
PACIFIC JOURNAL OF MATHEMATICS
Vol. 73, No. 1, 1977

MERCERIAN THEOREMS VIA SPECTRAL THEORY

FRANK P. CASS AND B. E. RHOADES

Given a regular matrix A, Mercerian theorems are con-
cerned with determining the real or complex values of a for
which al + (1 — a)A is equivalent to convergence. For aΦl,
the problem is equivalent to determining the resolvent set for
A, or, determining the spectrum σ(A) of A, where σ(A) =
{λ IA — λl is not invertible}. This paper treats the problem
of determining the spectra of weighted mean methods; i.e.,
triangular matrices A = (ank) with ank - pk/Pn, where p0 > 0,
Pn ̂  0, Σ&=o Pk ~ Pn It is shown that the spectrum of every
weighted mean method is contained in the disc {λ\\λ
1/2} (Theorem 1), and, if lim pJPn exists,

^ (1 - β)/(2 - β)} U {pJPn I pJPn < β/(2-ε)} ,

where e — lim pJPn.
Let r = limpJPn, δ = 1STpJPn, S = {pJPn\n^0}. When

γ < δ, some examples are provided to indicate the difficulty
of determining the spectrum explicitly. It is shown that
{λ I U - (2 - δ)-11 ^ (1 - 3/(2 -8)}\J8Q σ(A) and

σ(A) Q{λ\\λ-(2- r)"11 ^ (1 " r)/(2 ~ ΐ)} U S .

Theorem 1 is a generalization of the corresponding
theorems of: S. Aljancic, L. N. Cakalov, K. Enopp, M. E.
Landau, J. Mercer, Y. Okada, W. Sierpinski, and G. Sunouchi.

Using spectral theory we obtain the best possible Mercerian
theorems for certain classes of weighted mean methods of summability.

The weighted mean method is a triangular matrix A = (ank) with
α»* = Pk/Pnf where p0 > 0, pn ^ 0, n ^ 0, Pn = Σ*=o Pk and A is a
bounded linear operator on c, the space of convergent sequences.

For a Φ 0 we may write al + (1 — a)A = a(I + qA), where q =
(1 — α)/α. Mercer's original theorem [9] states the following: Let
{xn} be a sequence such that xn+1 — xn + μn~ίxn —> λ as n —> ©o. (i)
If λ is finite and μ > — 1, then xn+ί — xn and n~ιxn both tend to
X/(μ + 1) as w—>oo. (ϋ) If λ is infinite and μ > — 1, then n"1xn—>λ
and #„+! — α;%—>λ only if 0 ^ j« > —1.

Landau [8] showed that, if {xn} is a complex sequence, # a positive
integer, then limw(#% + (q/ri) Σ*=i ^t) = ° implies l i m ^ = 0. Sierpinski
[14] extended Landau's result to real numbers q > — 1 and showed
it could not be extended to q <; — 1. Sierpinski's result for q > — 1
was reproved in [3],

63



64 FRANK P. CASS AND B. E. RHOADES

Let Σ^=2 pJ(Pi + Vz + + pn-i) be a divergent series of positive
terms, {xn} a complex sequence. Okada [10] showed that if q > —1,
then limM (xn+?(ΣίU P*»*/Σ*=i P*)) = ί» I finite, implies limΛ α?Λ = 1/(1+q).
He also verified that the theorem does not hold for limw Σϊ=ί PJp» >
- ( l + ? ) £ 0 .

Using a different technique, Knopp [6] reproved Okada's result.
Beekman [2] showed that, if A is a conservative triangle with inverse
satisfying a~l > 0, a*i ̂  0 for n > k, then I + qA is equivalent to
convergence for Re(#) > — 1.

We determine the spectrum of A, σ{A), in every case in which
lim pJPn exists (Corollaries 1 and 2). When {pJPn} does not converge,
in which case A is necessarily regular, the situation seems pathological:
Theorems 2 and 3 do give set inclusions for σ(A), but, as we show
by examples, σ(A) can be disconnected and is very difficult to describe
explicitly.

Let B = A — XI. Our first task is to compute the entries of B~~ι.
Except for Theorem 1, we shall restrict our attention to regular
weighted mean methods; i.e., those for which Pn~+oo. For, if Pn

tends to a finite limit, then A is compact and σ(A) = {pk/Pk: k ̂  0} U {0}.
(See, e.g. [13, Theorem 1].)

LEMMA 1. Let A be a weighted mean matrix, B = A — λ/, λ a
scalar such that bnn Φ 0 for each n. Then D = B~ι has entries

n

Π

Proof. A direct computation verifies dnn and d*,,,-!. By induction
one can show that

(2) i ( - i ) v - 1 ^ π — p - ; p - (-Dfcλfc π p ^ p

With (2), one verifies by induction that (1) is true.

THEOREM 1. Let A be a weighted mean method. Then σ(A)Q

Proof. Let λ = x + iy satisfy |λ - 1/21 > 1/2. This inequality
is equivalent to a > —1, where — 1/λ = a + ΐ/3. Since α: > — 1 and
0 g py/Py ^ 1 for all i, 11 - pj/XPj | ̂  11 + αpi/Py = 1 + ^ i / P . . For
fc < n, \dnk\ ̂  W |λ | 2 P w μ% k (1 + Λ^ /Pi) = Λfc, say.

Using finite induction we can show, for each 0 < r < n,
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r P

j=r+l

Therefore ΣLo I dnn \ ̂  | dnn | + Σϊ=o /n* — I dnn \ + Pn-h

(1 + α)(l + apJPn) ^ \pJPn - λl"1 + /3|λ|"2(l + α) ' 1

where /? = 1 if a: ̂  0 and β = (1 + a:)"1 if - 1 < a < 0. Since <Zn» Φ
0 for each w, from Problem 32 [16, p. 232], the convergence domain
of D, (JD), is equal to c, and λ 6 p(A), the resolvent of A.

Theorem 1 is a special case of [2, Theorem 1]. Since 0 is not
an interior point of σ(A), Theorem 1 provides another proof of the
fact that every weighted mean method lies in the closure of the
maximal group of invertible elements in Δ, the subalgebra of B(c)
consisting of triangular matrices. (See [11, p. 287].)

Let 8 = ίίϊn. pJPn9 7 = lim. pJPn.

THEOREM 2. Let A be a regular weighted mean method. Then
σ(A) 2 {λ| | λ - ( 2 - δ)~'\ ^ (1 - <5)/(2 - 8)} U S, where S = {pJPjnΈW

Proof. Fix λ satisfying | λ - (2 - δ)'11 < (1 - <?)/(2 - 8) and λ Φ
pJPn for any n. From (1) we obtain

(3) |cU =
1 + ί l - —

Note that 11 + (1 - (1/X)pn+1/Pn | ^ 1 if and only if

(1 + (1 + a)pnJPJ + (βpn+JPJ ^ 1 ,

where —1/λ = a + iβ; i.e.,

(4) 2(1 + a)Pn+JPn + ((1 + aY + β2)(pnJPJ < 0 .

For each n such that pn+ι = 0, (4) is automatically satisfied. For
each n such that pn+1 > 0, (4) is equivalent to

(5) 2(1 + α) + ((1 + ay + β2)pn+1/Pn £ 0 .

For (5) to be true for all n sufficiently large, it is sufficient to
have δ satisfy

(6) 2 ( 1 + a) + ( ( 1 + a ) 2 + β2)δ/(l - δ)< 0 ,

since pn+1/Pn = pn+1/Pn+1(l - pn+1/Pn+1), which is monotone increasing
in pJPn. Inequality (6) is equivalent to | λ - (2 - δ)'1 \ < (1 - <5)/(2 - 8).
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Therefore, for all n ^ N, using (3),

which diverges by the Abel-Dini theorem [7, p. 290].
If λ = pJPn then λ belongs to the spectrum of A. Theorem 2

follows since the spectrum is always closed.

COROLLARY 1. Let A be a regular weighted mean method with
(5-0. Then σ{A) = {λ| |λ - 1/21 ̂  1/2}.

Proof. Combine Theorems 1 and 2, observing that S is already
contained in the disc.

Special cases of Corollary 1 for λ real appear in [1], [6], and [10].

THEOREM 3. Let A be a regular weighted mean method with
7 > 0. Then σ(A) £ {λ| | λ - (2 - 7)"1! < (1 - λ)/(2 - 7)} U S.

Proof. Let λ be fixed and satisfy | λ, — (2 — 7)"1] > (1 - 7)/(2 - 7)
and λ Φ pJPn for any n. We shall show that λ e ρ(A), the resolvent
of A. From Theorem 1 we need consider only those values of λ
satisfying |λ —1/21 ̂  1/2; i.e., a< —1. The value a= —1 corresponds
to λ = 1, which we know lies in the spectrum, since pJP0 — 1.
Therefore we shall assume a < — 1.

Under the assumption on λ we wish to verify that

is strictly larger than one for all j sufficiently large. To this end,
define f(t) = 1 + 2(1 + a)t + ((1 + άf + β2)t\ f has a minimum at

to = - ( 1 + «)/((l + α)2 + /32)

The assumption on λ is equivalent to

( 7) 7(α2 + /32) + 2a > 7 - 2 .

Therefore

7 ^ - ( 1 + a2(1 - 7) (1 + a)2 + — °o

and / is monotone increasing for all t > 7/2(1 — 7).
Let ε > 0 and small. /((7/(l - 7)) - e) = /(7/(l - 7)) - 2 6 g{e),

where g(ε) = 1 + a + ((1 + af + /92)(7/(l - 7)~ε/2). g(e) > 0 for small
ε, since / is monotone increasing for t > 7/2(1 — 7).

We shall now show that /(7/(l - 7)) > 1. Prom the hypothesis
on λ and (6),
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+ /S2 + — > 7 ~ 2

7 7

which is equivalent to

1 - 7 λ(l - λ)

But 1/(1 - 7) = 1 + 7/(1 - 7), so we have

(/(7/(l - T)) = |1 + (1 - l/λ)7/(l - 7) |2 > 1 .

Now choose e > 0 and so small that /(7/(l — 7) — ε) = /(7/(l — 7)) —
2εg(ε) = m2 > 1. Then, by the definition of 7 there exists an N
such that n > N implies pn+1/Pn > 7/(1 - 7) - ε, so that f(pJPn^) >
/(7/(l - 7) - ε) = m\

Using (3), \dnk\/\dn+uk\ = (f(pn+1/Pn)) > m2 > 1 for all n ^ N.
Therefore | dnk | is monotone decreasing in n for each k, n^ N, so
that D has bounded columns. Thus, to show that D has finite norm
it is sufficient to show that \dnn\ is bounded, and that ΣJSU^i *! is
bounded.

Recall that pn\P%-γ is monotone increasing in pJPn. For the ε
we are using, we can enlarge N, if necessary, to ensure that pJPn^ <
8/(1 - 8) + 1 f or n ^ N.

From (3),

- ± ^ + i ) Σ (Π i + ( i - i
i_1

<

where H is independent of n.

I J I __ An -Ln

\pn-xPn\ \X\\Pn-pJM
(1 + PjPn-ύ

< 1 + 8/(1 - δ) + 1 _
| λ |m

Therefore X> has finite norm. From [16, loc. cit.], (D) = c and λ e

COROLLARY 2. Lei Λ δe α regular weighted mean method with
limM p Λ /P n = 7 > 0. Then σ(A) = {X|| λ - (2 - 7)"11 ^ (1 - 7)/(2 - 7)} U
^ , where E = {pJPn\pJPn < 7/(2 - 7)}.
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Proof. Combine Theorems 2 and 3 and note that S\E is already-
contained in the disc, and E is a finite set.

We now obtain a necessary and sufficient condition for a weighted
mean method to be equivalent to convergence.

THEOREM 4. Let A be a regular weighted mean method. Then
(A) — c if and only ifθ = limΛ pn+JPn > 0.

Proof, 0 > 0 implies pn+1/Pn ^ 0/2 for all n sufficiently large.
For each npn+1/Pn+1 = (pΛ+1/PJ/(l + pn+ί/Pn). Note that /(») = y/(l + »)
is monotone increasing in y, so that, for all n ^ N, pn+JPn+1 ^ 0/(2+0),
and the diagonal entries of A are nonzero for n^ N. If αnw = 0
for any n < N, replace the zero by 1. The new matrix B has the
same convergence domain as A. For n ^ N, the nonzero terms of
B-1 are b£ = PJp. , δ-,U - -PnJpn.

Suppose akk = 0 for some k < N. Then pfc = 0, 6M = 1 and &Λfe = 0
for n > k. Thus bΰk

ι = 1, &*+!,* — 0 and, by induction, bni = 0 for
n > k.

Therefore 11 B~' \ | = sup. [ P ^ ^ . + P./pJ ^ supM 2P#/p. ̂  2(2 + θ)/θ <
oo. By [16], (B) = c. Thus (A) = c.

Suppose 0 = 0. Then there exists a subsequence {nk} of w such
that lim* pnje+JPnk = 0.

Case I. ^ = 0 for at most a finite number of values of n. Let
B be the matrix A with each zero diagonal entry replaced by 1.
Then GB) = (il). Since p%+1/PM+1 = (p,+1/PJ/(l+P.+i/PJ, lim* P«fc/?>Λfc = 0.
Therefore IIB-1!! ^ sup* 1 6 ^ 1 = +oo, and (B) Φ c.

Case II. pn — 0 for an infinite number of values of n. Let {%}
denote this set. Define a sequence {#J by xn]c = 1, % = 0 otherwise.
Then A# = 0, and (A) =£ c.

The special case of this theorem for 0 < pn <; 1 appears in [4].
A special case of the sufficiency of this theorem appears in [5, p. 59].

We now consider the pathology which may arise when 7 < δ.

With p0 = 1, pn ^ 0 for n > 0, cn = pJPn, then, as in [12, pp.
163-4], one can show that pn = cw Π*=i(l "~ ci)~S co = 1> 0 ̂  c^ < 1
for n > 0, and Pw —> oo is equivalent to Σ£U c» = °o.

For any sequence s = {s%} define un — Σ?=o PkSk/Pn* Then wn —
(1 — c J v i = on8n. Let

(8) ίw = un — λs^ .
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For each cn Φ 0,

( 9 ) tn = λ(l - cn)un_Jcn + (1 - \/cn)un .

Now for the examples. Let p, q be real numbers satisfying 1 <
p < q. Define {cn} by c0 = 1, c2n = 1/p, c%%^ = 1/g, w > 0 . Using (8)
and (9), i0 = (1 - λ X , t2n = (p - l)λ^2ίι_1 + (1 - pλ)w2%, and £2w+1 =
(# - l)λw2Λ + (1 - q\)utn+ι. Therefore t = JBM, where 600 = 1, bZn>2n =
1 - pλ, ft^-Laπ-! = 1 - gλ, δί.^,-! = (? - l)λ, δ 2 Λ_ l f 2 n. a = (p - l)λ, n > 0,
6Λfc = 0 otherwise. From Theorem 4, (A) = c.

Suppose λ Φ {1/p, 1/g, 1}, and let E = B~K If |J JS?H < °o, then
from [16, loc. cit.] E is conservative and (B) = c. Therefore tec=>
^ e c => s 6 c and (A — λJ) = c, which implies λ g σ(A). Conversely,
if λ ί α ( i ) , then (A — λl) = c, so that tec=>sec=*uec=>Eis
conservative => \\E\\ < °o. We have shown that, if λ ^ {1/p, 1/g, 1}
then X<ίσ(A) if and only if \\E\\ < oo.

To compute the norm of E, observe that bnnenk + 6Λ,n-1en_ lft = 0
for k < n, so that enk = —K^^^Jb^.

Thus e2%)fc = - ( p - I)λe2%_1)fc/(1 - pλ), & < 2n, n = 1, 2, , and
Let Λ, = Σ U |β n * | . For n ^ 1,

do)

2n = Σ

\I-PM

and, for n ^ 0,

(11) Rzn+ι = 1 [(g - 1) I λ I R2n + 1] .
|1 - qX\

Substituting (11) into (10) we have

| l - p λ | | l - ς r λ |
i ( p - D l λ j ,

| l λ | | l λ |

and

11 — pX I 11 — qX I 11 — pλ | 11 —

Let {σn} be defined by α H+1 = aσn + δ, where a and δ are fixed
positive constants. Then
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so that

α*+1 α° α (1 - a'1) '

or σn+ι - σoa
n+1 = δ(αn+1 - l)/(α - 1). For 0 < a < 1, {cj is bounded,

and, for a ^ 1, {σj is unbounded. Therefore

since 1/p, 1/q and 1 already belong to those values of λ for which

\\E\\ = ~ .
For p = 2, q = 3, 3σ(A) is an oval with ^-intercepts of 1/4,1.

For p = 2, £ — 8, the boundary consists of a pair of ovals which are
tangent at x = (10 — τ/T)/23. For p = 3, q = 13, σ (A) is contained
in two disjoint ovals. The left oval has ^-intercepts at 1/15,1/9,
and the right oval has ^-intercepts at 1/7,1.
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