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A NECESSARY CONDITION ON THE EXTREME POINTS
OF A CLASS OF HOLOMORPHIC FUNCTIONS

FRANK FORELLI

We prove that if / is an extreme point of the class
N(G, p) of all holomorphic functions g on the region G in Cn

such that Re g > 0 on G and g(p) — 1, and if three conditions
on G hold, then the Cayley transform (/ -1)/(/ + 1) is ir-
reducible.

1* Introduction •

1.1. Let G be a nonempty open connected subset of Cn. We
will denote by H(G) the class of all holomorphic functions on G, we
will denote by N(G) the class of all / in H(G) such that Re / > 0,
and we will denote by W(G) the class of all / in H(G) such that
I /1 ^ 1. Thus W(G) is the closed unit ball of the Banach algebra

{f:feH(G\ \\f\\< «>}

where

11/11 = sup{|/(s)|:*eG}.

Let peG and let

N(G, p) = {f:feN(G)f f(p) = 1} .

Thus N(G, p) is convex (and compact with respect to the compact
open topology). Furthermore let

W(G, p) = {g: ge W(G), g(p) = 0}.

Thus

N(G, p) = {(1 + flθ/(l - 0): 0 e W(G, p)}.

We will denote (as is usual) by Aut (G) the group of holomorphic
homeomorphisms of G, and by H\G, Z) the first Cech cohomology
group of G with integer coefficients. We recall [1, p. 769] that if
g 6 W(G), if g is not constant, and if g is not the product of two
nonconstant members of W(G), then g is said to be irreducible. The
purpose of this paper is to state and prove the following theorem.

THEOREM 1.2. Let G be such that (a) Aut (G) acts transitively
on G, and (b) H\G, Z) = 0. Furthermore let g e W(G, p) and let
/ = (1 + g)/(l — g). If N(G, p) Φ {1} and if f is an extreme point
of N(G, p), then g is irreducible.
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1.3. With regard to Theorem 1.2 if

G = {z:zeC*,\z\ < 1}

and if n ^ 2, then the fact that g is irreducible does not imply that
/ is extreme. For example if g(z) = zlf then (as is easily seen) g is
irreducible. Whereas if h(z) = sl/2, then g + eiθh e W(G, 0) and

If

G = {z:zeC, \z\ < 1 } ,

then (as is well known) / is extreme if and only if g is irreducible.
We do not know if Theorem 1.2 holds if we omit one or both

of the hypotheses (a) and (b). With regard to this we remark that
these hypotheses are not used in §§ 2 and 3. They are used only
in §4.

2* The beginning of the proof of Theorem 1*2•

PROPOSITION 2.1. // N(G, p) Φ {1}, then 1 is not an extreme
point of N(G, p).

Proof. We have W(G, p) Φ {0}.
Furthermore if g e W(G, p)9 then

Re(l + g) = 1 + Re g > 0,

hence 1 + g e N(G, p). Likewise 1 — g e N(G, p), hence 1 is not an
extreme point of N(G, p).

LEMMA 2.2. Let g e W(G, p) and let / = (1 + g)/(l - g).

where h 6 H(G) and if N(G, p) Φ {1}, then f is not an extreme point
of N(G, p).

Proof. If j = 2λ/(l - g), then / + j = (1 + Λ)/(l - h) and / - j =
(1 - λ)/(l + h), hence / + j , f - j e N(G, p). Thus if h Φ 0, then /
is not an extreme point of N(G, p). If h = 0, then by Proposition
2.1 / is not an extreme point of N(G, p).

2.3. We recall the following theorem of Ahern and Rudin (which
is proved by means of the theory of normal families) [1, Lemma 3.3
and the postscript on p. 777].

PROPOSITION 2.4. If ge W(G, p) and if gφO, then g = ab where
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a G W(G, p)f a is irreducible, and b e W(G).

2.5. We will denote (as is usual) by D t h e class of all z in C

such t h a t \z\ < 1, by D the class of all z in C such t h a t \z\ ^ 1,

and by T t h e class of all z in C such t h a t \z\ = 1.

PROPOSITION 2.6. If z, weD, then

zw +
+ W 1 + W

Proof. Let 2 < t < °o. If we define /: Z> x /> —> C by

f(z, w) = (z + w 1 + +
t - ) -

then I /1 = 1 on ϊ 7 x T, hence by the principle of maximum | /1 ^
which will suffice to prove Proposition 2.6.

2.7. We recall that if z, w eC and if z Φ 1, then

(2.1) Re[(l + z + 2w)/(l - «)] = (|1 + w\2 - \z + w\2)/\l - z\2 .

LEMMA 2.8. Let ge W(G, v) and let / = (1 + g)/(l - g). If
N(G, p) Φ {1} and if f is an extreme point of N(G, p), then g =
a(s — a) 1(1 — 8a) where a e W(G, p), a is irreducible, seC, s + s = 0,
and 0 < | s | ^ 1.

Proof. By Proposition 2.1 # Φ 0. Let g — ab where a e W{G, p)
and b 6 TF(G).

Let λ in T be such that Re [Xb(p)] = 0, let <? = Xa, and let d =
Xb. Thus 5r = cd. Let s = d(p). Thus s + s = 0 and | s | <£ 1. If
Λ = [(c + ώ)/(l — flr)] — s, then h(p) = 0. Furthermore

R e ( / + h) = R e ( / + Λ + s) = Re[(l + ^ + c + d)/(l - g)] ,

hence by (2.1)

Re i 1 + c + + c +

hence by Proposition 2.6 / + heN(G, p). Likewise / — heN(G, p),
thus h — 0. We have

hence

d = β( l — #) = 8(1

SC) = (8 - - SC) .
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If s — 0, then d = — c, hence g = (ic)2. Thus by Lemma 2.2 s Φ 0.
Lemma 2.8 now follows from Proposition 2.4.

3* The action of Aut (G) on N(G9 p).

3.1. We define a: Aut (G) x N(G)~->N(G, p) by

where λ = i Im f(Z(p)) and μ = Re f(Z(p)). We will omit the proof
(which is straightforward) of the following proposition.

PROPOSITION 3.2. If Y, Z e Aut (G), if f, ge N(G), and if t > 0,

then

(3.1) a(Z, f+g) = aa(Z, f) + ba(Z, g)

where α, b > 0 ami a + 6 = 1,

(3.2) a(Z, t/) = «(£, /) ,

(3.3) a(YZ, f) = a(Z, a(Y, f)) .

Furthermore if heN(G, p)9 then

(3.4) a(J, Λ) = fc .

PROPOSITION 3.3. Lβέ feN(G,p) and let ZeAut(G). If f is
an extreme point of N(G, p), then a(Z, f) is an extreme point of
N(G, p).

Proof. Let Y = Z~\ If a(Z, f) = ag + bh where a, b > 0 and
g,heN(G, p), then by (3.1) and (3.2)

a(Y, a(Z, /)) = ca(Y, g) + ώα(Γ, h)

where c, rf > 0 and c + d = 1. Furthermore by (3.3) and (3.4)

a(Y,a(Z, /)) = / ,

hence

f=ca(Y, g) + da(Y,h).

Thus / = α(Y, sθ, hence

α(Z, /) = α(Z, α(Γ, fir)) = g

which completes the proof of Proposition 3.3.
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3.4. Although a paraphrase of Proposition 3.3 is proved in [2],
it seemed worthwhile to give a proof here.

We define β: Aut (G) x W(G, p) -> W(G, p) by

1 - μ 1 - μgoZ

where μ = g(Z(p)). We will omit the proof (which is straightforward)
of the following proposition.

PROPOSITION 3.5. Let g e W(G, p) and let / = (1 + g)HX - g). If

ZeAut(G), then

a(Z, /) = [1 + β(Z, g)]/[l - β(Z, g)] .

4* The end of the proof of Theorem 1*2•

PROPOSITION 4.1. Let a e W(G). If a is irreducible and if
H\G, Z) = 0, then a(G) = D.

Proof. If teD-a(G), then since H\G, Z) = 0, (a-t)/(l-ta) = b2

where b e W(G). We have a = (δ2 + t)/(l + tb2). Thus if t = - s\
then

a = 1 - sb 1 + s6 '

Since a is irreducible either (6 — s)/(l — sδ) e C or (6 + s)/(l + sδ) 6 C,
hence δ 6 C, hence α e C which contradicts the fact that a is irreducible.

PROPOSITION 4.2. Le£ g e W(G, p) and let f = (1 +

1/ iV(G, p) Φ {1}, i/ / is an extreme point of N(G, p)9 and if
H\G9 Z) = 0, then g(G) = D.

Proof By Lemma 2.8

(4.1) g = a(s — a)/(I — sa)

where aeW(G, p), a is irreducible, and seD. By Proposition 4.1
α(G) = D, hence by (4.1) g(G) = D.

4.3. We will now prove Theorem 1.2. By Lemma 2.8

(4.2) g = a(s - α)/(l - sa)

where ae W(G, p)9 a is irreducible, s e ΰ , and s Φ 0.
The roots of sx2 + 2ix - s are - ΐ [ l ± (1 - ss)1/2]/s. Thus if

λ = - i[l - (1 - ss)1/2]/s, then
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(4.3) sX2 + 2ΐλ - s = 0 .

Furthermore if | s | < 1, then | λ | < 1. Let μ — — λ2, let z in G be
such that g(z) = μ (Proposition 4.2), and let Z in Aut (G) be such
that Z(p) = z. Thus 0(Z(p)) = /*. If 6 = aoZ, then by (4.2)

«,<,*- μ)Kl -μ9°Z)

= [λ2 + (s - sλ2)δ - &2]/[l - (s - sλ2)6 - λ 2 δ 2 ] .

F u r t h e r m o r e by (4.3) s — sλ 2 = 2iλ, hence

(flr o ^ - jtί)/(l - jδjr o Z) = (λ2 + 2iλδ - 62)/(l + 2iλ6 - λ2δ2)

Thus

'> 9) — ( — ~ ~ ^ ) ( — .- ) = h2

where ft 6 TF(G, p). Thus by Lemma 2.2 and Proposition 3.5 a(Z, f)
is not an extreme point of N(Gf p) which contradicts Proposition 3.3.
Thus I s I = 1.

We have

g = as(l — sa)/(l — so) = sa

which completes the proof of Theorem 1.2.
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