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NORMAL CONES, BARRIER CONES, AND THE
"SPHERICAL IMAGE" OF CONVEX

SURFACES IN LOCALLY
CONVEX SPACES

THEODORE LAETSCH

This paper discusses relations between a closed, convex
set in a locally convex space and its normal cones and barrier
cone in the dual space. Results of Wu and de Andrade on the
Gauss map and spherical image of a convex hypersurface in
a Hubert space are generalized to the topological vector
space situation, and additional information is obtained on
the relation of the interior of the spherical image and bar-
rier cone to the size and shape of the given convex set.

1* Introduction* Suppose K is a closed, convex set with a
smooth boundary M and a nonempty interior in a finite- or infinite-
dimensional inner product space. Let Σ be the unit sphere of the
space. The "Gauss map" Ύ:M~-*Σ associates to each point xoeM
the outer unit normal vector, Ύ(x0), to M at xQ. The outer unit
normal can be characterized as the unit vector u = y(xQ) which is
uniquely determined (when M is smooth) by the condition

(1.1) (x - xOf u) ^ 0 for all x e K .

If M is not smooth, it is customary to call all (nonzero) vectors u
satisfying (1.1) "normal" to M at xQf and the Gauss map becomes a
multivalued function associating to each xoeM the set 7(a?0) of all
unit vectors satisfying (1.1). The "spherical image" of M (or of K)
is 7(Λf), the image in Σ of M under 7.

In a number of recent papers, [31, 9, 30, 1, 2], several authors
have studied properties of the spherical image and the relation of
these to properties of M. Wu [31, 30] has treated the finite di-
mensional case and de Andrade [1, 2] considered the Hubert space
case.

It is the purpose of this note to point out the relation between
these results — especially those of de Andrade — and certain funda-
mental theorems in the general theory of convex sets and functions
in topological vector spaces: In particular, the Bishop-Phelps theorem,
the theorems of James on weak-compactness and reflexivity, and the
theorems of Moreau and Rockafellar on the relation between con-
tinuity properties of a convex functional and the size of the level
sets of its convex conjugate function. With the help of these general
theorems, we are able to obtain very simple proofs, not only of the
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theorems of Wu and de Andrade, but of the natural generalizations
of these theorems to Banach spaces and locally convex topological
vector spaces.

The most significant geometric distinction between the finite and
infinite dimensional cases is that, in the finite-dimensional case, if K
is unbounded, it contains a half-line; in the infinite-dimensional case,
there always exists an unbounded K which contains no half-line.
Section 3 below is devoted primarily to generalizations of de Andrade's
characterization [2] of the three possibilities (M bounded, M un-
bounded but bounds no half-line, M bounds a half-line) in terms of
the spherical image of M. In § 5, we carry the analysis further by
noting relationships between the interior of the spherical image of
M and properties of the intersection of M and K with hyperplanes
and half spaces. We incidentally obtain the generalization (see Theo-
rem 3.1.2 and Corollary 5.2.4) of the result of Wu [30] and de
Andrade [1] that the interior and the closure (relative to the unit
sphere Σ) of the spherical image are convex. (Wu gives a three-
dimensional example in which the spherical image itself is not con-
vex.) The proofs of the results of §§ 3 and 5 are given in §§ 4 and
6 respectively; these proofs usually consist of pointing out the ap-
plicability of the relevant general theorem on convex functions.

Throughout, the transition from the functional analytic state-
ment to the geometric statement is based on the elementary observa-
tion that the spherical image can be identified with the normalized
set of all linear functionals which attain their supremum on K.

2* Notation and terminology*

2.1. Let E and Ef be two real linear spaces which are placed
in duality by a bilinear form {%, x') (x e E, xr e E') which separates
points of E and of Eτ [7, Chap. IV; 17, Chap. 5]. We assume,
whenever a topology is needed but not specifically described, that
E or Ef is provided with a topology compatible with the duality (so
that E' or E may be identified with the dual space of E or E',
respectively). The weakest and strongest such topologies (on E,
for example) are the weak topology σ(E9 E

f) and the Mackey topology
τ(E, E'). We will also refer to the strong topology, β(E', E), on Ef.
When E is a Banach space, the β(E', E) topology is the same as the
norm topology on the dual E'; it is not, in general, compatible with
the duality. When the topology β(E', E) on the dual of a locally
convex space E is compatible with the duality of E and E', then E
is called semireflexive. A Banach space is semireflexive if and only
if it is reflexive.

For S £ E, cl(S) and int(S) denote the closure and interior of
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S, respectively, relative to the topology in question. In a Banach
space, these symbols unmodified always refer to the norm topology.

2.2. We recall some terminology from the theory of convex
sets and convex functions (cf. [11; 12; 26; 27]). Let (E, E') be a
dual pair as described above, and let if be a closed, convex subset
of E. An internal point of K is a point x e K such that every
half-line in E emanating from x contains a point of K distinct from
x; this is sometimes described by saying that K is radial or absorb-
ing at x. The set of all internal points of K is the core of K7

denoted by cor (K). We define bd (K) = iΓycor (K). The recession
cone (or asymptotic cone) of K, denoted by 0+iΓ, is the set of all
y e E such that, for every x e K, the half-line x + Xy (λ ^ 0) belongs
to K; 0+K is a closed, convex cone which always contains at least
the 0 of E, and it can be alternatively characterized by

0+K = {yeE:K+y^K}

[29; 27, §8]. By definition, 0+K Φ {0} if and only if K contains a
halfline. The indicator function δκ of K is the extended real-valued
function which is zero on K and + °° on E\K; this function is con-
vex (since K is) and lower semi-continuous (since K is closed). We
say that if is a convex body if the interior of K is not empty (with
this definition, a convex body is not necessarily bounded).

The barrier cone of K, denoted by bar (K), is the set of all
elements of Ef which, when considered as continuous linear func-
tionals on E, are bounded above on K; it is a convex cone in Ef

containing the 0 of Ef. Clearly, K is bounded if and only if
bar (K) — E'. The normal cone to K at x0 (x0 e K) is the set of
xr e Ef such that (x — x0, x') <; 0 for all x e K; it coincides with the
subdifferential of dκ at xQ, that is, the set

ddκ(x0) = {xr 6 E': for all x e E, δκ(x) ^ δκ(x0) + (x - xQ, xf)} ,

and hence we denote it by dδκ(x0) (cf. [11, § 9]). For x0 & K, dδκ(x0)
is empty; for xQ e K, dδκ(xQ) is a σ(E\ jE7)-closed, convex cone in Ef

containing 0, and dδκ(x0) = {0} for every x0ecor (K). For xoebά(K),
the nonzero elements (if any) of dδκ(x0) are precisely the supporting
functionals of K at xQ, that is, the nonzero x' e Ef satisfying

(x0, x') = sup {(x, xf): x 6 K} ,

and x0 is a support point of K if and only if dδκ(x0) contains non-
zero elements. The set of all supporting functionals of K, together
with the zero functional, is thus
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dδκ(K) = dδκ(bά (K)) = u dδκ(x).
xeK

Clearly, dδκ(K) C bar (K).
The poZαr (in Er) oί K Q E is

K° = {3' 6 £7': <α, α>'> ̂  1 for all x e K] .

Analogously, the polar (in E) of C Q E' is

°C = {ίc6E: (x, a>'> ̂  1 for all x ' e C } .

If C is a convex cone in Ef, this is equivalent to

°C = {xe E: (x, x'} ^ 0 for all x' e C} .

The basis for much of what follows is the known fact that
°[bar(.K)] = 0+K [29, Theorem 2A(d)]; that is, yeO+K if and only
if (y, x'} ^ 0 for all xf e bar (K). (De Andrade's Lemma 1 [1, 2] is
a Hubert space version of this result.)

2.3. To relate the above notation with that used by de Andrade
[2], we assume that E is a Banach space, let Σ' be the boundary
of the unit ball in the dual space E', set M — bd (K), and define a
multi-valued map v.M*-*!' by

v(x) = {#' 6 # ' : a' 6 2" and -a?' e 33*0*;)}

= ^'Π[-3ί j r(ίB)].

If if is a convex body, then M is precisely the topological boundary
of K and v(#) is nonempty for every xβM (support theorem for
convex bodies [12, page 64]). If, [furthermore, M is smooth, then
v(x) is the normalized linear functional which determines the unique
supporting hyperplane to K at xf and if E is Hubert space, the
direction of v(x) is normal to this hyperplane and points from x
towards the interior of K.

Since dδκ(M) is a cone in Ef (it contains all positive multiples
of its elements) and v(M) = 2" Π [~dδκ(M)], the topological properties
of 3^(M)\{0} relative to E' are precisely analogous to the properties
of v(M) relative to Σ'. Furthermore, in a Hubert space, a cone C
which is not a line is convex if and only if C Π Σf is geodesically
convex. Thus, unless M consists of two parallel halfplanes, the
convexity properties of ddκ(M) and its closure are precisely analogous
to the geodesic-convexity properties of v{M). (Cf. [4, Theorem
28.13].)

3* Relations between K, bar (if) and ddκ[bd(K)].

3.1. de Andrade's result [2, Theorem A] can be formulated as
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a correspondence between properties of the boundary M of a convex
body if in a Hubert space and properties of dδκ(M):

M is bounded if and only if dδκ(M) is the entire space; M is
unbounded and bounds no half-line (i.e., 0+K = {0}) if and only if
dδκ(M) is dense and has empty interior; M is unbounded and bounds
a half-line if and only if dδκ(M) is contained in a halfspace.

This result continues to be valid precisely as stated in any
reflexive Banach space (cf. Theorem 3,1.3 and its corollary below),
and it follows from James criterion for reflexivity that it is valid
only in reflexive spaces (when K has nonempty interior; Theorem
3.1.5 below). Now in a reflexive space, the weak compactness of a
bounded K implies dδκ(M) = bar (K); and, more generally, in a
Banach space, dδκ(M) is dense in bar (K) (Bishop-Phelps theorem,
see below). Hence the content of the above assertion is essentially
unchanged by replacing dδκ(M) by bar (K), and in this form we
obtain the broadest and simplest generalization (all proofs are given
in the next section):

3.1.1. THEOREM. Let (E, Ef) be a dual system of vector spaces
with topologies compatible with the duality. Let K be a nonempty,
closed, convex subset of E, and set M = bd (K). Then

(a) K is bounded if and only if bar (K) = E'.
(b) 0+K Φ {0} if and only if bar (K) is contained in a closed

homogeneous half-space of E' (i.e., a set of the form {xf: (x0, x
rs) ^ 0}

for some xoeE).
(c) 0+K = {0} if and only if bar (K) is dense in E\
(c') 0+K — {0} and K is unbounded if and only if bar (K) is a

proper dense subset of E'. In this case, bar (K) has empty interior.

This result together with the Bishop-Phelps theorem on sup-
porting functionals and James criterion for weak compactness yield
immediately the following correspondence between properties of K
and properties of dδκ(M):

3.1.2. THEOREM. In addition to the hypotheses of the preceding
theorem, assume that E is complete. Then

(a) dδκ(M) = Ef if and only if K is σ(E, Er)-compact.
If in addition, either K is a convex body or E is a Banach space

(with dual E'), then the β(E', E)-closure of dδκ(M) is convex and
(b) 0+K Φ {0} if and only if dδκ(M) is contained in a closed,

homogeneous half-space of Er.
(c) 0+K = {0} if and only if dδκ(M) is dense in E'. If non-

empty, the interior (relative to any topology compatible with the
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linear structure of Ef) of β(E', E)-d [bar (K)] is convex.

The hypothesis following (a) appears to be essential for (c), since
(i) in any incomplete normed linear space there exists a bounded,
closed, convex set K with dδκ(M) not dense in E' [5, Theorem 3],
and (ii) there exists a closed, convex set with empty interior (in a
complete, metrizable, topological vector space) with no supporting
functionals [23; 12, page 166].

We now take E to be the dual Xr of a Banach space X and
take E' to be the "original" space X; then we are able to replace
bar (K) by dδκ(M) in the assertions of Theorem 3.1.1 and thus obtain
a precise generalization of de Andrade's Theorem A [2]:

3.1.3. THEOREM. Let K be a σ(X', X)-closed ("weak*-closed"),
nonempty convex set in the dual Xr of a Banach space X. Let
M — bd (K) and dδκ(M) be the subset of X containing points which
generate supporting functionals of K. Then cl [dδκ(M)] is convex
and

(a) K is bounded if and only if dδκ(M) = X.
(b) 0+K Φ {0} if and only if dδκ(M) is contained in a closed,

homogeneous half-space of X.
(c) K is unbounded and 0+K = {0} if and only if dδκ(M) is

dense in X but is not equal to X. In this case, int [dδκ(M)] = 0 .

3.1.4. COROLLARY. If K is a closed, convex subset of a reflexive
Banach space E, then conclusions (a) to (c) of Theorem 3.1.3 hold
with X replaced by E' (dδκ(M) £ E').

As the next theorem shows, the validity of conclusion (c) de-
pends essentially on the reflexivity of the space in question.

3.1.5. THEOREM, (a) Suppose E is a quasi-complete [7, Chap.
Ill, § 2, No. 5], locally convex Hausdorff topological vector space
with dual E'. Then ddκ(M) = Er for every nonempty, bounded,
closed, convex set K Q E if and only if E is semireflexive.

(b) Suppose K is a closed, convex body in a Banach space E.
Then dδκ(M) = Er if and only if E is reflexive and K is bounded.

4* Proofs of theorems of § 3*

4.1. On Theorem 3.1.1. Conclusion (a) is well-known; cf. [7,
Chap. IV, §2, No. 4], As pointed out above, 0+K = °[bar(uT)]. By
the bipolar theorem [7, Chap. IV, § 1, No. 3; 12, page 68], (0+K)° =
°[bar(iΓ)]° is the σ(Er, Enclosure of the convex set bar (if), and is
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also (by convexity) the closure of bar (if) in any topology com-
patible with the duality [7, Chap. IV, §2, No. 3]. Conclusions (b)
and (c) follow immediately.

The first part of (c') is obvious from (a) and (c). If any convex
set B (in particular, bar (if)) has nonempty interior, then its interior,
int(2?), is equal to the interior of its closure, int[cl(i?)] [12, page
59]. (In particular, if int [bar (if)] Φ 0 , then int [cl (bar (if))] £
bar (if); this is de Andrade's Lemma 2 [2] and Lemma 3 [1].) Thus
if cl [bar (if)] = E' and int [bar (if)] Φ 0 , then int [bar (if)] = Ef =
bar (if), so if is bounded. This completes the demonstration of (c')

4.2. On Theorem 3.1.2. If if is σ(JE9 i£')-compact, then every
continuous linear functional assumes its maximum on if and thus is
a supporting functional; therefore, ddκ(M) — E'. Conversely, James
[15; 14; cf. 10, Ch. 1; 12, page 157] has shown that if every con-
tinuous linear functional assumes its maximum on a closed, convex
set if, then if is weakly compact. This completes the proof of (a).
(This remains valid if E is only quasi-complete.)

To prove (b) and (c), we use the following facts; Proposition
4.2.1 is a corollary of Theorem 3.1.1, while Proposition 4.2.2 follows
from the Bishop-Phelps theorem. We use the notation of Theorem
3.1.1.

4.2.1. PROPOSITION, (a) If O+if Φ {0}, then dδκ(M) is contained
in a half-space of Er.

(b) // dδκ(M) is dense in E', then 0+if = {0}.
(c) If dδκ(M) is dense in Er and has a nonempty interior,

then K is bounded.

4.2.2. PROPOSITION. Suppose that E is complete and either K
has nonempty interior or E is normable. Then the polar of dδκ{M)
is the recession cone of if:

°[ddκ(M)] = 0 + Z .

Proof. Under these hypotheses, a theorem of Bishop and Phelps
[5, Theorem 2; 24, Corollary 1; 12, page 165] asserts that dδκ(M) is
β(E', E)-άense in bar (K). Thus

dδκ(M) £ bar (K)

Q β(E', £?)-closure of dδκ(M) (Bishop-Phelps)

£ σ(E', E)-c\osure of dδκ(M) (since β(E', E) 2 σ(E', E))

£ (°[dδκ(M)])° (bipolar theorem).
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Thus °[dδκ(M)] = °[bar(ίQ] = Q+K.
Conclusions (b) and (c) of Theorem 3.1.2 now are obvious.
The β(E\ jE)-closure of dδκ(M) is convex since, by the Bishop-

Phelps theorem, it coincides with the β(E\ Enclosure of the convex
set bar(iΓ). The last assertion of 3.1.2 follows from the fact that
in any topological vector space, the interior of a convex set is con-
vex [6, Chap. II, § 2, No. 6].

4.3. On Theorem 3.1.3. The Bishop-Phelps theorem which was
used in the proof of Lemma 4.2.2 has a dual version which asserts
that if K is a weak*-closed, convex subset of the dual Xr of a
Banach space X, then the set of points in X which generate sup-
porting functionals of K is norm-dense in the set of points in X
which generate functionals bounded above on K [25]. Thus Theo-
rem 3.1.3 can be proved just as Theorem 3.1.2 was proved. (In
comparing Theorem 3.1.3 with Theorem 3.1.5, note that Xf with the
σ{X\ X) topology is semireflexive.)

4.4. On Theorem 3.1.5. Conclusion (a) is a consequence of James
theorem on weak compactness (see Theorem 3.1.2(a)) and well-known
characterizations of semireflexive spaces. Cf. Kδthe [20, § 24, 4
(3)] and Klee [19], where it is shown, in fact, that if E is not semi-
reflexive, then given any nonzero x' e E', there exists a closed,
bounded, absolutely convex set K such that x' is not a supporting
functional of K.

To prove (b), it suffices to show that if dδκ{M) = Ef for a con-
vex body K in a Banach space E, then E is reflexive. But James
criterion again implies that K is weakly compact. By translation,
since int (K) Φ 0 , so is the unit ball of E, and hence E is reflexive.
Cf. James [13].

5* Further discussion of int [bar (K)] and the case 0+K Φ {()}•

5.1. The analysis of the case in which M = bd (K) bounds a
half-line — i.e., 0+K Φ {0}— can be carried further than was done
above or by de Andrade, for there is a relationship between the
interior of cl [bar (K)] (or cl [dδκ(M)]) and the size of 0+K.

We recall the definition of a base of a cone C in a linear space
E [12, § 5C]: This is a convex subset β £ C with the property that
for every nonzero xeC, there is a unique λ > 0 such that Xx e B.
A set B is a base of C if and only if there exists a linear func-
tional φ on E which is strictly positive on C\{0} and such that B —
{xeC:φ(x) = 1}.

Theorem 5.1.1 lists necessary and sufficient conditions, in terms
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of the "size" of a base of 0+K, for cl [bar (K)] to have a nonempty
interior. The proof uses known general results (due primarily to
Moreau and to Rockafellar) on the relation between the interior of
a cone and the base of its polar cone, as well as the polarities dis-
cussed in §§ 2 and 4:

0+K = °bar (K) = °cl [bar (K)]

and

(0+K)° = cl[bar(iθ] .

(As before, we work with a dual pair (E, E') with topologies com-
patible with the duality, and cl denotes the closure with respect
to such a topology; for a convex set such as bar (K), it is inde-
pendent of the particular compatible topology used.) Proofs are
given in § 6.

5.1.1. THEOREM. Let K be a closed, convex subset of E with
0+K Φ {0}. Then

(a) The following are equivalent'.
( i ) cor [cl [bar (K)]] Φ 0 ;
(ii) β(E', #)-int [cl [bar (K)]] Φ 0
(iii) 0+K has a bounded base.

(b) The following are equivalent;
( i ) int [cl [bar (#)]] Φ 0 ;
(ii) 0+K has a o(E, E')~compact base;
(iii) 0+K is locally compact.

(c) The following are equivalent:
( i ) σ{β\ E)-int [cl [bar (K)]] Φ 0 ;
(ii) 0+K is finite dimensional and has a bounded base.

5.1.2. COROLLARY. Suppose E is a semirefiexive, locally convex
topological vector space with topological dual E', and K is a closed,
convex subset of E, with 0+UL^{0}. Then the following are equivalent:

( i ) cor [cl [bar (K)]] Φ 0;
(ii) β(E', E)-int [cl [bar (K)]] Φ 0
(iii) 0+K has a bounded (and hence weakly compact) base.

If, in addition, E is complete and either K has nonempty interior
or E is normable, then cl [dδκ(M)] = cl [bar (K)], and so "bar (JSΓ)"
may be replaced by "ddκ(M)" in (i) and (ii).

As in Theorem 3.1.3 and Corollary 3.1.4, this result is immedi-
ately applicable to weak*-closed, convex subsets of the dual of a
Banach space and to closed, convex subsets of a reflexive Banach
space.
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If the interior of bar (K) is nonempty, then int [cl [bar (K)]] =
int [bar (IT)]. The following example shows, however, that 5.1.1 and
5.1.2 are not true if in them we replace the interior of the closure
of bar (K) in (i) or (ii) by the interior of bar (K), because the latter
interior may be empty.

5.1.3. EXAMPLE. Let Ko be an unbounded, closed, convex subset
of a Hubert space HQ with 0+K0 — {0} (see, e.g., de Andrade [2]).
By Theorem 3.1.1, bar (J5L0) is dense in Ho and has an empty interior.
Let H be the Hubert space direct sum H0(&R of ordered pairs
(x, λ), with x e Ho, XeR; we identify the dual of H with H. Define

K = {(x, λ) e H: x e Ko, X ^ 0} .

Then 0+K = {(0, λ) 6 H: 0 ^ X e R}9 bar (JQ = {(v, μ)eH:ve bar (Ko)},
0 ^ μ 6 R, and cl [bar (K)\ = (O+BΓ)° = {(v, μ)eH:veHQ, μ^ 0}. Thus,
although 0+iί is finite-dimensional and has a bounded base, int [bar (K)]
is empty.

5.2. The following theorem describes the strong interior of
bar(ίΓ) directly in terms of the intersection of K with half spaces.
It is proved in the same way as Theorem 5.1.1 and, in fact, is a
generalization of Theorem 5.1.1(a), since the latter can be obtained
by applying Theorem 5.2.1 to 0+K in place of K and using bar (0+K) =
(0+K)° = cl[bar(iΓ)] (in any topology compatible with the duality).
In a semireflexive space, it asserts that vr e int [bar (K)] if and only
if the intersection of K with any halfspace {x: (x, v'} ^ a] is bounded.
The corollary is a generalization of de Andrade's condition (d) [2]
for K to be a "pseudograph" (cf. [30, Lemma 4]).

It is convenient to use the following notation: If vr 6 E, we
denote by \v' ^ a] the halfspace

[v* ̂  a] = {x 6 E: <x, v') ^ a}

[vr > α], [v' = a], etc., have analogous meanings.

5.2.1. THEOREM. Let K be a nonempty, closed, convex subset of
E. Suppose 0 Φ vr e Έf. Then the following are equivalent:

( i ) v'e β(W, E)-iat [bar (K)];
(ii) v fecor[bar(£:)];
(iii) For all real a, K Π [v' ^ α] is bounded)
(iv) There exists a real β such that

K Π [vf > /3] is nonempty and bounded.

If we weaken the condition (iv) to the condition that the in-
tersection of K with a nonsupporting hyperplane [vτ — a] is bounded
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and nonempty, then we can still conclude, in many cases, that v'
(or —v') is an interior point of bax(K) (see Theorem 5.2.2 below).
Some extra hypotheses are necessary, however, for if if is a line
or a cylinder, then the intersection of K with certain hyperplanes
[vf = a] may be bounded, although ±v' g bar (K). We shall see that,
at least in semireflexive spaces, if we rule out this cylindrical pos-
sibility, then the boundedness and nonemptiness of K Π [vf = a] for
a nonsupporting hyperplane [vf = a] implies v' e int [bar (K)] or — vf e
int [bar (K)]).

We shall say that a hyperplane properly supports K if it is a
supporting hyperplane which does not contain K. We then have
the following extension of Theorem 5.2.1:

5.2.2. THEOREM. With the hypotheses of Theorem 5.2.1, each of
the conditions (i) to (iv) of that Theorem implies each of the fol-
lowing equivalent conditions:

(v) There exists a real a such that the hyperplane [vf = a]
does not properly support K and K Π [vf = ct] is nonempty and
bounded.

(vi) There exists a real a such that \v' = a] does not properly
support K and M Π [vf = a] is nonempty and bounded.

Suppose, in addition, that E is semireflexive (with dual Ef), and
0+K is not a one-dimensional linear subspace of E. If some nonzero
vf e Er satisfies one of the conditions (v) or (vi), then either v' or
— vf satisfies each of the conditions (i) to (iv) of Theorem 5.2.1.

This theorem will be proved with the help of the following
proposition, which completely describes the recession cone of K in
the case that K C\[vf = a] is compact (in the weak topology of a
semireflexive space, this is equivalent to K Π [v' — a] being bounded),
and which indicates the role played by 0+K being a one-dimensional
subspace.

5.2.3. PROPOSITION. Let K be a closed, convex subset of E. Sup-
pose there exists a nonzero vf 6 Ef and a real ct0 such that the
hyperplane \v' — α0] does not properly support K and K Π [vr = <x0]
is nonempty and compact. Then K (Ί [vf — a] is compact for every
real a and

(a) vf is bounded on K if and only if K is compact.
(b) v' is not bounded above on K if and only if φ+K) Π

[vr = 1] Φ 0 . In this case, (0+K) Π [vf = 1] is compact and is a
base for the cone (0+K) Π [v' ^ 0].

(c) The following are equivalent:
( i ) v' is unbounded above and unbounded below on K;
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(ii) (0+K) n[t; ' = l ] ^ 0 and (0+K) n W = - 1] Φ 0 ;
(iii) 0+iΓ is a one-dimensional subspace of E.

If any one of these conditions (i)-(iii) holds, K is "cylindrical" with
cross sections parallel to Kf] [v' = 0] and generators parallel to 0+K:
Given a nonzero h eO+K, each xeK has a unique representation
x — χQ + ah for xoeK fi [vf — 0] and aeR. Furthermore, bar (If)
is the hyperplane which annihilates 0+K:

bar (K) = {xf e E': (xf x'} = 0 for all x e 0+K} .

The following corollary follows from the preceding results to-
gether with special facts about the subdifferentials of convex func-
tions in Banach spaces.

5.2.4. COROLLARY. Suppose K, X, and Xf satisfy the hypotheses
of Theorem 3.1.3, so that dδκ(M) Q bar (K) £ X. Then int [bar (K)] =
int [ddκ(M)], this is a convex set, and the following are equivalent
for any nonzero v e X:

( i ) veint[ddκ(M)];
(ii) For some real a, K Π [v ^ a] is nonempty and bounded.

If (i) holds and — vgbar (K), then (0+K) Γ) [v = — 1] is a bounded
base of 0+K. Furthermore, (i) and (ii) imply that for all real β

(iii) K Π [vf = β] is bounded.
On the other hand, if (iii) is satisfied for some real β such that

the hyperplane [vr = β] does not properly support K, and if 0+K is
not a one-dimensional subspace, then either v or —v satisfies (i) and

6* Proofs of results of § 5*

6.1. On Theorem 5.1.1. On (a): For any closed, convex set, the
core is the same as the strong interior [29; 21, §8e]; thus (i)<=>(ii).
The equivalence (ii)»(iii) follows from the polarity of bar (K) and
0+K [29, Corollary 7F; 16, Theorem 3.8.4]. On (b): The equivalence
(ii)*=>(iii) is valid for any closed, convex cone [18; 12, §13C], while
(i)»(ii) follows again from the polarity of bar (K) and O+ϋΓ [22;
21, §8f, Exemple] and the fact that int [bar (if)] = int [cl [bar (K)]].
On (c): Again this is a special case of a general result on polar
cones and follows from a theorem of Moreau [21, §8g] on the equiva-
lence of the weak continuity of a convex function and the finite
dimensionality of the level sets of its convex conjugate.

6.2. Proof of Corollary. The first part of Corollary 5.1.2 is
immediate, since the β{E', E) topology on E' is compatible with the
duality if E is semireflexive. The last assertion of 5.1.2 follows
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from the fact that under its hypotheses, β(Er, E)-cl [dδκ(M)] =
β(Er, E)-cl [bar (K)] = cl [bar (K)] by the Bishop-Phelps theorem (cf.
the proof of Proposition 4.2.2) and the semireflexivity of E.

6.3. On Theorem 5.2.1. The implications (i) => (ii) and (iii) => (iv)
are obvious. If (ii) holds, we choose a0 < sup {(x, v'):xeK} to con-
clude that K Π [vf ^ a0] is nonempty and bounded, by Theorem 4C
of [29] applied to the indicator function of δκ of K; by Corollary
4D of [29], K Π W ^ #] is bounded for all α. (Cf. the proof of
Theorem 5.1.1 above and the proof of Corollary 7F in [29].) Thus
(ii) => (iii). Suppose (iv) holds. Since K Π [vf > β] = \Ja>β Kf)[v'^ a],
it follows that for all a sufficiently close to β with a > β, Kf]
[vf ^ a] is nonempty and bounded. We can choose such an a so
that sup{<#, v'): xe K} > a, and then (i) (and (ii)) follow directly
from Theorem 7A(a) and Theorem 4C of [29].

6.4. On Proposition 5.2.3. We first prove the following general
result, which will be applied to the weak topology on a semireflexive
space E in proving Theorem 5.2.2.

6.4.1. LEMMA. Suppose K is a nonempty, closed, convex subset
of E and 0 Φ vf 6 Ef. Then K Π \y' — ά\ is bounded (or compact)
for every real a if and only if there exists a hyperplane [vr = a0]
which does not properly support K such that K Π \v' — <x0] is non-
empty and bounded (or compact, respectively). If this is the case
and if v' is bounded on K, then K is bounded (or compact, re-
spectively).

Proof. The first assertion, on the boundedness (or compactness)
of the cross-sections K Π \vr = a] is easily verified. Suppose v' is
bounded on K, so there exists β > 0 such that K £ [—β < vf < β\.
Suppose K is unbounded; then there exists a convex neighborhood
U of 0 such that, for any increasing, divergent sequence {Xn} of
positive reals, there exists xneK\(XnU). Since \(xn, v')\ < β for all
n, we may assume, by going to a subsequence if necessary, that
{(xn, v')} converges, say to β19 with |& | ^ β. Since K Π [vf = ft] is
bounded, we may choose x0 e K with (x0, v') = β0 Φ βλ\ let β2 be a
number strictly between β0 and βλ. We may assume (xn, vfS) lies
between β2 and ft for every n. Let

77 - ft - f t __ β0 - A
<χ«, vy -β0 β0- (χn, vf) '

Then 0 < ηn < 1, so
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(1 - ηn)x0 + ηnxn e K Π [vf = β2]

for every n ^ 1. Since K Π |V — A] is bounded, there exists λ > 0
such that

for every w ^ 1; hence there exists μ > 0 such that f]nχ^^μJJ for
all 7i ^ 1. Now η~ι ^ (/? + | AD/I A - A I, so

A - A

for every w ^ 1. This contradicts the unboundedness of {#„}.
A similar argument shows that if K Π [vf = A] is compact, then

any net in K contains a convergent subnet.

Proof of Proposition 5.2.3. Assertion (a) follows from Lemma
6.4.1. Suppose v' is not bounded above on K. Then there exists a
positive number k0 such that, for every integer n ^ 0, there is an
xn 6 K with <#„, ?/> ^ n + k0 — w + (xn, vr). For w >̂ 1, let ^Λ —
l/(xn - xQ, vf) (so 0 < ηn ^ 1) and sΛ = (1 - ηn)xQ + %a;n; then ^ 6 Kf]
[v' — &0 + 1]. Because IΓn[V — k0 + 1] is compact (by Lemma 6.4.1)
we can find subnets {wδ}, {pδ}> and {yδ} of {zn}, {ηn}> and {xn}, re-
spectively, such that wδ = (1 — ft)^ + ^2/a, and {wj converges to
some (nonzero) fe 6 E with <fe, v'> = 1 + &0. Since pδ —> 0, p ^ converges
to fe — x0 and therefore h - x0 eO+Kf][vf = 1] [28, equation (2.2) and
Theorem 2A(e)]. This proves (b) in one direction; the other direction
is obvious. Suppose next that v' is not bounded above or below on
K. Then (b) shows that there exist h e (0+K) Π [v' = l] and k e (0+K) n
[v' = —1], If for some such fe and k, h + k were not zero, then the
two-dimensional cone with vertex at a point xoe K Π[v' = 0] and
generated by xo + h and #0 + fc would be a subset of if with unbounded
intersection with Kf)[v' — 1], in contradiction to the hypothesis and
Lemma 6.4.1 (for all λ^O, xQ + (l + X)h + Xke KΓ)[v' = 1]). It follows
that 0+K is a one-dimensional subspace. We have thus shown that in
(c), (i)=>(ii)=>(iii). If (iii) holds, then 0+K£[v' = 0] since Kn[v' = a0]
is bounded. Hence there exists h e (0+K) Π W — 1]> from which it
follows that vf is not bounded above or below on K. Thus (iii)=>(i).
The "cylindrical" structure of K follows immediately. Consider now
bar (K); we know cl [bar (K)] = (0+K)° = (0+K)L = {x' e E'\ (xy xf) = 0
for all x e 0+K} since 0+K is a subspace. Choose h e 0+K (h Φ 0) and
x' e cl [bar (K)] = (0+K)'. For any xeK, there exists xQ e K n W = °1
and α 6 JB such that a? = x0 + αfe. Then <cc, x') = (x0, x'} + a{h, xf} =
(x0, x'). Since K f)[v' = 01 is bounded, #' is bounded on if n [v' = 0],
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and therefore xf is bounded on if. Thus bar (if) = cl [bar (if)] =

6.4.2. REMARKS, (a) If the subspace [vr = OJ in Proposition 5.2.3
is semireflexive, then the conclusions (a) to (c) hold in the weak
topology if K Π W — ctQ] is assumed nonempty and bounded.

(b) It is easy to prove the following partial converse: Suppose
if is a closed, convex subset of a locally convex space E. If 0+if
is a one-dimensional subspace of E, then there exists a nonzero v*
in the dual space Ef of E such that, for every real number a, K Π
[vf = a] is nonempty and bounds no half-lines.

6.5. On Theorem 5.2.2. First we show that (v) and (vi) are
equivalent. For any convex set C, if bd (C) is bounded and non-
empty, then C is the convex hull of bd(C) [3, 1.7.7(c)]; thus C is
bounded if and only if bd (C) is bounded and nonempty. Applying
this to iff) W = a\ and M Π [vf = a] in the hyperplane [vf = a\, and
using the fact that [cor (if)] Π [vf = a] is a subset of the core rela-
tive to \y' = a] oί K Π \yf = α], we see that (v) and (vi) are equivalent.

Clearly, (iv) of 5.2.1 implies both (v) and (vi). To prove the
converse, we establish the following general result (with only the
usual assumptions on E and if):

6.5.1. LEMMA. Suppose vf e bar (K) satisfies (v) or (vi) of 5.2.2,
and 0+K Φ {0}. Then v' e β{E\ JS)-int (bar (K)].

Proof. Since ?/ebar(_K"), there exists ΎeR such that K £
[?/ ^ 7]. Since if n W = «] is bounded and 0+if ^ {0}, K g [v' = α].
Hence ['y' = α] intersects if but does not support it, and hence a < 7
and JBΓ Π [tf' > <2] is nonempty. From the fact that Kf)[vr — a] is
bounded, it follows that 0+K g [v' = 0], so there exists x0 e 0+K
( = °bar (ίΓ)) such that <x0, v

r) = — 1. It is easy to verify that

K n W > a] c (if n b ' - «]) + [α - 7, o)xo,

where

[a — 7, 0)xQ = {λx0: α — 7 <; λ < 0} .

Since the sum of two bounded sets is bounded, K f}[v' > a\ is
bounded. This verifies the lemma, by 5.2.1(iv) and (i).

We now return to the proof of Theorem 5.2.2. Suppose that E
is semireflexive and 0 fif is not a one-dimensional subspace of E, and
that v' e Ef satisfies (v). By Proposition 5.2.3 (applied to E with
the σ(E, Ef) topology, in which the closed, bounded sets are compact),
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either v'ebaτ(K) or — v'ebar(K). If both v'ebar(JSΓ) and — v'e.
bar (if), then, by 5.2.3(a), K is bounded and weakly compact,
bar (if) = E, and trivally v' e int [bar (K)]. If only one of v' or — vf

belongs to bar (K), then by 5.2.3(b), 0+K Φ {0}, so Lemma 6.5.1
implies v' e β(E', JE)-int [bar (K)] or - V 6 β{E\ J0)-int [bar

6.6. On Corollary 5.2.4. Since bar (if) is the effective domain
of the support function <5J: X —>R,

and dδκ(M)( = dδκ(K)) is the domain of the subgradient dδ%: X—>
(subsets of X') of <5|,

dδϋx) = {xΊ δi(y) - δi(x) ^(y-x, xf) for all yeX}

= {»': x e 3^0')}

the fact that int [bar (K)] = int [δ^Λf)] follows from known facts
about convex functions and their subgradients on Banach spaces (cf.
[28, page 57; 8]). Being the interior of a convex set, int [bar (K)]
is convex. The rest of the corollary follows directly from the
preceding results.
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