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GENERATING 0{n) WITH REFLECTIONS

MORRIS L. EATON AND MICHAEL PERLMAN

For r e Cn ΞΞ {χ\χeRn

f \\x\\= 1}, let Sr = L — 2rr' where r

is a column vector. O(n) denotes the orthogonal group on Rn.
If RQCn, let &={Sr\reR} and let G be the smallest closed
subgroup of O(n) which contains &. G is reducible if there
is a nontrivial subspace M Q Rn such that gM £ ikΓ for all

Otherwise, G is irreducible.

THEOREM. If G is infinite and irreducible, then G =
0{n).

In what follows, Rn denotes Euclidean w-space with the standard
inner product, O(n) is the orthogonal group of Rn, and Cn = {x \ x e Rn,
\\x\\ = 1}. If U is a subset of O(n), (U) denotes the group generated
algebraically by U and (U) denotes the closure of <Ϊ7>. Thus, <Ϊ7>
is the smallest closed subgroup of O(n) containing U. For an integer
k, 1 <; k < n, Mk denotes a ^-dimensional linear subspace of Rn. If
r 6 Cnf let Sr = I — 2rr' where r is a column vector. Thus Sr is a
reflection through r-henceforth called a reflection.

Suppose RQCn and let & = {S r |rei?}. Set G = <^>. The
group G is reducible if there is an Mk such that ^M*, £ ΛΓfc for all
^ 6 G; otherwise, G is irreducible. The main result of this note is
the following.

THEOREM 1. If G is infinite and irreducible, then G = O(n).

Proof of Theorem 1. First note that if Sre& and g e G, then
gSrg'1 = Sgr e G. Let A = {gr\g 6 G, reR}. Thus, t e Δ implies that
St 6 G. Since G is infinite, Δ must be infinite (see Benson and Grove
(1971), Proposition 4.1.3). Since every Γ in O(n) is a product of a
finite number of reflections, to show that G = O(ri), it suffices to
show that G is transitive on Cn (if G is transitive on Cn, then Δ = Cn

so every reflection is an element of G and hence G = O(n)).
The proof that G is transitive on Cn follows. By Lemma 1

(below), there is a subgroup K2S=G and a subspace M2QRn such that
&# = # if xeMt and keK2 and iΓ2 is transitive on J92 Ξ M2 Π C». Since
G is irreducible, there is an r2eR such that r2 g M2 and r2 g ikΓ2

L. Let
Mz = span {r2, M2} and let iΓ3 = <{iΓ2, SrJ> > S G. With A = M3 n C.,
Lemma 3 (below) implies that to = x for all a? e M£ and & e Kz, and
UL3 is transitive on D3. Again, since G is irreducible, there is an
r3eR such that r3gikΓ3 and r3ίM£. With lf4 = span {r3, ikfj, let
X"4 = <{UL8, Sr3}> > S G and let A Ξ Λί4 n CΛ By Lemma 3 (below)
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kx = x for x 6 Mi and keK4 and K± is transitive on D4. Applying
this argument (n — 2) times, we obtain KnQG and iΓΛ is transitive
on Dn = C». Thus, (? is transitive on Gn and the proof is complete.

To fill in the gaps in the above argument, it remains to prove
Lemmas 1, 2, and 3. Lemma 1 provides the starting point for the
stepwise argument used in the proof of Theorem 1.

LEMMA 1. If G is irreducible and infinite, there is a subspace
M2 and a subgroup K2QG such that kx = x for x e M2

λ, keK2 and
K2 acts transitively on D2 = M2f) Cn.

Proof. As noted in the proof of Theorem 1, the set Δ = {gr\reR,
g eG} is infinite. Thus, there is a point δQ e Cn such that every
neighborhood of δ0 contains infinitely many points in Δ. Thus we
can select a sequence of pairs (rif £*), rif tt e Δ, such that rt and tt are
linearly independent and 1 — 1/i < r% < r'i+1ti+1 < 1 for i = 1, 2, .

For 0 <: η < 2π, set

/ cos 7) sin 7? \
(1) y(7)= . eθ(2) .

\—sin η cos η)
Define θi by cos θ^ = r\tu 0 ̂  θ* < π so ^ —• 0 as i —> oo. Let

Γ*4 6 O(n) have first row £• and second row

Then an easy calculation shows that

0

where /%_2 is an (n — 2) x (n — 2) identity matrix. Setting
(W(2θt)y Q 0(2), it is clear that

H heHΛQG, i = 1, 2,

By selecting an appropriate subsequence, we can assume without
loss of generality that Γi-^ΓoβOin), as i —> oo.

If yφ) is given by (1), we now claim that

ίΨ(7]) 0

(4) r ; ( o

w

Since G is closed and (3) holds, to establish (4), it suffices to show
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there is a subsequence is and h^ell^ such that hiά—>Ψ(j]) as id—* oo.
However, the existence of such a sequence is assured since 0, —» 0 as
i->oo. Thus (4) holds. Hence we see that

where iϊ* is the full rotation group of R2.
To complete the proof of Lemma 1, let M2 be the span of the

first two columns of Γ[. With D2 = M2f] Cn, it is easy to check
that kx — x for all x e M2f keK2 and that K2 acts transitively on
D2. This completes the proof.

The following result is used in the proof of Lemma 3.

LEMMA 2. For u0 e (0, 1], define a function /: [0, 1] —> [0, 1] by

JO if 0 <: u ^ u0

(1 — \λ/uuQ + i / ( l — u)(l — u0)]2 if u0 <; u ^ 1 .

^ = /(I) α^d define vt = /(^-i) /or i = 2, 3, . Then, there
exists an index i0 such that vt = 0 /or i ^ i0.

Proof. It is not hard to verify that / is a continuous convex
function. Since 0 ^ v1 < 1, v2 = /(vj = /((I - vJO + ^1) ^ ^/(l) = t J.
Proceeding by induction, ^ ^ vj so lim^oo vt — 0. Since / is 0 in
the interval [0, u0], there is an index i0 such that vt = 0 for ΐ ^ i0.
This completes the proof.

After establishing Lemma 1, the key to Theorem 1 is Lemma 3.
Although the proof of Lemma 3 is quite long, the geometric idea
behind the proof is fairly simple. Consider R3 and let D2 = {x \ x e R5,

xz = 0, x\ + x\ = 1}. Also, let -ff = | ( Q ^)\k is any rotation of R2\.

Thus H acts transitively on D2. Consider a fixed vector 16 R* with
\\t\\ — 1 such that t is not in the (xlf x2) plane and t is not in the
ίc3-line. Let St = I-Wi be the reflection across the plane {t}L and let
H be the group generated by St and H. The claim is that H is
transitive on Zλ> = [x\x ei?3, | |^ | | = 1}. For example, suppose the
angle between t and the (xίf x2) plane is 45°. Geometrically, it is
clear that the set H(St(D2)) = {x \ x = hStu for some heH, and some

/Ox
u 6 D2} is just D3—that is, St(D2) is a circle passing through 1 and

\ 0 /
the transitivity of H implies that H moves the set St(D2) everywhere
onto D3 (picture this on the surface of a basketball). Thus, given



76 MORRIS L. EATON AND MICHAEL PERLMAN

vlf v2e D3, Vi = h StUt, for ht e H and ut e A for i == 1, 2. Since uγ =
Λow* for some h0eH, it follows that v1 = h1SthSth2

ιv2 so jff is transitive
on A For other £-vectors, A does not get covered by one application
of HSt to D2, but A is covered by a finite number of applications
of HSt to A — t h a t is, A = (H(St(-- )H)St)(D2) for some finite string
HStHSt .HS*. Again, this implies the transitivity of H on A
Lemma 3 and its proof make all of the above precise.

LEMMA 3. Consider a subspace Mm £ Rn, 2 ^ m < n, and suppose
that K is a subgroup of 0{ri) such that

ίkx = x for all xeMi, keK

(K is transitive on Dm = Mm Π Cn .

Let teCn be such that t g Mm and t <$. Mi. With Mm+1 = span {t, Mm},
let Dm+1 = Mm+1 Π Cn. Then the group K* £ O(n) generated by K and
St = I — 2ttr satisfies

(kx = x for all xeMi+1,keK*

[K* is transitive on Dm+ί .

Proof. That kx — x for all x e Mi+ί and keK* is not hard to
verify. To establish the transitivity of K* on Dm+lf define a set J5X by

( 9 ) B, = K(St(Dm)) = {χ\χ = kStu for some % e Dm, some & e JK]

and then define A inductively by

(10) Bt = KiStiBt^)) = {̂ |a; = fcS^ for some ueBi_lf some &ei£}

i = 2, 3, . Since K(St(Dm+ί)) £ Dm + 1, it follows that Bi £ D m + 1

for all i. The remainder of the proof is devoted to showing that
there is an index i0 such that BiQ = Dm+1, because this implies the
transitivity of K* on Dm+ί.

Claim 1. If BiQ — Dm+19 then if* is transitive on Dm+ι.

Proof of Claim 1. Consider sx, ^2 e Dm+ί. If A o — ^m+i> then

ίo-terms

Thus, there exists fcw , kiQeK and ^ , , gioeK such that

and
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• < o - i

11 \QjSt) |^2 = ^2^2
7=1 J

for some u19 u2 e Dm. Since K is transitive on Dm, there exists a
koeK such that Av̂  = w2. Thus, z2 = h2k0hr1z1 which shows that K*
is transitive on Dm+1 as h2kQhϊιeK*. This completes the proof of
Claim 1.

We now continue with the proof. Let P denote the orthogonal
projection onto Mm and define Zc, 0 <; c <; 1 by

(11) Zc = {x\xeDm+1, \\Px\\2^c}.

Note that ^ = Dm and Zo = Dm+1.

REMARK. Geometrically, Zc is an equatorial zone (with equator
Dm) which partially covers Dm+1. Smaller values of c correspond to
more of Dm+1 being covered.

Define φ on [0, 1] by

(12) φ(c) = inf IIPS^II2 , 0 ^ c ^ 1 ,
xeZc

and let

(13) b, = inf | |Pα | | 2 .

Since each keK commutes with P, we have

(14) b, = inf inf 11 PkStx \ |2 = inf 11 PStx \ |2 = inf 11PS^ 112 = φ(l) .
keK xeDm xeDm xeZ±

Claim 2. Bx = Zh.

Proof of Claim 2. If x e Blf || Px ||2 ^ &x which implies that a? e ZH.
Conversely, consider x e ZH and let Q denote the orthogonal projection
onto the one-dimensional subspace Mi Π Mm+1 which is spanned by
the vector £* = (/— P)t/\\(I — P)t\\. Since Ze is compact and arcwise
connected, the continuous function u—>\\PStu\\\ueZe) takes on all
values between 1 and φ(c). As x e Zb,

Hence, there exists a ueDm such that UPS^H* = | |P# | | 2 . Thus, 1 =
||Pα;||2 + \\Qx\\2 = IIPS^H2 + \\QStu\\2, so | |QS^ | | 2 = | | ^ | | 2 . Since Q
is a projection onto a one-dimensional subspace, w can be chosen (by
changing to — u if necessary) such that Qx = QStw. The transitivity
of K on Dm implies there is a keK such that kPStu — Px. Thus,
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kStu = kPStu 4- kQStu = Px + kQStu = Px + QStu = Px + Qx = x, so
x = ΛSfU 6 B lβ This completes the proof of Claim 2.

Using Claim 2, B2 = ίΓ(Sf(A)) = K(St(Zbl)). Consider

(15) 62EEinf | | P x | | 2 .

Using (15) and the fact that each keK commutes with P, we have

(16) b2 = inf \\Px\\2 = inf inf \\PkStx\\2 = inf | | P S ^ | | 2 = φfa) .
xeB2 ί c e ^ k e K n^^bi

Claim 3. B2 = Zh.

Proof of Claim 3. If xeB2, then xeDm+1 and | | P # | | 2 ^ & 2 , so
xeZH. Conversely, consider xeZh. As u varies over Zbι, the
function %-* ||PjS t%||2 takes on all values between 1 and 62 Since
IIP#II2 ^ δ2, there is a % e ^ such that | | P S ^ | | 2 = | | P ^ | | 2 . As in the
p r o o f of C l a i m 2, 1 = | | P # | | 2 + \\Qx\\* = \\PStu\\2 + \\QStu\\2so \\Qx\\2 =
IIQSf^H2, and we can choose u such that Qx = Q S ^ . The transitivity
of if implies that there is a keK such that kPStu — Px. Thus, α? =
Px + Qx = A P S ί U + Q S ^ = fcPS^ + λ Q S ^ = /bS^ e 5 2 since u e Zh = J5lβ

The proof of Claim 3 is complete.

Arguing as in the proof of Claim 3, it is an easy matter to
show that Bi — Zh. and bt — φφ^j) where

(17) 64 = inf ||Paj||1,< = 3,4, •••.
xeBf

As noted earlier, the proof of Lemma 3 will be complete if we can
show there is an index % such that BH = Zo — Dm+1. To establish
the existence of an i0, we will explicitly calculate the function φ
defined in (12) and then apply Lemma 2. Define zoeDm+1 by

(18) z0 = Stt*

where t* = (I - P)t/\\(I - P)t\\. Then,

a = II P* ||» = WPSH-PW = \\P(I-2tt')(I-P)t\\>

(1 " °"

Since t$Mm and t $ Mϊ, 0 < \\Pt\\2 < 1 so 0 < a ^ 1.

Claim 4. The function φ is given by
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(20) φ) = |° ί f ° * ° **
(1 - [Vac + 1/(1 - α)(l - c)]2 if α ^ c ^ l .

Proof of Claim 4. Since Q = ί*ί*' (see the proof of Claim 2),

for each xeiZ", \\QStx\\* = x'StQStx = x'Stt*t*'Stx = (sja;)*. Thus,

(21) ^(c) = inf 11 PSU | Γ = inf (1 - 11 QStx | |2) = 1 - sup (z

If a — 1, then zoeDm £ Zc, so supββZβ (zόx)2 = 1 and φ(c) = 0 for all
c e [0, 1].

Now, consider αe(0, 1). For xeZc, let 7 = | | P ^ | | 2 ^ c . Then,
by the Cauchy-Schwarz inequality, we have

^ \\PzQ\\ \\Px\\ + HQsoll \\Qx\\ =

Further, there is equality in the above inequality for x = x0 where

(23) x0 = V7]^Pz0 + τ/(l - 7)/(l - a)Qz0.

Clearly, ||Pa?0||
a = 7 ^ c so xQeZc. Thus,

(24) φ{c) = 1 - sup [α/α7 + τ/(l - α)(l - 7)]2.
re[c,l]

If c ̂  α, then 7 = α e [c, 1] and 9(0) = 0. If c > α, then the sup in
(24) is achieved at 7 = c. Thus <p is given by (20) and the proof
of Claim 4 is complete.

Now, by Lemma 2, there is an index iQ such that bio = 0 since
b, = φ(ΐ) and 6, = φφ^). Thus, J5ίo = Zo = Dm + 1 and by Claim 1, i£*
is transitive on JDΛ+1. This completes the proof of Lemma 3.

The following is an immediate consequence of Theorem 1.

COROLLARY 1. Let Gt = <^> wfcere & = {Sr\reR}. If G± is
infinite and irreducible, then the closure of Gλ is O(ri). Also, for
each x e Cn, {gx \ g e GJ is dense in Cn.

REMARK. The assumption that G is generated by reflections
cannot be removed since O+(n), n ̂  2 is infinite, closed and irreducible
but O+(n) Φ 0{n). Our interest in Theorem 1 arose in connection
with results for G-monotone functions when G is generated by reflec-
tions (see Eaton and Perlman (1976)).
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