GENERATING $O(n)$ WITH REFLECTIONS

Morris L. Eaton and Michael Perlman

For $r \in C_{n} \equiv\left\{x \mid x \in R^{n},\|x\|=1\right\}$, let $S_{r}=I_{n}-2 r r^{\prime}$ where r is a column vector. $O(n)$ denotes the orthogonal group on R^{n}. If $R \subseteq C_{n}$, let $\mathscr{R}=\left\{S_{r} \mid r \in R\right\}$ and let G be the smallest closed subgroup of $O(n)$ which contains $\mathscr{R} . G$ is reducible if there is a nontrivial subspace $M \subseteq R^{n}$ such that $g M \subseteq M$ for all $g \in G$. Otherwise, G is irreducible.

Theorem. If G is infinite and irreducible, then $G=$ $O(n)$.

In what follows, R^{n} denotes Euclidean n-space with the standard inner product, $O(n)$ is the orthogonal group of R^{n}, and $C_{n}=\left\{x \mid x \in R^{n}\right.$, $\|x\|=1\}$. If U is a subset of $O(n),\langle U\rangle$ denotes the group generated algebraically by U and $\langle\bar{U}\rangle$ denotes the closure of $\langle U\rangle$. Thus, $\langle\bar{U}\rangle$ is the smallest closed subgroup of $O(n)$ containing U. For an integer $k, 1 \leqq k<n, M_{k}$ denotes a k-dimensional linear subspace of R^{n}. If $r \in C_{n}$, let $S_{r}=I-2 r r^{\prime}$ where r is a column vector. Thus S_{r} is a reflection through r-henceforth called a reflection.

Suppose $R \subseteq C_{n}$ and let $\mathscr{R}=\left\{S_{r} \mid r \in R\right\}$. Set $G=\langle\overline{\mathscr{R}}\rangle$. The group G is reducible if there is an M_{k} such that $g M_{k} \subseteq M_{k}$ for all $g \in G$; otherwise, G is irreducible. The main result of this note is the following.

Theorem 1. If G is infinite and irreducible, then $G=O(n)$.
Proof of Theorem 1. First note that if $S_{r} \in \mathscr{R}$ and $g \in G$, then $g S_{r} g^{-1}=S_{g r} \in G$. Let $\Delta=\{g r \mid g \in G, r \in R\}$. Thus, $t \in \Delta$ implies that $S_{t} \in G$. Since G is infinite, Δ must be infinite (see Benson and Grove (1971), Proposition 4.1.3). Since every Γ in $O(n)$ is a product of a finite number of reflections, to show that $G=O(n)$, it suffices to show that G is transitive on C_{n} (if G is transitive on C_{n}, then $\Delta=C_{n}$ so every reflection is an element of G and hence $G=O(n)$).

The proof that G is transitive on C_{n} follows. By Lemma 1 (below), there is a subgroup $K_{2} \subseteq G$ and a subspace $M_{2} \subseteq R^{n}$ such that $k x=x$ if $x \in M_{2}^{\perp}$ and $k \in K_{2}$ and K_{2} is transitive on $D_{2} \equiv M_{2} \cap C_{n}$. Since G is irreducible, there is an $r_{2} \in R$ such that $r_{2} \notin M_{2}$ and $r_{2} \notin M_{2}^{\perp}$. Let $M_{3}=\operatorname{span}\left\{r_{2}, M_{2}\right\}$ and let $K_{3}=\left\langle\left\{K_{2}, S_{r_{2}}\right\}\right\rangle>\subseteq G$. With $D_{3} \equiv M_{3} \cap C_{n}$, Lemma 3 (below) implies that $k x=x$ for all $x \in M_{3}^{\perp}$ and $k \in K_{3}$, and K_{3} is transitive on D_{3}. Again, since G is irreducible, there is an $r_{3} \in R$ such that $r_{3} \notin M_{3}$ and $r_{3} \notin M_{3}^{\perp}$. With $M_{4}=\operatorname{span}\left\{r_{3}, M_{3}\right\}$, let $K_{4}=\left\langle\left\{K_{3}, S_{r_{3}}\right\}\right\rangle>\cong G$ and let $D_{4} \equiv M_{4} \cap C_{n}$. By Lemma 3 (below)
$k x=x$ for $x \in M_{4}^{\perp}$ and $k \in K_{4}$ and K_{4} is transitive on D_{4}. Applying this argument $(n-2)$ times, we obtain $K_{n} \subseteq G$ and K_{n} is transitive on $D_{n}=C_{n}$. Thus, G is transitive on C_{n} and the proof is complete.

To fill in the gaps in the above argument, it remains to prove Lemmas 1, 2, and 3. Lemma 1 provides the starting point for the stepwise argument used in the proof of Theorem 1.

Lemma 1. If G is irreducible and infinite, there is a subspace M_{2} and a subgroup $K_{2} \subseteq G$ such that $k x=x$ for $x \in M_{2}^{\perp}, k \in K_{2}$ and K_{2} acts transitively on $D_{2} \equiv M_{2} \cap C_{n}$.

Proof. As noted in the proof of Theorem 1, the set $\Delta=\{g r \mid r \in R$, $g \in G\}$ is infinite. Thus, there is a point $\delta_{0} \in C_{n}$ such that every neighborhood of δ_{0} contains infinitely many points in Δ. Thus we can select a sequence of pairs $\left(r_{i}, t_{i}\right), r_{i}, t_{i} \in \Delta$, such that r_{i} and t_{i} are linearly independent and $1-1 / i<r_{i}^{\prime} t_{i}<r_{i+1}^{\prime} t_{i+1}<1$ for $i=1,2, \cdots$.

For $0 \leqq \eta<2 \pi$, set

$$
\Psi(\eta)=\left(\begin{array}{rr}
\cos \eta & \sin \eta \tag{1}\\
-\sin \eta & \cos \eta
\end{array}\right) \in O(2)
$$

Define θ_{i} by $\cos \theta_{i}=r_{i}^{\prime} t_{i}, 0 \leqq \theta_{i}<\pi$ so $\theta_{i} \rightarrow 0$ as $i \rightarrow \infty$. Let $\Gamma_{i} \in O(n)$ have first row t_{i}^{\prime} and second row

$$
\left(r_{i}-t_{i}^{\prime} r_{i} t_{i}\right)^{\prime} /\left\|r_{i}-t_{i}^{\prime} r_{i} t_{i}\right\|
$$

Then an easy calculation shows that

$$
S_{t_{i}} S_{r_{i}}=\Gamma_{i}^{\prime}\left(\begin{array}{cc}
\Psi\left(2 \theta_{i}\right) & 0 \tag{2}\\
0 & I_{n-2}
\end{array}\right) \Gamma_{i}, \quad i=1,2, \cdots
$$

where I_{n-2} is an $(n-2) \times(n-2)$ identity matrix. Setting $H_{i}=$ $\left\langle\Psi\left(2 \theta_{i}\right)\right\rangle \cong O(2)$, it is clear that

$$
\left\{\left.\Gamma_{i}^{\prime}\left(\begin{array}{cc}
h & 0 \tag{3}\\
0 & I_{n-2}
\end{array}\right) \Gamma_{i} \right\rvert\, h \in H_{i}\right\} \subseteq G, \quad i=1,2, \cdots
$$

By selecting an appropriate subsequence, we can assume without loss of generality that $\Gamma_{i} \rightarrow \Gamma_{0} \in O(n)$, as $i \rightarrow \infty$.

If $\Psi(\eta)$ is given by (1), we now claim that

$$
\Gamma_{0}^{\prime}\left(\begin{array}{cc}
\Psi(\eta) & 0 \tag{4}\\
0 & I_{n-2}
\end{array}\right) \Gamma_{0} \in G
$$

Since G is closed and (3) holds, to establish (4), it suffices to show
there is a subsequence i_{j} and $h_{i_{j}} \in H_{i_{j}}$ such that $h_{i_{j}} \rightarrow \Psi(\eta)$ as $i_{j} \rightarrow \infty$. However, the existence of such a sequence is assured since $\theta_{i} \rightarrow 0$ as $i \rightarrow \infty$. Thus (4) holds. Hence we see that

$$
K_{2} \equiv\left\{\left.\Gamma_{0}^{\prime}\left(\begin{array}{cc}
h & 0 \tag{5}\\
0 & I_{n-2}
\end{array}\right) \Gamma_{0} \right\rvert\, h \in H^{*}\right\} \cong G
$$

where H^{*} is the full rotation group of R^{2}.
To complete the proof of Lemma 1, let M_{2} be the span of the first two columns of Γ_{0}^{\prime}. With $D_{2} \equiv M_{2} \cap C_{n}$, it is easy to check that $k x=x$ for all $x \in M_{2}^{\perp}, k \in K_{2}$ and that K_{2} acts transitively on D_{2}. This completes the proof.

The following result is used in the proof of Lemma 3.

Lemma 2. For $u_{0} \in(0,1]$, define a function $f:[0,1] \rightarrow[0,1]$ by

$$
f(u)=\left\{\begin{array}{l}
0 \quad \text { if } 0 \leqq u \leqq u_{0} \tag{6}\\
\left.1-\left[\sqrt{u u_{0}}+\sqrt{(1-u)\left(1-u_{0}\right.}\right)\right]^{2} \text { if } u_{0} \leqq u \leqq 1
\end{array}\right.
$$

Let $v_{1}=f(1)$ and define $v_{i}=f\left(v_{i-1}\right)$ for $i=2,3, \cdots$. Then, there exists an index i_{0} such that $v_{i}=0$ for $i \geqq i_{0}$.

Proof. It is not hard to verify that f is a continuous convex function. Since $0 \leqq v_{1}<1, v_{2}=f\left(v_{1}\right)=f\left(\left(1-v_{1}\right) 0+v_{1} 1\right) \leqq v_{1} f(1)=v_{1}^{2}$. Proceeding by induction, $v_{i} \leqq v_{1}^{i}$ so $\lim _{i \rightarrow \infty} v_{i}=0$. Since f is 0 in the interval $\left[0, u_{0}\right]$, there is an index i_{0} such that $v_{i}=0$ for $i \geqq i_{0}$. This completes the proof.

After establishing Lemma 1 , the key to Theorem 1 is Lemma 3. Although the proof of Lemma 3 is quite long, the geometric idea behind the proof is fairly simple. Consider R^{3} and let $D_{2}=\left\{x \mid x \in R^{3}\right.$, $\left.x_{3}=0, x_{1}^{2}+x_{2}^{2}=1\right\}$. Also, let $H=\left\{\left.\left(\begin{array}{cc}k & 0 \\ 0 & 1\end{array}\right) \right\rvert\, k\right.$ is any rotation of $\left.R^{2}\right\}$. Thus H acts transitively on D_{2}. Consider a fixed vector $t \in R^{3}$ with $\|t\|=1$ such that t is not in the $\left(x_{1}, x_{2}\right)$ plane and t is not in the x_{3}-line. Let $S_{t}=I-2 t t^{\prime}$ be the reflection across the plane $\{t\}^{\perp}$ and let \widetilde{H} be the group generated by S_{t} and H. The claim is that \widetilde{H} is transitive on $D_{3}=\left\{x \mid x \in R^{3},\|x\|=1\right\}$. For example, suppose the angle between t and the $\left(x_{1}, x_{2}\right)$ plane is 45°. Geometrically, it is clear that the set $H\left(S_{t}\left(D_{2}\right)\right) \equiv\left\{x \mid x=h S_{t} u\right.$ for some $h \in H$, and some $\left.u \in D_{2}\right\}$ is just D_{3}-that is, $S_{t}\left(D_{2}\right)$ is a circle passing through $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ and the transitivity of H implies that H moves the set $S_{t}\left(D_{2}\right)$ everywhere onto D_{3} (picture this on the surface of a basketball). Thus, given
$v_{1}, v_{2} \in D_{3}, v_{i}=h_{i} S_{t} u_{i}$, for $h_{i} \in H$ and $u_{i} \in D_{2}$ for $i=1$, 2. Since $u_{1}=$ $h_{0} u_{2}$ for some $h_{0} \in H$, it follows that $v_{1}=h_{1} S_{t} h_{0} S_{t} h_{2}^{-1} v_{2}$ so \tilde{H} is transitive on D_{3}. For other t-vectors, D_{3} does not get covered by one application of $H S_{t}$ to D_{2}, but D_{3} is covered by a finite number of applications of $H S_{t}$ to D_{2}-that is, $D_{3}=\left(H\left(S_{t}(\cdots) H\right) S_{t}\right)\left(D_{2}\right)$ for some finite string $H S_{t} H S_{t} \cdots H S_{t}$. Again, this implies the transitivity of \tilde{H} on D_{3}. Lemma 3 and its proof make all of the above precise.

Lemma 3. Consider a subspace $M_{m} \subseteq R^{n}, 2 \leqq m<n$, and suppose that K is a subgroup of $O(n)$ such that

$$
\left\{\begin{array}{l}
k x=x \text { for all } x \in M_{m}^{\llcorner }, k \in K \tag{7}\\
K \text { is transitive on } D_{m} \equiv M_{m} \cap C_{n}
\end{array}\right.
$$

Let $t \in C_{n}$ be such that $t \notin M_{m}$ and $t \notin M_{m}^{\perp}$. With $M_{m+1}=\operatorname{span}\left\{t, M_{m}\right\}$, let $D_{m+1} \equiv M_{m+1} \cap C_{n}$. Then the group $K^{*} \cong O(n)$ generated by K and $S_{t}=I-2 t t^{\prime}$ satisfies

$$
\left\{\begin{array}{l}
k x=x \text { for all } x \in M_{m+1}^{\perp}, k \in K^{*} \tag{8}\\
K^{*} \text { is transitive on } D_{m+1}
\end{array}\right.
$$

Proof. That $k x=x$ for all $x \in M_{m+1}^{\perp}$ and $k \in K^{*}$ is not hard to verify. To establish the transitivity of K^{*} on D_{m+1}, define a set B_{1} by (9) $\quad B_{1}=K\left(S_{t}\left(D_{m}\right)\right)=\left\{x \mid x=k S_{t} u\right.$ for some $u \in D_{m}$, some $\left.k \in K\right\}$
and then define B_{i} inductively by
(10) $\quad B_{i}=K\left(S_{t}\left(B_{i-1}\right)\right)=\left\{x \mid x=k S_{t} u\right.$ for some $u \in B_{i-1}$, some $\left.k \in K\right\}$
$i=2,3, \cdots$. Since $K\left(S_{t}\left(D_{m+1}\right)\right) \subseteq D_{m+1}$, it follows that $B_{i} \subseteq D_{m+1}$ for all i. The remainder of the proof is devoted to showing that there is an index i_{0} such that $B_{i_{0}}=D_{m+1}$, because this implies the transitivity of K^{*} on D_{m+1}.

Claim 1. If $B_{i_{0}}=D_{m+1}$, then K^{*} is transitive on D_{m+1}.
Proof of Claim 1. Consider $z_{1}, z_{2} \in D_{m+1}$. If $B_{i_{0}}=D_{m+1}$, then

$$
\underbrace{K\left(S_{t}\left(K\left(S_{t} \cdots\left(D_{m}\right)\right)\right)\right)}_{i_{0} \text {-terms }}=D_{m+1} .
$$

Thus, there exists $k_{1}, \cdots, k_{i_{0}} \in K$ and $g_{1}, \cdots, g_{i_{0}} \in K$ such that

$$
z_{1}=\left[\prod_{j=1}^{i_{0}}\left(k_{j} S_{t}\right)\right] u_{1} \equiv h_{1} u_{1}
$$

and

$$
z_{2}=\left[\prod_{j=1}^{i_{0}}\left(g_{j} s_{t}\right)\right] u_{2} \equiv h_{2} u_{2}
$$

for some $u_{1}, u_{2} \in D_{m}$. Since K is transitive on D_{m}, there exists a $k_{0} \in K$ such that $k_{0} u_{1}=u_{2}$. Thus, $z_{2}=h_{2} k_{0} h_{1}^{-1} z_{1}$ which shows that K^{*} is transitive on D_{m+1} as $h_{2} k_{0} h_{1}^{-1} \in K^{*}$. This completes the proof of Claim 1.

We now continue with the proof. Let P denote the orthogonal projection onto M_{m} and define $Z_{c}, 0 \leqq c \leqq 1$ by

$$
\begin{equation*}
Z_{c}=\left\{x \mid x \in D_{m+1},\|P x\|^{2} \geqq c\right\} \tag{11}
\end{equation*}
$$

Note that $Z_{1}=D_{m}$ and $Z_{0}=D_{m+1}$.

Remark. Geometrically, Z_{c} is an equatorial zone (with equator D_{m}) which partially covers D_{m+1}. Smaller values of c correspond to more of D_{m+1} being covered.

Define φ on [0,1] by

$$
\begin{equation*}
\varphi(c)=\inf _{x \in Z_{c}}\left\|P S_{t} x\right\|^{2}, \quad 0 \leqq c \leqq 1 \tag{12}
\end{equation*}
$$

and let

$$
\begin{equation*}
b_{1}=\inf _{x \in B_{1}}\|P x\|^{2} . \tag{13}
\end{equation*}
$$

Since each $k \in K$ commutes with P, we have

$$
\begin{equation*}
b_{1}=\inf _{k \in K} \inf _{x \in D_{m}}\left\|P k S_{t} x\right\|^{2}=\inf _{x \in D_{m}}\left\|P S_{t} x\right\|^{2}=\inf _{x \in Z_{1}}\left\|P S_{t} x\right\|^{2}=\varphi(1) \tag{14}
\end{equation*}
$$

Claim 2. $\quad B_{1}=Z_{b_{1}}$.
Proof of Claim 2. If $x \in B_{1},\|P x\|^{2} \geqq b_{1}$ which implies that $x \in Z_{b_{1}}$. Conversely, consider $x \in Z_{b_{1}}$ and let Q denote the orthogonal projection onto the one-dimensional subspace $M_{m}^{\perp} \cap M_{m+1}$ which is spanned by the vector $t^{*} \equiv(I-P) t /\|(I-P) t\|$. Since Z_{c} is compact and arcwise connected, the continuous function $u \rightarrow\left\|P S_{t} u\right\|^{2}\left(u \in Z_{c}\right)$ takes on all values between 1 and $\varphi(c)$. As $x \in Z_{b_{1}}$,

$$
\|P x\|^{2} \geqq b_{1}=\varphi(1)=\inf _{u \in D_{m}}\left\|P S_{t} u\right\|^{2}
$$

Hence, there exists a $u \in D_{m}$ such that $\left\|P S_{t} u\right\|^{2}=\|P x\|^{2}$. Thus, $1=$ $\|P x\|^{2}+\|Q x\|^{2}=\left\|P S_{t} u\right\|^{2}+\left\|Q S_{t} u\right\|^{2}$, so $\left\|Q S_{t} u\right\|^{2}=\|Q x\|^{2}$. Since Q is a projection onto a one-dimensional subspace, u can be chosen (by changing to $-u$ if necessary) such that $Q x=Q S_{t} u$. The transitivity of K on D_{m} implies there is a $k \in K$ such that $k P S_{t} u=P x$. Thus,
$k S_{t} u=k P S_{t} u+k Q S_{t} u=P x+k Q S_{t} u=P x+Q S_{t} u=P x+Q x=x$, so $x=k S_{t} u \in B_{1}$. This completes the proof of Claim 2.

Using Claim 2, $B_{2}=K\left(S_{t}\left(B_{1}\right)\right)=K\left(S_{t}\left(Z_{b_{1}}\right)\right)$. Consider

$$
\begin{equation*}
b_{2} \equiv \inf _{x \in B_{2}}\|P x\|^{2} \tag{15}
\end{equation*}
$$

Using (15) and the fact that each $k \in K$ commutes with P, we have

$$
\begin{equation*}
b_{2}=\inf _{x \in B_{2}}\|P x\|^{2}=\inf _{x \in Z_{b_{1}}} \inf _{k \in K}\left\|P k S_{t} x\right\|^{2}=\inf _{x \in Z_{b_{1}}}\left\|P S_{t} x\right\|^{2}=\varphi\left(b_{1}\right) \tag{16}
\end{equation*}
$$

Claim 3. $\quad B_{2}=Z_{b_{2}}$.
Proof of Claim 3. If $x \in B_{2}$, then $x \in D_{m+1}$ and $\|P x\|^{2} \geqq b_{2}$, so $x \in Z_{b_{2}}$. Conversely, consider $x \in Z_{b_{2}}$. As u varies over $Z_{b_{1}}$, the function $u \rightarrow\left\|P S_{t} u\right\|^{2}$ takes on all values between 1 and b_{2}. Since $\|P x\|^{2} \geqq b_{2}$, there is a $u \in Z_{b_{1}}$ such that $\left\|P S_{t} u\right\|^{2}=\|P x\|^{2}$. As in the proof of Claim 2, $1=\|P x\|^{2}+\|Q x\|^{2}=\left\|P S_{t} u\right\|^{2}+\left\|Q S_{t} u\right\|^{2}$ so $\|Q x\|^{2}=$ $\left\|Q S_{t} u\right\|^{2}$, and we can choose u such that $Q x=Q S_{t} u$. The transitivity of K implies that there is a $k \in K$ such that $k P S_{t} u=P x$. Thus, $x=$ $P x+Q x=k P S_{t} u+Q S_{t} u=k P S_{t} u+k Q S_{t} u=k S_{t} u \in B_{2}$ since $u \in Z_{b_{1}}=B_{1}$. The proof of Claim 3 is complete.

Arguing as in the proof of Claim 3, it is an easy matter to show that $B_{i}=Z_{b_{i}}$ and $b_{i}=\varphi\left(b_{i-1}\right)$ where

$$
\begin{equation*}
b_{i}=\inf _{x \in B_{i}}\|P x\|^{2}, i=3,4, \cdots \tag{17}
\end{equation*}
$$

As noted earlier, the proof of Lemma 3 will be complete if we can show there is an index i_{0} such that $B_{i_{0}}=Z_{0}=D_{m+1}$. To establish the existence of an i_{0}, we will explicitly calculate the function φ defined in (12) and then apply Lemma 2. Define $z_{0} \in D_{m+1}$ by

$$
\begin{equation*}
z_{0}=S_{t} t^{*} \tag{18}
\end{equation*}
$$

where $t^{*}=(I-P) t /\|(I-P) t\|$. Then,

$$
\begin{align*}
a & \equiv\left\|P z_{0}\right\|^{2}=\frac{\left\|P S_{t}(I-P) t\right\|^{2}}{\|(I-P) t\|^{2}}=\frac{\left\|P\left(I-2 t t^{\prime}\right)(I-P) t\right\|^{2}}{\|(I-P) t\|^{2}} \\
& =\frac{4\|P t\|^{2}\left(t^{\prime}(I-P) t\right)^{2}}{\|(I-P) t\|^{2}}==4\|P t\|^{2}\left(1-\|P t\|^{2}\right) \tag{19}
\end{align*}
$$

Since $t \notin M_{m}$ and $t \notin M_{m}^{\perp}, 0<\|P t\|^{2}<1$ so $0<a \leqq 1$.
Claim 4. The function φ is given by

$$
\varphi(c)=\left\{\begin{array}{l}
0 \quad \text { if } \quad 0 \leqq c \leqq a \tag{20}\\
1-[\sqrt{a c}+\sqrt{(1-a)(1-c)}]^{2} \quad \text { if } \quad a \leqq c \leqq 1
\end{array}\right.
$$

Proof of Claim 4. Since $Q=t^{*} t^{* \prime}$ (see the proof of Claim 2), for each $x \in R^{n},\left\|Q S_{t} x\right\|^{2}=x^{\prime} S_{t} Q S_{t} x=x^{\prime} S_{t} t^{*} t^{*} S_{t} x=\left(z_{0}^{\prime} x\right)^{2}$. Thus,

$$
\begin{equation*}
\varphi(c)=\inf _{x \in Z_{c}}\left\|P S_{t} x\right\|^{2}=\inf _{x \in Z_{c}}\left(1-\left\|Q S_{t} x\right\|^{2}\right)=1-\sup _{x \in Z_{c}}\left(z_{0}^{\prime} x\right)^{2} \tag{21}
\end{equation*}
$$

If $a=1$, then $z_{0} \in D_{m} \subseteq Z_{c}$, so $\sup _{x \in Z_{c}}\left(z_{0}^{\prime} x\right)^{2}=1$ and $\varphi(c)=0$ for all $c \in[0,1]$.

Now, consider $a \in(0,1)$. For $x \in Z_{c}$, let $\gamma=\|P x\|^{2} \geqq c$. Then, by the Cauchy-Schwarz inequality, we have

$$
\begin{align*}
z_{0}^{\prime} x & =z_{0}^{\prime} P x+z_{0}^{\prime} Q x=\left(P z_{0}\right)^{\prime} P x+\left(Q z_{0}\right)^{\prime} Q x \tag{22}\\
& \leqq\left\|P z_{0}\right\|\|P x\|+\left\|Q z_{0}\right\|\|Q x\|=\sqrt{a} \sqrt{\gamma}+\sqrt{1-a} \sqrt{1-\gamma}
\end{align*}
$$

Further, there is equality in the above inequality for $x=x_{0}$ where

$$
\begin{equation*}
x_{0}=\sqrt{\gamma / a} P z_{0}+\sqrt{(1-\gamma) /(1-a)} Q z_{0} \tag{23}
\end{equation*}
$$

Clearly, $\left\|P x_{0}\right\|^{2}=\gamma \geqq c$ so $x_{0} \in Z_{c}$. Thus,

$$
\begin{equation*}
\varphi(c)=1-\sup _{\gamma \in[c, 1]}[\sqrt{a \gamma}+\sqrt{(1-a)(1-\gamma)}]^{2} \tag{24}
\end{equation*}
$$

If $c \leqq a$, then $\gamma=a \in[c, 1]$ and $\varphi(c)=0$. If $c>a$, then the sup in (24) is achieved at $\gamma=c$. Thus φ is given by (20) and the proof of Claim 4 is complete.

Now, by Lemma 2, there is an index i_{0} such that $b_{i_{0}}=0$ since $b_{1}=\varphi(1)$ and $b_{i}=\varphi\left(b_{i-1}\right)$. Thus, $B_{i_{0}}=Z_{0}=D_{m+1}$ and by Claim 1, K^{*} is transitive on D_{m+1}. This completes the proof of Lemma 3.

The following is an immediate consequence of Theorem 1.
Corollary 1. Let $G_{1}=\langle\mathscr{R}\rangle$ where $\mathscr{R}=\left\{S_{r} \mid r \in R\right\} . \quad$ If G_{1} is infinite and irreducible, then the closure of G_{1} is $O(n)$. Also, for each $x \in C_{n},\left\{g x \mid g \in G_{1}\right\}$ is dense in C_{n}.

Remark. The assumption that G is generated by reflections cannot be removed since $O^{+}(n), n \geqq 2$ is infinite, closed and irreducible but $O^{+}(n) \neq O(n)$. Our interest in Theorem 1 arose in connection with results for G-monotone functions when G is generated by reflections (see Eaton and Perlman (1976)).

References

1. C. T. Benson and L. C. Grove, Finite Reflection Groups, Bogden and Quigley, Tarrytown-on-Hudson, New York, 1971.
2. M. L. Eaton and M. D. Perlman, Reflection Groups, Generalized Schur Functions and the Geometry of Majorization. To appear in the Annals of Probability, 1976.

Received February 11, 1977 and in revised form July 28, 1977. The research for the first author was supported in part by a grant from the National Science Founda-tion-NSF-GP-34482.

The research for the second author was supported in part by a grant from the National Science Foundation-NSF-MCS-72-04364-A03.

University of Copenhagen
5, UNIVERSITETSPARKEN
DK 2100 Copenhagen, \emptyset Denmark

