

If B is a C^{*}-algebra, we put an equivalence relation \sim on \bar{B} by letting $\pi \sim \rho$ if $\operatorname{ker} \pi=\operatorname{ker} \rho$ and $\pi(B)^{\prime \prime} \cong \rho(B)^{\prime \prime}$. This equivalence relation is much weaker than quasi-equivalence (for example, it will not distinguish between irreducible representations with the same kernel), but if B is not type I this relation is probably the strongest one for which there is any reasonable hope of understanding the set of equivalence classes. If $A=\boldsymbol{\otimes}\left(A_{i}, p_{i}\right)$, where each A_{i} is separable and type I and where there are only countably many i (so A is separable), then A is nuclear, so every factor representation of A generates a hyperfinite factor. Thus, Theorem 7.4 and Theorem 6.5 together give an explicit construction of a representative of each equivalence class of \bar{A} under \sim.

References

1. B. Blackadar, Regular representation of restricted direct product groups, J. Functional Anal., 25 (1977), 267-274.
2. M. D. Choi and E. Effros, Nuclear C^{*}-algebras and injectivity: the general case, to appear in Indiana Math. J.
3. F. Combes, Poids sur une C^{*}-algèbre, J. Math. Pures et Appl., 47 (1968), 57-100.
4. A. Connes, Classification of injective factors, Ann. of Math., 104 (1976), 73-115.
5. J. Dixmier, Les C^{*}-Algèbres et Leurs Reprèsentations, Gauthier-Villars, Paris, 1969.
6. A. Guichardet, Tensor products of C^{*}-algebras, Math. Inst. Aarhus Univ. Lecture Notes No. 12-13, 1969.
7. C. Lance, On nuclear C^{*}-algebras, J. Functional Anal., 12 (1973), 157-176.
8. O. Maréchal, Topologie et structure Borélienne sur l'ensemble des algèbres de von Neumann, C. R. Acad. Sci. Paris, 276 (1973), 847-850.
9. C. Moore, Decomposition of unitary representations defined by discrete subgroups of nilpotent groups, Ann. of Math., 82 (1965), 146-182.
10. J. Tomiyama, Tensor products and approximation problems of C^{*}-algebras, Publ. Res. Inst. Math. Sci. Kyoto Univ., 11, no. 1 (1975).
11. \qquad Applications of Fubini type theorem to the tensor products of C^{*} algebras, Tôhoku Math. J., 19, no. 2 (1967), 213-226.
12. S. Wassermann, On tensor products of certain group C^{*}-algebras, J. Functional Anal. 23 (1976), 239-254.

Received February 17, 1976.
University of Nevada, Reno
Reno, NV 89557

