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INFINITE TENSOR PRODUCTS OF C* -ALGEBRAS

BRUCE E. BLACKADAR

The infinite tensor product A — (x) (Aiy pt) of a family
of C*-algebras At with respect to projections Pi^Ai is ex-
amined. The primitive ideal space and the characters of A
are completely described in the case where each At is simple,
or separable and nuclear. If A is not type I, an explicit
construction is given of a factor representation of A generat-
ing an arbitrary hyperfinite factor. In addition, new results
are obtained about primitive ideals and characters of a tensor
product of two C*-algebras. Examples are given of various
phenomena, providing solutions to previously published prob-
lems.

In this paper, the structure of an infinite tensor product A =
® (Ai9 p^ of a family of C*-algebras At with respect to projections
Pi 6 Ai is studied. Most structural questions about such algebras
can be reduced to analogous questions about the structure of finite
tensor products. In particular, the primitive ideal space and char-
acters of A can be completely described in the case where each At

is simple, or separable and nuclear. If A is not type I, an explicit
construction is given of a factor representation of A generating an
arbitrary infinite hyperfinite factor.

More detailed information about A is available if each Ai is type
I. Conditions are given for when A is type I, CGR, GTG, or con-
tinuous trace, and examples are given of various phenomena, some
of which are new. In addition, some new results are obtained about
characters of finite tensor products.

There has been considerable work recently studying the struture
of certain non-type-I C*-algebras. The work of Glimm on UHF C*-
algebras and Dixmier on matroid C*-algebras led to the study of
AF algebras (inductive limits of finite-dimensional C*-algebras) by
Bratteli and others. It seems possible that a reasonable structure
theory for inductive limits of type I C*~algebras can be developed,
although the situation can become quite complicated. In this paper,
we discuss a particular type of inductive limit of C*-algebras, the
infinite tensor product. It is hoped that some of the results and
methods of this paper will be useful in studying the general situation.

The results of this paper have immediate application to the
representation theory of restricted direct product groups (such as
adele groups), since the group C*-algebra of such a group is an in-
finite tensor product of the C*-algebras of the coordinate groups.

The organization of the paper is as follows:
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Section 2 is a summary of the constructions and notation used.
Section 3 contains results on finite tensor products. The two main
results are a complete description of the primitive ideals (Theorem
3.3) and characters (3.7, 3.8) of a tensor product of two C*-algebras
under the hypothesis that one of the algebras be separable and
nuclear, or that both be simple.

Section 4 is a description of the primitive ideal space of an
infinite tensor product of type I algebras. Conditions are given for
the product to be type I, CCR, GTC, or continuous trace and several
examples are included, such as a CCR C*-algebra with no finite
composition series {Jn} such that (Jn+JJny is Hausdorίf, solving an
open question.

Section 6 contains an infinite product weight construction which
is used to describe all characters of an infinite tensor product of
C*-algebras in certain cases, including products of type I algebras,
simple algebras, or separable nuclear algebras. It is shown that a
primitive ideal of an infinite tensor product of type I C*-algebras
is the kernel of a (necessarily unique) traceable factor representa-
tion if and only if it is locally closed.

Section 7 is an explicit construction of a large family of factor
representations of an infinite tensor product of C*-algebras. If A
is an infinite tensor product of a countable number of separable
type I C*-algebras, and if A is not type I, then an explicit construc-
tion is given of a representation of A generating a given infinite
hyperfinite factor.

The work of this paper generalizes results of Guichardet [6]
and Moore [9]; many of the results extend those of Tomiyama [11]
to infinite tensor products. Some of this paper was part of the
author's doctoral dissertation at the University of California, Berkeley
(1975), and he expresses his appreciation to his adviser, Calvin C.
Moore, for a great deal of help and guidance. He is also grateful
to the referee for pointing out a number of errors and obscurities
in the original draft.

2* Definitions and notation* In this section we will briefly
review some constructions which have appeared before in the liter-
ature, in order to establish notation.

(a) Let Xt (i e I) be locally compact topological spaces with
compact open subspaces Yi9 Let X = {(• xt •) 6 ΠX^ xt e Yt a.e.}.
(In this paper, "almost everywhere" will always mean "for all but
a finite number.") If F is a finite subset of I, set XF = Y[ieF Xif

Y* = TlitF Yi, ZF = XF x YF. ZF is locally compact, and if E Q F,
ZE is an open subset of ZF. Topologize X = U ZF by letting SQX
be open if and only if S f] ZF is open for all F. X is then locally
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compact, and each ZF is open in X.

DEFINITION. X = Y['ieI(Xit Yt) is the restricted direct product
of the Xt with respect to Y*.

If Gi are locally compact topological groups with compact open
subgroups Kif then G = Π'(Giy Kx) is a locally compact topological
group under coordinate wise multiplication, and K = ΠKi is a com-
pact open subgroup. If each Gt is second countable and I is count-
able, then G is also second countable.

(b) If B and C and C*-algebras, the algebraic tensor product
B®G can be completed with respect to the least C*-cross norm to
give the C*-tensor product B (x) C. This is the only tensor product
we will consider in this paper; we will mostly be concerned only
with nuclear C*-algebras, for which all C*-cross norms coincide. If
B and C are von Neumann algebras, we can also form the von
Neumann algebra tensor product B(g)C. The symbol © will always
denote algebraic tensor product, (x) the C* product, and (x) the von
Neumann product. Also, if B is a C*-algebra, we will use the nota-
tion Pr (B) to denote the set of ideals of B which are kernels of
factor representations of B. Pr (B) = Prim (B) for most, if not all,
C*-algebras, including all separable or GCR C*-algebras. We will
also write B for the smallest C*-algebra with an identity containing
B (i.e., B = B if B has an identity, otherwise B is B with identity
adjoined.)

(c) Let At (i 6 /) be C*-algebras, and let pt be a nonzero projec-
tion in At. ϊfFQlis finite, let AF = (&iBFAt as above. Write
PF — GbieFPi If E C Fj define an isomorphic embedding σEF of AE

into AF by σEF (a) = α (x) pF~E. Then {AF, σEF) form a directed sys-
tem of C*-algebras; let A = lim {AFy σEF).

DEFINITION. A = φiei(Ai9 pt) is the infinite tensor product of
the At with respect to Pi.

If each At is separable and I is countable, then A is separable.
There is a canonical embedding σF of AF into A, such that if E £ F,
σE = σFoσEF. Also, there is a projection peA with p — σF(pF) for
all F. For any F, we will use the notation BF — ®i^F{^ P%), QF
the distinguished projection of BF; then A = AF® BFf p — pF® QF

EXAMPLES. (1) If each At has an identity liy then <S$(Ai9 1J is
the ordinary infinite tensor product ® At.

(2) If Xt (ie I) are locallyc ompact Hausdorff spaces with com-
pact open subspaces Yiy let At = C0(Xt)f continuous functions vanish-
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ing at infinity; then <g)(C0(X,), χF.) ^ C0(Π\Xίf Yt)) under the obvious
identification of functions.

(3) Let G = Π'(Gi9 K,); assume that C*(G<) is nuclear for all i
(see Theorem 3.2). Then we may identify C*(GF) with ®ιeF C*(<?«).
Let HF •= GF x KF £ G; define an isomorphic embedding ^F of C*(GF)
into C*(jffj,) £ C*(G) by ^(α) = α(g)χ*j;. If E £ F, ^ - φF°σEF, so
there is an embedding of ®(C*(G,), χ/f.) into C*(G), which is surjec-
tive since, for any F, the image contains all functions supported on
HF which depend on only a finite number of coordinates.

(d) If <%t (i e I) are Hubert spaces with unit vectors £< e
write ^ = ® i e 7 ( ^ t , ξt) for the infinite tensor product of the
with respect to ζi9 as in [9]. If Mt is a von Neumann algebra on

write Λί = ®ίe/(Af<, ^ ? , it) for the von Neumann algebra on
generated by the images of the Mt. If each Mt is a factor, Λf

is a factor.
The above constructions depend, of course, on the parameters

(Yi9 p^ ζi) chosen; however, the parameters may be changed or left
undefined in a finite number of coordinates without changing the
product. For convenience, we will usually assume they are defined
everywhere.

3* Finite tensor products* In this section, we discuss the
primitive ideal space and the characters of a tensor product of two
C*-algebras. Some of the most basic questions about finite tensor
products are still unsolved, but the recent work of Connes, Effros
and Choi, and Lance allows us to solve the relevant problems for
separable nuclear C*-algebras, which are by far the most important
ones in applications.

Let B and C be C*-algebras. If π is a factor representation of
B and p of C, then π (x) p is a factor representation of B®C. The
map j : (ker π, ker p) —> ker (π (g) p) gives a well-defined injective map
from Pr (B) x Pr (C) into Pr (B(g) C), which maps Prim (B) x Prim (C)
homeomorphically onto a dense subspace of Prim (B (x) C).

If (J, J) e Pr (B) x Pr (C), j(I, J) is the kernel of the composite
map J3 <g) C -> CB <g) C)/(I <g) C + B (x) J) — (JS/J) (x) (C/J); if B/I or C/J
is nuclear, then j(I, J) = I(g)C + B(g)J. (See [6, §§ 6 and 7].) There
is also a map r: Pr (B(g)C) ->Pr (JS) x Pr (C) defined as follows: if
π is a factor representation of B®C, π extends uniquely to B <g) C,
since B(g)C is an ideal in B(g)C. Set π^b) = π(6 (g) 1), ττ2(c) =
π(l (x) c). τrx and π2 are factor representations of B and C respec-
tively, called the restrictions of π to B and C. Set r(ker π) =
(ker π19 ker ττ2). If K e Pr (JB 0 C), r(iί) = (/, J), where / and J are
the kernels of the composite maps B—>B®C—*{B®C)IK and
C~+B<g)C-+(B(g)C)/K, so r is well defined, roj is the identity.
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If φ is a character on B and ψ a character on C, then ψ(g)ψ
is defined to be the character on B (x) C corresponding to the factor
representation πφ (x) πψ.

DEFINITION 3.1. A pair (B, C) of C*-algebras is said to have
property (Pr) if the map j : Pr (B) x Pr (C) -+ Pr (B (g) C) is surjec-
tive. (B, C) is said to have property (Ch) if every character on
B(g)C has the form φ (x) ψ, for characters φ and ψ on B and C
respectively.

Properties (Pr) and (Ch) are closely related, although it is not
clear that either one implies the other. . Properties (Pr) was studied
by Tomiyama [11], who called it property (F). Wassermann [12] has
shown that if B is the group C*-algebra of the free group on two
generators, then (B, B) does not satisfy (Pr); no examples are known
of C*-algebras not satisfying (Ch). Itis shown below that if either
B or C is separable and nuclear, or if both B and C are simple, then
(B, C) satisfies both properties.

Recall that a C*-algebra B is nuclear if the algebraic tensor
product B 0 C has a unique C*-cross norm for every C*-algebra C
We summarize some recent results of Connes [3], Choi and Effros
[2], and Lance [7], in the following theorem.

THEOREM 3.2. Let B be a separable C*-algebra. Then B is
nuclear if and only if every factor representation of B generates
a hyperfinite factor. If J is an ideal of B, then B is nuclear if
and only if both J and B/J are nuclear. Furthermore, the class
of nuclear C*-algebras is closed under finite tensor products, in-
ductive limits (hence under infinite tensor products), and crossed
products by arbitrary amenable groups. The group C*-algebra of
any locally compact (second countable) group which is amenable or
connected is nuclear.

THEOREM 3.3. Let B be a nuclear C*-algebra, C any C*-algebra.
Then (B, C) satisfies (Pr).

Proof. Follows immediately from [11, Theorem 5] and [2].
It is reasonable to conjecture that, for a fixed C*-algebra B,

(B, C) satisfies (Pr) for every C if and only if B is nuclear.
We now turn to the property (Ch). We first need two lemmas,

the first of which is closely related to Lemma 13 of [6].

LEMMA 3.4. Let Nx and N2 be factors on a Hilbert space
with N2S-N[; suppose the map Φ: Nt ® N2—>£?(3ίf) given by ^(x)
n2 —> nιn2 extends to an isometry of the C*-tensor product Nλ (x) N2
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into Jίf(βέf). Suppose that the von Neumann algebra N generated
by Ni and N2 is a semifinite factor, and that the C*-algebra gener-
ated by Nλ and N2 has nonzero intersection with the ideal J of N
which is the norm-closure of the "trace-class" operators of N. Then
Nx and N2 are semifinite, and if N has a cyclic and separatng
vector, then Sίf can be written ££fx ® Sίf% with N± — Nt ® 1, N2 =

Proof There are two cases: (1) N is finite. Then Nt and N2

are finite, and the result is well known (see [6, Lemma 13]). (2) N
is not finite, in which case JΦ N. 0{N^ ®N2)(λJφ {0}, so Φ~ι(J)
is a nontrivial ideal in Nx 0 N2. Therefore, either Nt or N2 is not
simple. We will reduce to case (1) in two steps. First, write
Si? = T ® <W with N, = £f(T)~® Mί9 with Mι a factor which is a
simple C*-algebra. (Every factor can be written as a tensor product
of a type / factor and a factor which is a simple C*-algebra.)
iV2 = 1 ® M2 for a factor M2 on 3^; N = £f(T)® M, where M is
the von Neumann algebra generated by M1 and M2. M is a semifinite
factor; let I be the norm-closure of the ideal of "trace-class" elements
of M. Let Jί9 J2, I2 be the minimal nonzero norm-closed (not neces-
sarily proper) ideals of JVΊ, N2, and M2 respectively. Jx ® J2 is a
simple C*-algebra and hence is the minimal nonzero ideal of Nγ ® N2,
so Φ(/x 0 J2) C J. Let mx e M19 m2 e I2, be nonzero, and let s be a
rank 1 projection in £f(JΓ). Then 8®m 1eJΓ

1, l®m2ej2, and so
s ® mxm2 — (s ® mOίl ® m2) e ΦίJΊ ® Jg) £ J. Thus m^a 612, and
m ^ ί ^ 0 by [6, Prop. 0], so the C*-algebra generated by Mγ and
M2 has nonzero intersection with I2, and so ikf̂  M2, M, and / satisfy
the hypotheses of the lemma. If M is finite, we are in case (1) and
so we are finished; otherwise M9 is not simple and we can reduce
again in the same way. After the second reduction, we must be in
case (1).

LEMMA 3.5. Let Nx and N2 be semifinite factors with minimal
ideals Jγ and J2; let N = JYx® N2, J the minimal ideal of N, K =

® JV2). If φeN?, feJ ί 2 * with 9>|e7i = 0 or ψ\J2 = 0, then

Proof We use the language and notation of [10]. Let τx and
τ2 be traces on Nt and iV2, and z = τ1 ® r2 a trace on JV. (See § 5.)
If φeN^, 0 ^ φ ^ τ19 then φ(x)τ2 = τ2oRφ <^ τ, and so Bψ maps J
into J2. Similarly, if ψ e N2*, 0 <^ ψ ^τ2, Lψ maps J into Jίm Linear
combinations of such functionals are weak-* dense in N* and N£;
this can be seen as follows. Let π be the GNS representation of
Nt on β^ with respect to τ19 Any normal state φ of Nγ is a vector
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state from Sίf [^(N^ has a cyclic and separating vector, thus is
spatially isomorphic to τr(iS7Ί)]. If φ — ψa is the vector state corre-
sponding to the vector η(a) for some a e 9ϊΓl, then φa(x) = τ^xa) ^
Hαll 2 ^) for xeNt, and so 0^1/ | |α | | 2 φΛ^τx. Since [η{a)\ ae%^
is dense in Sίf, {?>«:<& 6 JKΓI} is weak-* dense in (JVJi, and so linear
combinations are dense in N*; similarly for i\Γ2*. So it follows from
the argument in [10, Prop. 3.8] that J Q F(J19 J2).

If Nj. and N2 are hyper finite with separable preduals, then it
may be proved that K = JΊ 0 J2. It would be interesting to know
if this is true in general.

COROLLARY 3.6. Let B and C be C*-algebras with factor re-
presentations π and p respectively. Ifπ(x)p is a traceable repre-
sentation of J5 (x) C, then π and p are traceable.

Proof. Let N± = π(B)", N2 = p{C)", Jγ and J2 the minimal ideals
of N, and N2. If π(J5)Π /i = {0} or ρ(C)ΠJ2 = {0}, then for any non-
zero element x of π(B)(g)p(C) £iN±(><)N2 there are linear functionals
φeNf, ψeNt with φ\J1 = § or ψ|J2 = 0, and (φ®ψ)(x)Φ§. But
by Proposition 3.5, (φ(g)ψ)\ K= 0, so a £ iΓ. Thus π(j?) (g)7r(C) Π J = {0}.

The author is indebted to L. Brown for pointing out an error
in an earlier proof of 3.6.

THEOREM 3.7. Let B and C be C*-algebras. If B is separable
and nuclear, then (B, C) satisfies (Ch).

Proof. Let π be a traceable factor representation of B (g) C on
Si?, and let N=π(B(g)C)", 2^ = 71:08 0 1 ) " , 2Va = π(l 0 C)". JV,
2Vlf iV2 are factors, N2Q N[, and JVΊ and iV2 together generate i\Γ.
We may assume that N has a cyclic and separating vector. Since
B is nuclear, ^ is semidiscrete, so the map Φ: Nx® N[—+Jtf(<%?)
extends to an isometry of JVΊ 0 N[—>Sf(S^), and by restriction
to an isometry of 2^ 0 2SΓ2 — £e{3lf). So 2V, Nlf N2 satisfy the
hypotheses of Lemma 3.4, and thus we can write Sίf — <̂ gf(x) Sίf2,
% = πι®π2 πι and π2 are traceable by Corollary 3.6.

THEOREM 3.8. Let B and C be simple C*-algebras. Then (B, C)
satisfies (Ch).

Proof. Let π be a traceable factor representation of J5 0 C; TΓ
is faithful since B 0 C is simple. Let 2V = ττ(5 0 C)", / = mΓ(2V).
π(J5 0 C) n J ^ {0}, so TΓOB 0 C) S / . Let 6 e J5+, c e C+; let / be a

continuous function from [0, <>o) to [0, 1] with / = 0 in a neighbor-
hood of 0 and f(b) Φ 0, f(c) Φ 0. Then π(f(b) 0 f(c)) e mT (N)+, and
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π(f(b)®f(c))ΦQ, so 0 < τ(π(/(δ)(x)/(c)))< oo. Thus, Lemma 13
of [6] shows that π = π1 (x) π2, and Corollary 3.6 shows that πx and
τr2 are traceable.

4* Primitive ideals and irreducible representations* In this
section, we characterize the primitive ideal space of an infinite tensor
product of C*-algebras in terms of the primitive ideals of the co-
ordinate algebras.

Let B be a C*-algebra, q a projection in B. Set Pr* (B) =
{Je Pr (JS): q g J}, Prim9 (B) = {Je Prim (B): q £ J}, Bq = {πe B: π(q) Φ 0}.

PROPOSITION 4.1. Bq is a compact open subset of B; Prim9 (B)
is compact and open in Prim (B).

Proof. It suffices to prove the proposition for Bq. Bq is open
in B by definition of the topology of B. Bq = {πeB: \\π(q)\\ = 1},
so Bq is compact by [5, Prop. 3.3.7.]

Let G be a locally compact group, and K a compact open sub-
group of G. We may identify G with C*(G)". Let q be the char-
acteristic function of K. Set Gκ — {π<zG\π\K contains the trivial

representation of K). Gκ = C*(Gy. If G is abelian, Gκ = KL.
For the rest of this section, let At (i e I) be a collection of C*-

algebras with projections p o and A = ®ίQI{Ai9 p%). For each F, we
write A = AF(g)BF as in § 2(c). We will assume that (AF, BF)
satisfies (Pr) for each F; in particular, if each At is nuclear, this
condition will be satisfied.

There is a map r: Pr (A) —> Π Pr (A;), defined as in § 3.

LEMMA 4.2. Let JePr(A), τ{J) = (Jf). Γλew J,GPr^(A,) /or
almost all i.

Proof. L e t F C I b e finite, a n d s u p p o s e t h e r e i s a n i $ F w i t h
Pi 6 J*. Then if E = Fϋ {i}, σF(AF) = AF® Pi® QE ^ AF® Jί®
BE Q J. Since U σF(AF) is dense in A, there must be an F with
σF(AF) §£ /, so Pi ί Ji for all i $ F.

The following lemma provides a general method for constructing
representations of inductive limits of C*-algebras.

LEMMA 4.3. Let {Ba, σaβ} be a directed system of C*'-algebras,
and B = lim {Ba, σaβ}. Let a0 be fixed, and let 3ίΓ be a Hilbert

space with a set {J%"a: a > a0} of closed subspaces, directed by in-
clusion, with U 3ίΓa dense in <f%Γ. For a > a0, let πa be a repre-
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sentation of Ba on 3ίΓa, with πa = (πβ ° σaβ) \ J%Γa for a0 < a < β.
Then there is a unique representation π of B on 3ίί with πa =
(π o σa) I 3ίΓa for each a > a0, where σa is the canonical embedding
of Ba into B. If each πa is nondegenerate, π is nondegenerate.

Proof. Let a > a0 be fixed, and let b e Ba; for β > a, set
π(σa(b)) = πβ(σaβ(b)) on 3Γβ. lίa<β<7, πr(σar(b)) = πβ(σaβ(b)) on 3ίTβ,
so the definition of π(σa(b)) is unambiguous. π(σa(b)) is defined on
U J?fβ, and ||π(tfα(6))|| ^ | |6| |, so π(σa(b)) extends to an operator on

π defines a norm-decreasing homomorphism of U σa(Ba) into
), hence extends to a homomorphism of B into J5f(J?t"). The

uniqueness of re is clear. If each πa in nondegenerate, each J¥^ is
in the essential subspace of π, so π is nondegenerate.

LEMMA 4.4. Let (J,) e 77 Pr (A,), Ji e PrPi (Aέ) /or almost all i.
Then there is a JeFr(A) with r(J) = {J%). If Ĵ  e Prim (i4f) /or αiϊ
i, ί/̂ ê  J 6 Prim (A).

Proof. Let TΓ* be a factor representation of At on J%ζ with
kernel J ;̂ choose πt irreducible if Jt e Prim (At). Let E ζZ I be a
finite set with p4 g Ji for i g J5. Let & be a unit vector in ^ with
f< 6 range π, (p€) for ί g ̂ . Let J T = ® ( ^ , ξt), and if î 7 2 E is finite,
let J%S = <^F® (®ieF$i) We may consider πF = ®ieFπi as being
defined on JfF. If E Q F £ A π^ = ( ^ o ίĵ )̂ 13fΓFJ so we may form
the representation π as in Lemma 4.3. π(A)" — ̂ (π^A,)", Sίfiy f, ),
so 7Γ is a factor representation, and if each τrέ is irreducible, then
π is irreducible. It is clear that r(ker π) = (Jt).

The following lemma is well known, but apparently does not
appear in this general form in the literature. It is the most im-
portant tool in reducing questions about infinite tensor products to
ones about finite products.

LEMMA 4.5. Let B be a C*-algebra, {Ba} (aeΩ) a set of C*-
subalgebras of B with \J Ba dense in B. Let J be a closed 2-sided
ideal of B. Then J is the closed ideal generated by (J (Jn Ba). If
U Ba is an algebra (in particular, if the Ba are nested), then
U (J Π Ba) is dense in J.

Proof. Let Jo be the closed ideal generated by U (J Π Ba) and
let Φ be the quotient map of B onto B = B/Jo. Set Ba = Φ(Ba),
J = Φ(J). It suffices to show J = 0. Let Ψ be the quotient map
of B onto B/J. Jf)Ba = 0, so Ψ\Ba is injective, hence an isometry.
So Ψ is an isometry on B, hence injective.
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COROLLARY 4.6. If each Ba is simple, B is simple. So ® (Aif pt)
is simple if and only if each At is simple.

COROLLARY 4.7. Let J e Pr (A), r(J) = (J,). Then J is generated
by U (Ji ® ®ίφj (Aj, Pj)). So the map r is injective.

COROLLARY 4.8. If Pr (A,) = Prim (A,) for each i, then Pr (A) =
Prim (A).

Putting together 4.2, 4.4, 4.7 and 4.8, r gives a (set-theoretic)
bijection between Pr (A) and 77'(Pr (A,), Prp< (A*)).

Now assume that Pr (A*) = Prim {A%) for each i (this assumption
will be satisfied, for example, if each At is separable, simple, or
type I). Then r gives a bijection between Prim (A) and X =
/7'(Prim(Ai), Prim^ίAi)). Give X the restricted direct product to-
pology (Prim (Ai) is locally compact, and Prim^ (Aτ) is compact and
open by Prop. 4.1).

THEOREM 4.9. r: Prim (A) —> X is a homeomorphism.

Proof. A = Ai (x) Bt and Prim (A) = Prim (At) x Prim (B%) with
the product topology, so the composite of r with each coordinate
projection is continuous. Let F £ / be a finite set. If JePrim(A)
with r(J) = (J,), then (J,) ίZp = UieF Prim (A,) x I L * F Prim" (A,) if
and only if σF(AF) £ J (see Lemma 4.2).

So r~ι{X - Zj.) = {Je Prim (A): ^(A^) Q J}, a closed set in
Prim (A), so r~\ZF) is open. Therefore, r is continuous, since X
has the weakest topology making each ZF open and all the coordinate
projections continuous. It remains to show that if {Ja} = r~1({(/?)})
is a subset of r"\ZF)9 and / = r'1^) with J* in the closure of {J?}
for each i, then J is in the closure of {/"}. Set Jo = ΓiaJa', then /
is in the closure of {Ja} if and only if J0QJ. If E 2 -F, then
J α Π ^s(^) = GE{JE), where J | is the ideal of AE corresponding to
{Jii ieE}. JE is in the closure of {JE} for each E, so Jo n oE(A^) =
Π« ̂ («Ί) £ tfj*(Λ) = ^ Π oE(AE). So by Lemma 4.5, Jo Q J.

COROLLARY 4.10. // each Ai is type I, then Prim (A) =

COROLLARY 4.11. (a) J/ G = Π' (Gif Kτ) with each Gt type I,
then Prim (G) = Π' (G,, Of*).

(b) 1/ G = IT (Go #<) is abelian, then G = Π' ( £ , ^ )
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4.11(b) is undoubtedly well known, and is readily proved directly.
It appears as Corollary 12 of [6]. It should also be noted that
Example 2 of Section 2(c) is a special case of Theorem 4.9.

5* Infinite tensor products of type I algebras* This section
describes some of the finer structure of an infinite tensor product
of type I algebras. Theorems 5.1 and 5.3 are previously known
results included for completeness.

If B is a C*-algebra with projection q, and if n is a cardinal
set φq)n = {π 6 B: dim π(q) = n).

THEOREM 5.1. A = &(Ai9 pτ) is type I if and only if each At

is type I and Af* = (Afi)1 a.e.

Proof. See [6, Theorems 7 and 8].

A sharper form of one direction of this theorem is given next,
while a strong form of the converse will be proved in Theorem 7.4.

THEOREM 5.2. Suppose each At is type I. Let (π^eJl'(Άif Άty
with πt e {Ap

i

ί)ι a.e. Construct π e A as in Lemma 4.4. Then if p
is any factor representation of A with ker p = ker π, then p is a
multiple of π.

Proof. The proof is similar to the proof of Theorem 6 of [9].

THEOREM 5.3. If, for each i, the elements of A?* — (AfOi sePa~
rate the points of Aif then ® (Aif pt) is NGCR.

Proof. See [6, Theorem 7.]

EXAMPLE. Let ̂ b e a separable Hubert space, B = £f<tf(βέf) +
Cl, q a rank 1 projection in £?&(<&?). Let I be a countable index
set, and let At = B, Pi — q for each i, A = (§$(Aif px). A is sepa-
rable, and A is type I by Theorem 5.1. A contains no closed points,
i.e., A has no maximal closed ideals. (Of course, other examples of
such C*-algebras are known: see [5, 4.7.17].)

PROPOSITION 5.4. A = &(Ai9pt) is FD (all πeA finite-dimen-
sional) if and only if each At is FD and, for almost all i, every
element of A? is one-dimensional. A is BD (dim π bounded for all
πeA) if and only if each At is BD and all but finitely many At

are commutative.
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Now we examine when A is CCR, GTC, or has continuous trace.
If B is a C*-algebra and πeB, π is CCR if π(b) is compact for
every beB, as in [5, 4.7.12.]. Use the notation J(B) to denote the
ideal which is the closure of the ideal ^Jt(B) of elements of con-
tinuous trace; denote by K{B) the union of the transfinite sequence
Ja where Ja+1/Ja = J(B/Ja); K(B) is the smallest ideal of B such that
J(B/K) = 0. B has continuous trace if J(B) = B; B is GTC if
K(B) = B.

We assume from now on that each At is type I, and A =

THEOREM 5.5. Let πeA, r(ker π) = (Jt), πt e At with ker πt = Ji.
Then π is CCR if and only if each πt is CCR and π̂  e (A?*)i a e.
So A is CCR if and only if each A< is CCR and A?* = (A?*)i a e

Proof. See [9, Theorem 8]. The last assertion also follows from
4.10 and 5.1, since A is CCR if and only if A is type I and Prim (A)
is a Tι space.

Now assume that Aϊ* = (AfOi

THEOREM 5.6. If pteJ(A^) a.e., then J{A) = [\JF σF(J(AF))]~,
K(A) — [\JF σF(K(AF))]~; if ptiJ{A^ for infinitely many i, then
J(A) = K(A) = {0}.

Proof. Let E be a finite set such that Ap = (Af*)i a n d Pi e

for all i ί £/. fDl(At) is a dense hereditary ideal of J(At), and so
contains all projections of J{AZ). So pieίDt(Ai) for all igJ5. If
F'Ώ E, it can then be readily verified that qF e ΊSi{BF). It follows
from [11, Lemma 4] that a®qFeJ(A) if and only if aeJ(AF); so
J(A) n σF(AF) - J(AF). By Lemma 4.5, J(A) = [\JF (J(A) Π M ^ ) ) l " =

))]- Similarly, it may be verified that K(A) fΊ σF(AF) =
so #(A) = [U^ ̂ (ίΓ(A,))]-. Conversely, if J(A) ^ 0, by

Lemma 4.5 there is a finite set F such that J(A) Π 0>OM ^ 0. If
a®qFeJ(A)+, a Φ 0, let / be a continuous function from [0, ©o) to
[0, 1], vanishing in a neighborhood of 0, with f(a) Φ 0; f(a (x) ĝ ) =
/(α) (x) ̂  e SK(A)+, so /(α) e SK(^) and gF e Έl{BF). But this implies
Pi e fΰl(Ai) for every i$F.

COROLLARY 5.7. A = ® (A ,̂ p^ feαs continuous trace if and only
if each At has continuous trace and A?* = (A?0i α e

It is interesting and instructive to examine the situation where
A has continuous trace. More generally, if each A< is a C*-algebra
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defined by a continuous locally trivial field of C*-algebras over a
locally compact space Xif then pt will correspond to a compact open
subspace Yi of Xi9 and A = ®(At9 pj will be the C*-algebra defined
by a continuous field of C*-algebras over Π' (-XΌ Y<)> where the C*-
algebra at the point ( xt •) e Π' (X» Y) is ® (A^), pt(xt)). (See
[10, Lemma 3.3].)

COROLLARY 5.8. A = ®(A;, #<) is GTC if and only if (1) each
A, is GTC (2) A? - (AJOi α.e. (3) p, e /(A,) a.e.

EXAMPLES, (a) Let B be the C*-algebra of sequences of 2 x 2
matrices converging to a diagonal matrix, as in [5, 4.7.19], and let
q be a projection in B with Bq = ( 5 % f° r example,

1 0\ (0 0\ /O 0\ \ 111 0\ /I 0\ (I 0

' " • ' l o o j ' Vo o r l o o j ' " 7 o r q Woof9 l o o / ' l o o
Let / be a countable index set, and let A = ®ieI(Ai9 pt) where
At = Bf Pi = q for each i. A is OCR, but there cannot be a finite
sequence {^n} of increasing open sets in A with Λ = U ̂  and
^ % ~ ^ _ ! Hausdorίf. For if Bk denotes the tensor product of k
copies of By A contains a copy of Bk for each k, and the restriction
of {^} gives such a sequence for Bk. But if ft is a Hausdorίf
open subset of i?fc, Bk ~ <%S contains a copy of Bk_u so such a se-
quence for i?fc must contain at least k + 1 elements by induction.
In particular, there cannot be a finite composition series {Jn} for A
with (Jn+JJny Hausdorff. This provides a solution to Problem 4.7.25
of [5]. A is GTC if and only if qeJ(B), which is the set of se-
quences converging to 0. Thus, if q = ((Q Jjj, (Q O)' " /' ^ί^ ) =

^(^.) — 0, and A contains a dense set of points which are not sepa-
rated (see [5, 3.9.4 and 4.7.9]).

(b) Let B be the C*-algebra of sequences of 2 x 2 matrices
converging to a scalar multiple of the identity, and let q be a projec-
tion of B with B« = (B% for example, q = ((J jj), (J J), . •), and
let A be the tensor product of a countable number of copies of B
with respect to q. A is Hausdorff, so A is GTG (this also follows
from Corollary 5.7), but the GTC composition series for A does not
have finite length. In fact, A does not have a finite composition
series {J%} such that Jn+ι/Jn has continuous trace.

(c) In (a) and (b) above, let each Ai — B φ C, pt = (0, 1); then
A = ®{AU p^ has the same properties as before, and has only finite-
dimensional irreducible representations.

Remark. All of the above C*-algebras are AF algebras.
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Finally, we examine the question of when a primitive ideal of
an infinite tensor product is locally closed (i.e. open in its closure).
If B is a C*-algebra and Ke Prim (B), set K° = Γi{Je Prim (B): J^K}.
(set K° = B if if is closed in Prim (£)). Then iΓ is locally closed
if and only if K° Φ K; in this case K°/K is a simple C*-algebra,
said to be the simple C*-algebra lying above K. If K is the kernel
of a traceable irreducible representation π on a Hubert space < ^
if0 - π~\^^{^)) ΦK, so K is locally closed, and #0/ίΓ is an
elementary C*-algebra. In particular, if B is type I, every element
of Prim (B) is locally closed.

PROPOSITION 5.9. The point ( xt •) e Π'(XU Y,) is locally
closed if and only if xt is locally closed in Xi for each i and xt

is closed in Yt for almost all i. Hence, if A = ® (Aif pt) such that
(AF, BF) satisfies (Pr) for each F, and JePrim(A), r(J) = (Jt), then
J is locally closed in Prim (A) if and only if Jt is locally closed
in Prim (Aτ) for all i and pt e J\ ~ Jt for almost all i.

Proof. The proof of the first assertion is straightforward, and
is omitted. The second assertion follows from the fact that the
closure of {JJ in Prim**(A%) = {Ke Prim (A): K^J, pt$ K}; for almost
all i, Pi ί Ji'y and if pt £ Ju {/J is closed in Prim^ (A{) if and only if

COROLLARY 5.10. If A = ® (Ai9 pt), each Aέ type I, Je Prim (A),
r(J) = (JJ, and πt e At with ker TΓi = Jί} then J is locally closed in
Prim (A) if and only if 0 < dim π^p,) < oo for almost all i.

The author thanks Philip Green for valuable discussion concerning
5.9 and 5.10.

6* Infinite product weights and characters* In this section,
we define an infinite product weight construction on an infinite tensor
product of C*-algebras which is a generalization of the construction
of an infinite product state, which is then used to determine all the
characters on such a C*-algebra. This construction was done in-
dependently for traces by Guichardet [6].

Let φ be a lower semicontinuous (lsc) weight on a C*-algebra
B. Write % = {xe B: φ(x*x) < oo}, mφ = 3^31,, Nφ = {xe B: φ(x*x) = 0},
πφ the representation from the GNS construction on ^ίfφ — yiφ/Nφ, ηφ

the canonical map of 3tφ into Stfψ. φ extends a weakly lower semi-
continuous weight φ on the universal enveloping von Neumann algebra
B by setting φ — sup {f:feB*, /<; φ}, where / is the canonical ex-
tension of / to B. (See [3] for details.)
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DEFINITION, φ is said to be weakly semifinite if φ is semifinite.
For example, if Φ is semifinite, or if ίflφ is dense in 2?, then φ

is weakly semifinite. If φ is weakly semifinite, πφ, £%fφ can be
identified with πφ, 2ίfφy and πφ{B)" = £f(&\ where & is the left
Hubert algebra (3^ n 3i?)/tf*.

li-Φ and ψ are lsc weights on B and C respectively, we can
define a lsc weight φ (x) ψ on B®C as follows. Let F = { / G J B J :

on £+}, G = { # e C j : # ^ f on C+}, and for x e (B(x) C)+, set
= sup/6jP (/(x) #)(#). If Φ and ψr are weakly semifinite,

geG

φ (x) ψ can be described alternatively as the weight defined by the
full left Hubert algebra corresponding to & ® ^ , where & =
(91? Π 3£)/2^, i f - (9Ϊ? Π 9lJ)/i^, so that πφ%φ = πφ(g) πψ.

Now let A = ® (-Ai, ^J, and let ^̂  be a lsc weakly semifinite
weight on At. Suppose that, for almost all i, φί{

/pt) = 1; let E =
{ί: φi(pt) ̂ t 1}. Let J^ be the left Hubert algebra ( ^ . n ^ ) / ^ . ; let
rj. = Ύ)φjφD for i ί ί/; let j y = ® (ĵ <, ^J be the set of linear com-
binations of elementary tensors of the form (g) ζz, where £4 = Ύ]i a.e.
Then j ^ / has a natural structure as a left Hubert algebra. Let φ
be the weight on A defined by the corresponding full left Hubert
algebra.

DEFINITION, φ is called the infinite product weight of the φi9

denoted ®ΐe/ φt.
φ is lsc and weakly semifinite; φ is a semifinite trace if and

only if each φt is a semifinite trace. If each φt is a positive linear
functional, φ is not necessarily a positive linear functional:

PROPOSITION 6.1. φ is a positive linear functional if and only
if each φi is bounded and Π\\φi\\ <. °°. In this case, \\φ\\ = Π\\φi\\.

If fa], φ, and Sϊf are as above, then the completion of S/ is
— ® {Sίfφtf Vi) a n ( i the representation πφ is the representation

® πφ. on §ei defined as in Lemma 4.4; πφ(A)" = ® (πφ.{A%)", £ίfφ., η%).
Thus φ is factorial if and only if each φi is factorial. In particular,
φ is a character if and only if each φt is a character, so we have
a way of constructing characters on A.

Now we will show that, if (AF, BF) satisfy (Ch) for each F (in
particular, if each A{ is type I, or if each is separable and nuclear,
or if each is simple), then every character on A is an infinite tensor
product. Let ψ be a character on A) for each F, write A — AF®BP,
ψ = ΦF®fF for characters φF on AF, ψF on BF. φF = ®i&Fφi9

where φt is a character on At.

LEMMA 6.2. For almost all i, 0 < ^i(Pϊ) < »,
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Proof. Let Jψ = 9^; Jψ is a closed 2-sided ideal of A, and JV ΞJ
By Lemma 4.5, there is a finite set FQl for which J^Γ10V(AF) 3

Π σF(AF). Let α e AJ have 0>(α) 6 Jψ, ψ{oF{a)) > 0. α ® QF =
σF(a)£jf = JφF(S)JψF, so aeJφF,qFeJψF (see [6, Lemma 7]). For
i <2 F, let E = JP U {i}; #*• = Λ <g) 5^, ψ> = ̂  (x) ̂ , JΨp = J^. (g) J ^ .
flfj — Vi®<lE€Jφi®JψE, so Pi^Jφ.. But 9 ^ contains all projections
of J^., so ^i(Pi) < co. Also, ψ{oF{a)) > 0, so ψF(qF) > 0, and so

&(Pi) > 0.

Let F Φ 0 be a finite set with 0 < ψF{qF) < °° as above; then
0 < Φi(Pi) < °° for i $ F. For i g JP, renormalize ^̂  so that φi(pt) = 1,
and form ^ = ® ̂ . Let ae AF with 0 < ΦF(a) < oo; then ψ{oF{a)) =
ΦF(OΉF(QF), so 0 < ψ(σF(a)) < <>o. Also, 0 < Φ(σF(a)) = ^ ( α ) < oo.

Renormalize φ so that ^(^^(α)) = ψ(oF(a)) by renormalizing one of
the φu ieF. Then φ is still ® ̂ έ, and if E 2 JP, φ and α/r agree on

LEMMA 6.3. ψ = ψ.

Proof, φ and ψ agree on %lφ n (U σ ^ ( ^ )̂)? which is dense in 31̂
in its pre-Hilbert space structure, so the lemma follows from the
argument in the proof of [5, Lemma 6.5.3].

We summarize the previous considerations in a theorem.

THEOREM 6.4. Let A = ® (Aif pt); suppose, for each F Q I
finite, (AF, BF) satisfies (Gh). Then every character of A is of the
form ® φίf where φi is a character on At with φi{p%) = 1 a.e.

If each At is type I, the situation is very nice, since there is a
one-one correspondence between primitive ideals and characters. The
result can be stated as follows:

THEOREM 6.5. Let A = ®(Λ, pt) such that (AF, BF) satisfies (Pr)
and (Ch) for each F; let Je Prim (A), r(J) = (Jt). Suppose, for each
i, Jι is the kernel of a traceable irreducible representation πi of At

(in particular, if Aύ is type I). Set nt — dim πif rt = dim π^p,).
There is a finite set E with r t > 0 for igE. Then

(a) J is the kernel of at most one traceable factor representation.
(b) J is the kernel of a traceable factor representation if and

only if J is locally closed in Prim (A), i.e., if and only if rt<oo for
almost all i. The corresponding character is ® ^ , where φt is the
character of At corresponding to πif normalized so that φi{p%) = 1 a.e.

(c) / is the kernel of a traceable factor representation with
finite trace if and only if nt < oo for all i and I L ^ % M < c o

(d) J is the kernel of a traceble irreducible representation if
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and only if r< = 1 for almost all i.

Proof, (a) and (b) have been proved above and in 5.10. (c)
follows from 6.1, since if ψ is the trace on a In factor normalized
so that an r-dimensional projection has trace 1, then | | ^ | | = n/r.
Proof of (d): (<=) follows from (b) and 5.2; (=>) follows from 6.7.5
and 4.1.10 of [5], since if rt > 1 for infinitely many i, then two
nonequivalent irreducible representations with kernel J can be con-
structed by the method of Lemma 4.4 (see [6], or [9, p. 170]).

Theorem 6.5(c) clarifies and generalizes Proposition 12 of [6].

It is worth noting that if J is locally closed in Prim (A) then
J°/J = [® (JS, Pi) + J]/J = ® ( W , , Pi). If Ji is the kernel of a
traceable irreducible representation, then J\\Ji is elementary. So
under the hypotheses of Theorem 6.5(b), J°/J is a matroid C*-algebra.
The existence and uniqueness of trace on a matroid C*-algebra was
proved by Dixmier. Thus, 6.5(a) and (b) can be restated as follows:
J is the kernel of a (necessarily unique) traceable factor representa-
tion of A if and only if there is an ideal K of A containing J with
K/J a matroid C*-algebra. This observation is due to Philip Green.

Without the hypothesis that J{ be the kernel of a traceable
irreducible representation, all four conclusions can fail, (a) can fail
if one of the A/s has two nonequivalent traceable factor represen-
tations with the same kernel; (d) will fail if one of the J/s is not
the kernel of a traceable irreducible representation, (b) can fail as
follows. If J is not locally closed it can still be the kernel of a
traceable factor representation: let B be a separable C*-algebra with
identity which is not simple, but which has a faithful H factor
representation (e.g., B = C*(G), where G is a countable discrete
amenable group with infinite conjugacy classes), and let A = ®{AU 1J
with At = B. A has a faithful H factor representation, but 0 is
not locally closed in Prim (A). Conversely, a separable simple C*-
algebra need not have any characters, so J could be locally closed
but not the kernel of a traceable factor representation, (c) can be
rephrased as follows.

PROPOSITION 6.6. Let A = ® (Ai9 pτ) such that (AF, BF) satisfies
(Pr) and (Ch) for each F. Let JePrim(A), r(J) = (J,). Let E be
a finite set for which pt £ J* for i&E. Then J is the kernel of a
traceable factor representation of A with finite trace if and only
if there is a traceable factor representation πt of At with finite
normalized trace τt for each i, with ker πt — Jif such that
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Theorem 6.5 shows that an infinite tensor product of type I C*-
algebras has only a limited number of characters. On the other
hand, we will now show that such a C*-algebra has enough char-
acters to separate points. We first need a lemma which is almost
certainly known.

LEMMA 6.7. Let B be a type I C*-algebra, q a projection in B.
Then there is a π e B with 0 < dim π(q) < °°. Hence there is a
(suitably normalized) character φ on B with φ(q) = 1.

Proof. Let {Ja} (1 <̂  a <; σ) be a composition series for B, with
Ja+JJa CCR. Let β be the first ordinal for which qeJβ. If 7 is a
limit ordinal for which qeJr, \Ja<^Ja is dense in Jΐf so there is an
a < 7 and reJa with || q — r ]] < 1. Let Φ be the quotient map of
Jr onto Jr/Ja; \\Φ(q) - Φ(r)\\ = | |<%)| | < 1. But <%) is a projection,
so Φ(q) — 0, i.e., qeJa. So β is not a limit ordinal. Let Ψ be the
quotient map of Jβ onto Jβ/Jβ-ΰ Ψ{q) Φ 0, so there is a π0 e (Jβ/Jβ^T
with πo(Ψ(q)) Φ 0. But ^ / J ^ is CCR, so 0 < dim πo(Ψ(q)) < °o. Let
7ZΊ = π0 o f, π the extension of πL from J^ to B.

THEOREM 6.8. Lei A = ® (A*, p,), eαcfc A< ίype I. Then the
characters of A separate the points of A, i.e., if aeA+, there is a
character φ of A with φ{a) > 0.

Proof. Let ^ be a character on At with ψi(pt) = 1. Let α e At,
and let ^ be a character on A^ with φF(a) > 0 (A^ is type I). Let
φ = φF0 «g)iίSi, ψt); φ(σF(a)) > 0. Let J = Π {^: ^ a character on A}.
/ is a closed 2-sided ideal of A, and J Π ̂ (A^) = {0} for each F, so
J = 0 by Lemma 4.5.

A particular application of 6.5 and 6.8 is to Adele groups.

PTHEOREM 6.9. Let G be an algebraic group defined over Q, G
the points rational over Qp, GA the adele group of G. (It is known
that each Gp is type I.)

(a) An element of Prim (GA) is the kernel of a traceable factor
representation if and only if it is locally closed, and the represen-
tation, if it exists, is unique. The traceable factor representations
of GA separate the points of C*(GA).

(b) If each Gp is CCR (for example, if G is nilpotent), then
every ideal of Prim (GA) is the kernel of a unique traceable factor
representation.

EXAMPLES, (a) Let 3$f be a separable Hubert space, B =
+ Cl, l a countable index set, A, = B, Kt =
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Aiy A — ®(Aif l t). At = {λϊ, ωj, where ωt is faithful and λ, is one-
dimensional; ker λt = !£"<. If J e Prim (A), r(J) .= J*, ττέ 6 At with
ker πt = Ĵ , then J is the kernel of a traceable factor representation
if and only if Jt = JΓ* a.e., i.e., if and only if πt is one-dimensional
for almost all i. Thus, 0 e Prim (A), but 0 is not the kernel of a
traceable factor representation. From 6.5(d), every traceable factor
representation (hence every traceable representation) is type I, and
A has enough traceable irreducible representations to separate the
points of A. But A is not type I; in fact, A is NGCR by Theorem
5.3.

(b) A slightly more complex version of the same phenomenon
occurs in the context of group representations. Let {pt} be an
arbitrary sequence of prime numbers; let G* be the jvadic ax + b
group, Kt the compact open subgroup of integral points, and G =
G({Pi}) = Π'(Gίf Ki). (See [1].) Gt consists of a family of one-dimen-
sional representations and one faithful infinite-dimensional represen-
tation ωu and there is an infinite-dimensional space of vectors invariant
under α>ί(JSΓ<). As above, every traceable factor representation of
G is type I, and there are enough to separate the points of C*(G),
although C*(G) is NGCR.

7* Construction of factor representations* In this section, we
show how to construct representations of A = ® (Aif p{) generating
a given hyperfinite factor. We do not make any restrictions on the
C*-algebras A^

DEFINITION. Let M be a factor. A generating system for M is
a family of mutually commuting type I subfactors of M which
together generate M. M is said to be hyperfinite if it has a gen-
erating system.

Since any type I factor has a generating system consisting of
finite-dimensional factors, every generating system for a factor M
has a "refinement" consisting of finite-dimensional subfactors. Thus,
if M has a separable predual, the above definition is easily seen to
be equivalent to the usual definition of a hyperfinite factor.

For a factor M, we will use the notation w(M) to denote the
smallest cardinal of a σ-weakly dense subset of M (=topological
weight of Λf*). For notational convenience, we will alway assume
that hyperfinite factors are infinite-dimensional, and that a generating
system {ΛΓJ (i e I) for a factor M satisfies card / = w(M).

DEFINITION. A von Neumann algebra M is called maximally infi-
nite if M = M®^{£ίf), where d i m ^ = w(M). If M has separable
predual, "maximally infinite" is the same as "properly infinite".
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DEFINITION. Let {PJ (iel) be a set of projections in a von
Neumann algebra M. Set lim inf {PJ = supF (infiίSJ.P<), where F runs
over finite subsets of /. {PJ is said to be fundamental if
lim inf P, = 1.

LEMMA 7.1 Let M be a hyperfinite factor with generating sys-
tem {Mi}, and let Pi eMt be a projection with inf Pi Φ 0. Then
{PJ is fundamental.

Proof. For any finite F, (inf<(ίί. {PJ) e {M,: i e F}', so lim inf {PJ
is in {M,: iel}' = M'; also lim inf {PJ ̂  inf {PJ Φ 0.

LEMMA 7.2. Le£ M be a maximally infinite hyperfinite factor,
/ αw irateα? se£ wiίfc card / = w(M). For each i, let At = J ^ ^ G ^ ) ,
dim Sift <; w(M). Let pt be a ^-dimensional projection in Aif and
let A = ® (Aί, ί>i). Tfcew ίfcere is a representation π of A with
π{A)" ~ M.

Proof. The proof is virtually identical to the proof of [8, p.
850], which is essentially Glimm's proof that a non-GCR C*-algebra
has a non-type-I factor representation.

LEMMA 7.3. Let M be a maximally infinite hyperfinite factor',
let {Ui} (i G I) be cardinals with nt ^ w(M), card / = w(M). Then
M has a generating system {ikfj with Mi a In. factor, and a funda-
mental set of projections {PJ with PteMi9 dim Pt = 2 (dimension
in Mt).

Proof. Let A = ® {Aίf pt) with A, ^ ^f<^(^ft)9 dim Sίf, = ni9

dim Pi = 2, and let π be as in Lemma 7.2. For each i, let πt be
the restriction of π to At as in § 3 (regarding A = A< (g) [®y#< (A, , py)]),
and set Λf€ = π^AJ". {MJ is a generating system for M. Put
Pi = 7Γi(p<); then inf Pi = π(® pJ ^ 0, so {PJ is fundamental by
Lemma 7.1.

THEOREM 7.4. Let A = ® (A ,̂ pΛ) (i e I), card I = w. L ί̂ TΓ̂  G A€,
%i e iίf* a.e., wiίA nt = dim TΓ̂  ̂  n. Set ^ = {i: dim πt(p^ ̂  2}; sup-
pose card Ix — n. Then, if M is any maximally infinite hyperfinite
factor with w(M) — n, there is a representation π of A with
π(A)" = M, such that the restriction of to At is a multiple of πt.

Proof. Let I2 = {i: dim πt(Pi) < 2}; card I2 ^ n. Set Aι =
® i6Zl(Ai, Pt), A2 = ® i e / 2(A ΐ, pJ. Form π\>e A2 on Si? as in Lemma
4.4. If πx is a representation of Ax with TΓ^AJ" = M, then let π =
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πx (x) τr2 be the corresponding representation of A = At (x) A2. π{A)" =
-M (gj £f{3!f) = M since dim β^ ^ n. Thus, we may assume £ = I.
Let Mt and Pέ be as in Lemma 7.3, and let Sift be the Hubert space
of 7Γ<# Since dim π^Pi) ^ 2, w6 may identify £f{βίf^ with Jlf* in
such a way that Pt ^ ^ ( p j . Let Λf act on a Hubert space 3ίΓ\ set
Q^ = inf^{PJ, and let ^tΓF = QFSΓ. Since {PJ is fundamental,
[J J3ΓF is dense in SίΓ. Let Jlί̂  = {Mt: i e F}" ^ ®i6jp Af,, a type I
factor.

For each i, we may write JT"=<%t(g) Tt, Mt ~ =5f ( ^ ) (x) 1
using the above identification of Mi and Jίf (<% )̂; more generally,
we can write JT~ = 3ίfF® 3^, ΛΓ̂  = <9?(£ί?F)(g) 1 with ^F-=%^F^.
Let pj. be the representation ( 0 i e f ^ ) (x) 1 of A^ on if. If EΏ,Ff

QEe{Mi:ieFY9 so J^S is an invariant subspace for pF. Also, if
aeAF, ρE(σFE(ά}) is of the form ρF(a) (x) ( ® i e ^ F ^ife) (8) 1) But
^ ^ i>4(̂ i) for each i, so ρE(oFE{a)) and ^(α) agree on J^S =
(TίieE~F PΪ)^E} Thus, the subspaces J^S and the representations
^ satisfy the conditions of Lemma 4.3, so we may form the corre-
sponding representation π of A on <5f. The restriction of π to At

is ρif so π(A)" 2 ρt(Ai)" - M,; Thus π(A)" 2 M. But if αe AF,
π(σF(a)) = RFpF(a), where i2F = infίίSί. ^ ( p j , so π(σF(a))eM, π(A)"GM.

This theorem is closely related to MarechaΓs theorem [8] which
states that, if B is a separable C*-algebra which is not type I, and
if M is an infinite hyperfinite factor with separable predual, there
is a representation π of B with π{B)" = M. If A is a infinite tensor
product, Theorem 7.4 gives an explicit construction of such a repre-
sentation, whereas MarechaΓs method is somewhat nonconstructive.

If B is a C*-algebra, we put an equivalence relation ~ on B by
letting π — p if ker π — ker p and π(J3)" = p{B)". This equivalence
relation is much weaker than quasi-equivalence (for example, it will
not distinguish between irreducible representations with the same
kernel), but if B is not type I this relation is probably the strongest
one for which there is any reasonable hope of understanding the set
of equivalence classes. If A — ® (Ai9 p j , where each At is separable
and type I and where there are only countably many i (so A is
separable), then A is nuclear, so every factor representation of A
generates a hyperfinite factor. Thus, Theorem 7.4 and Theorem 6.5
together give an explicit construction of a representative of each
equivalence class of A under ~ .
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