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SOME QUALITATIVE RESULTS ON
THE REPRESENTATION THEORY

OF Gln OVER A ^-ADIC FIELD

ROGER E. HOWE

The purpose of this paper is to present a coherent ap-
proximate picture of the representation theory of Gln over
a p-adic field.

In §2, two very general structural results about representa-
tions of Gln are proved. In §3, certain specific series of representa-
tions are constructed and analyzed fairly completely. In §4 the role
of these representations in the whole of the representation theory
of Gln, particularly in regard to the Plancherel formula, is discussed.

In writing this I have tried to present an overall picture as
directly and simply as possible. I feel this goal is reasonably achieved
in §2. In §3, there is an unfortunate amount of technicality in the
main construction. Balancing this, however, are three considerations.
First, we have stuck to the simplest case sufficiently general to permit
the conclusions at the end of § 4. For an example of an attempt at
a more complete result in a special case, see [12]. Second, the
technicalities do reveal the essential features of what so far is the
main technique for constructing representations of semisimple p-adic
groups. Third, the precision of the results is hopefully some com-
pensation for the effort required to obtain them. In §4, we have
been fairly sketchy with the main result. However, we have
presented more or less completely the argument in the supercuspidal
case, as this is not only much simpler, but reveals the main ideas
and the connections with classical notions.

We will now preview the results of §2. We fix for the rest of
the paper a non-Archimedean local field F. The ring of integers of
F will be written R and π stands for a prime element of R. We
put G = Gln{F) and Ko = Gln(R). Then Ko is a maximal compact
subgroup of (?, and is open. Furthermore, any compact subgroup of
G is conjugate to a subgroup of Ko. The subgroups Kv — 1 + πvMn(R),
for v ^ 1, are open normal subgroups of Ko and form a neighbor-
hood basis for le i? .

The question we will be mainly concerned with in §2 is how a
representation of G decomposes when restricted to some Ku. Thus
let Ku denote the collection of equivalence classes of irreducible
unitary representations of Kv. Let p be an admissible (see [16])
representation of G on a vector space X. Then we may write
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X = Σse£vXδ, where Xδ is the i^-invariant subspace of X such that
any ^-irreducible subspace of Xδ defines a representatation of the
class δ. The Xδ are all finite-dimensional by the definition of admis-
sibility. Of course, some Xδ may be zero. We will call Xδ the
isotypic component of X of type δ, and will say any nonzero x e Xδ

is of iϊ^-type δ. Thus our goal is to make statements about the
i^-types in X: which types occur, and with what multiplicity. (The
multiplicity of the iζ,-type δ is (dim Xδ)/(dim <5), where dim δ is the
dimension of any representation of class δ.) From these statements,
a rough over-all picture of the representation theory of G will hope-
fully emerge. It is worth remarking here on the difference between
the real and the p-adic cases. Knowledge of the decomposition of a
representation of a semisimple Lie group on restriction to a maximal
compact subgroup says very little about the representation. The
case of the pair Gln(R), O(ri) illustrates this phenomenon especially
well. Almost all the representations of O(n) almost always occur
in a representation of Gln(R). The sub-quotient theorem of Harish-
Chandra [9] may be interpreted as follows: given any irreducible
representations of Gln(R) then one may find finitely many other
irreducible representations of Gln(R), such that their direct sum
decomposes under O(n) in one of finitely many pre-specifiable ways.
No analogous statement is even remotely true for p-adic groups,
and while Gln(R) is extreme among real groups in this sort of
behavior, it is not unique—the other real Chevalley groups act
similarly. The reason for this difference, of course, is that in our
p-adic group, K is open and so in an essential way sees already the
most "rigid" aspects of the structure of G. One way of saying this
is to note that K is Zariski-dense in G, while the maximal compact
subgroup of a semisimple Lie group is a proper algebraic subgroup.

The usefulness of the iΓ^-decompositions of representations of G
has another face. Since the representation theory of Kv does reflect
quite well the representation theory of G, it is quite hard in itself;
harder than the representation theory of a compact Lie group. It
seems unlikely that we will ever have an explicit calculations of all
the representations of any Ku for n larger than 4 or 5 at most.
Fortunately for us, it is possible to ignore the fine structure of Kυ

and still arrive at meaningful statements. We may figuratively
describe the situation as follows. We divide Kv into two sets of
representations. Members of one set we refer to as "essential"
representations, the other as "inessential" representations. The es-
sential I^-types may be thought of as controlling the details of
structure of the representation theory, while the inessential iζ,-types
relate to asymptotic behavior of characters and so forth. To help
make these suggestions more precise, we state one result which we
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will obtain. In the following statement, we do not always take our
representation p of G to be admissible. If p is not necessarily
admissible, we take p to be smooth in the sense of Harish-Chandra:
if p acts on X, then X is a direct sum ΣaekpX8 of its ίΓv-isotypic
components, but the dimension of a given Xδ may be infinite.

THEOREM 1. ( a ) Any representation of G contains at least
one essential Kv-type.

( b) For a given Retype δ, there are only finitely many essential
Kv-types which can occur with δ in any irreducible representation
of G. In particular an irreducible representation of G contains at
most finitely many essential Retypes.

(c) The multiplicity of any Kv-type δ in an irreducible re-
presentation p of G is bounded by a constant depending on δ times
the sum of the multiplicities of the essential Retypes in p.

COROLLARY. A finitely generated admissible representation of
G has a finite composition series.

REMARK. Casselman [5] has proven this corollary for any reduc-
tive group by very different methods.

It follows of course that almost all of the i^-types occurring
in a given p are inessential. From this comes their role in the
asymptotics. This is a more difficult topic which we will essentially
ignore here, except for the very crude result (c) of Theorem 1, and
a result on characters which we will now discuss.

In Harish-Chandra's theory of semisimple Lie groups, the
characters of representations play a crucial role. It is in terms of
characters that the Plancherel theorem is formulated, and until re-
cently the only proof of the existence of discrete series ([8]) produces
their characters, not the modules. The point is that the characters
seem to provide the most accessible definitive labeling of the re-
presentations, besides being the appropriate objects with which to
do Fourier analysis. In the p-adic case, the characters seem likely
to be of less practical importance because they are harder to com-
pute and more complicated in structure, because other data, such
as spherical functions, is easier to come by than in the real case,
and because reasonably effective constructions of discrete series exist
though there is room for much improvement. However, characters
are still important for a complete theory, and it is of interest in
any case to compare their behavior in the real and p-adic cases.

Let us recall the basics of character theory. Let C?(G) denote
the space of locally constant, compactly supported, complex-valued
functions on G. A distribution on G is any linear functional on
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C?(G). Convolution on G defines the structure of associative algebra
on C?(G). If p is a representation of G, then in an elementary-
fashion p may be "integrated" to yield a representation of C?(G).
If p is admissible, it is easy to see that p(f) has finite rank for any
feC?(G), so the trace of p{f) is defined. The mapping /-> tr p(f)
then defines a distribution, denoted θp, on G. This distribution θp

is called the character of p. It has the property of being invariant
under inner automorphisms of G. That is, if g19 g2 e G, define
A d ^ 2 ) = g^gr1. If feC?(G), define Ad* &(/) by Ad* &(/)(Λ) =
/(Ad gr\gύ) Then 0,(Ad* $(/)) = θp(f) for all / e Cr(G) and g e G.

Now let A be a distribution on G and let U Q G be open. Let
fo be a function on U, locally integrable with respect to Haar measure
restricted to U. We say A equals h on U if, for any feC?(U),

Mf) = \ f(χ)h{x)dx, dx denoting Haar measure. Recall that G', the

regular set of G, consists of those elements of G which are semi-
simple and whose centralizer is a Cartan subgroup. (In terms of
our G = Gln(F), Gf consists of those elements whose characteristic
polynomials have n distinct roots.) Gf is an open dense subset of
G. Its complement is a proper closed subvariety.

For semisimple Lie groups Harish-Chandra [7] has proved the
fundamental theorem that the character of an irreducible representa-
tion is a locally integrable function on the whole group which is
analytic on the regular set. Of these two properties the first is
very difficult to establish, while the second is quite simple. On the
other hand, in [9], Harish-Chandra expends some effort to show that
the character of a supercuspidal representation of a characteristic
zero reductive p-adic group is locally constant on the regular set.
(He then goes on to show it is locally integrable on all of G.) Here
we will show, for our G (which may be of characteristic p) that
the character of an admissible irreducible representation is a locally
constant function on G'. In view of the corollary of Theorem 1,
this also holds for finitely generated admissible representations.

Our method of establishing the result on characters uses the
notion of "partial traces", which we now detail. Let the admissible
p act on X, and let X — Σtek^Xδ be the decomposition of X into
iζ.-types. Let Eδ denote the projection of X onto Xδ. For fe C7(G)f

define θPtδ(f) = t r (Eδp(f)Eδ). Then it is clear that θp{f) - Σ δ θP)δ(f).
θPiδ is called the δ-component of θp, or the partial trace of p with
respect to δ.

θPίδ as a distribution on G, is obviously very well-behaved. In
fact, for x 6 G, define θPtδ(x) = t r (Eδp(x)Eδ). Then θPtδ is obviously
a locally constant function on G. Moreover, θP)δ(x) is just the
distribution θp>δ by the identification defined above. That is, for
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feC?(G), θpδ(f) = [ f{x)θPtδ{x)dx. Now we may state
JG

THEOREM 2. Let θp be the character of the irreducible admissi-
ble representation p of G. Then θp is a locally constant function
on G'. Also, θp = Σ δ θP)δ on G', the sum being taken as a uniform-
on-compacta limit. More precisely, on a given compact set o) Q G',
all but a finite number of the θp>δ vanish identically.

Theorems 1 and 2 do not convey the coherence of the picture
of which they form some of the highlights. The complete picture,
though, is somewhat diffuse and hard to describe succinctly. Rather
than draw out the introduction interminably, it seems preferable to
begin the proofs. We will give more introductory remarks in §§3
and 4. Our last comment: the analysis here will be seen to have a
distinctly geometric flavor, and is clearly related to what I have called
Kirillov theory (see [14]). Here, however, by looking for sufficiently
qualitative results, we are able to avoid the exponential map, which
has in the past been essential. It is interesting that, in this highly
attenuated form, Kirillov theory applies even to semisimple groups
of characteristic p; these groups are those seemingly farthest from
its natural domain.

2* Dual blobs and essential if-types* We will write Mn{F) or
more briefly © for the n x n matrices with coefficients in F.
Similarly L = Mn{R) is the maximal open compact subring of ©
consisting of matrices with entries in R. For veZ, we put
Lv = πvL.

We regard © as the Lie algebra of G. As such we have the
adjoint action of G on © defined by the formula Ad g{m) = gmg'K
Here geG, me®, and the product is matrix multiplication. We
also have the bracket operation on ©: [mlf m2] = m{m2 — ̂ A . Let
tr (®/F) be the trace on ®. Let (mlf m2) = tr (®/F)(mlf m2), for
mt e ($. Then < , > is a symmetric, nondegenerate bilinear form on
© and it is invariant under Ad G. That is, <Ad g(m^, Ad g(m2)) =
(mlf m2). Another way of expressing this is <Ad ^(mj, m2> =
ζmlf Ad g~\m2)). Also note <mx, [m2, m3]> = <[m3, mj, m2>.

Let © denote the Pontryagin dual group of ©. It is well-known
that © is isomorphic to © and we may define a convenient isomor-
phism as follows. Let Ωo be a nontrivial character of F. For con-
venience, we assume that largest fractional ideal in F on which Ωo

is trivial (the conductor of Ωo) is R itself. For mlf m2 e ©, define
Ω(m^)(m2) = Ω0((mlf m2». Then Ω(m^ is a character of ©, and the
mapping Ω: © —• ©, given by m-»Ω{m) is an isomorphism between
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© and ©.
There is defined on ® an action Ad* of G, the co-adjoint action,

by the formula Ad* g(ψ){m) = α̂  (Ad g~\m))f for geG, me®, f e ® ,
We note that Ω is equivariant with respect to the actions Ad and Ad*.
That is, Ad* goΩ = Ω*kά g; for Ad* gψ(mύ)(mύ = i2(mx)(Ad g~\m2)) =
βo«m1, Ad g~\m2)}) = 420«Ad ^(mj, m2» = 42(Ad gim^m*).

If X £ © is any subset, let X* = {m e ©, Ω(m)(x) = 1 for all
x e l } . X* will be a closed subgroup of ©, and I S Γ * . If Xis
a subspace of ©, then X* is too, and in fact X* is just the orthogonal
complement of X with respect to < , >. If X is an j?-module (i.e.,
closed under scalar multiplication by elements of R), then so is X*.

By a lattice A in a vector space V over F we understand an
open, compact R submodule of V. A will then be a free ϋί-module
of degree equal to the dimension of V over F. If A £ © is a lattice,
then by our normalization of Ω, we see A* = {me®, <m, A) £ R}.
Thus A* is a lattice also, and is canonically isomorphic to Homβ (A, R).
It is easy to demonstrate that A** = A, that {Λx + Λ2)* = A* Π -4*,
and dually (A, n Λ)* = A? + Λf. Also, if Λx £ Λ, then W Λ Γ is
naturally isomorphic to A?/Λf. Finally we note that the Lu are
lattices, and Lt = π~vL0 = L_v.

If A £ © is a lattice, let A2 be the lattice generated by products
λΛ* λέ e t̂. If yl2 £ πA, we will say A is a small lattice. Note that
the Lv, v ^ 1 are small lattices, and LI = L2v. If A is a small lattice,
then 1 + A £ G is an open compact subgroup. We have 1 + Lu = iζ,
as a special case.

If Λ £ © is a small lattice, then (1 + A)/(l + A2) is abelian. A
linear character of 1 + A which is trivial on 1 + A2 will be called a
shallow character of 1 + A. The shallow characters of 1 + A clearly
form a group, the Pontryagin dual group of (1 + A)/(l + A2). The
mapping λ —>1 + λ from A to 1 + A sends cosets of A2 in Λ to cosets
of 1 + A2 in 1 + A, and the factored mapping A/A2 —> (1 + Λ)/(l + Λ2)
is easily checked to be a homomorphism. Thus we may identify
(A2)*/A* a (A/A2)~ with the shallow character group of (1 + A)j(l + A2).
If ψ is a shallow character, and λe(Λ2)* is mapped to ψ by means
of the above identifications, we say λ represents φ, or is a representa-
tive of ψ.

If Λ and N are two small lattices in © then A f] N is clearly a
small lattice also. Moreover (A Π N)2 £ Λ2 Γϊ .ΛP, so that the restric-
tion of a shallow character of 1 + A or 1 + N to 1 + {A Π N) is a
shallow character of 1 + (A Γi N). In this regard, we have the
following very simple observation.

LEMMA 2.1. Let φ and ψ be shallow characters of 1 + A and
1 + N respectively. Let λ e (/ί2)* and n e (iV2)* represent φ and ψ
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respectively. Then φ and ψ agree on 1 + (A Π N) if and only if
X- neΛ* + N* if and only if (λ + A*) Π (n + N*) Φ 0 .

Proof By our definitions above, we have φ(l + x) = Ω(λ)(x) for
xeΛ, and ψ(l + y) = Ω(ri)(y) for y eN. If φ and ψ are to agree on
1 + (A n N), then β(λ) and fl(n) agree on Λ n iV, so Ω(X — n) is trivial
on A n AT, or in other words λ - n e (4 n N)* = A* + N*. If λ - w =
λx + ^i with λx € A*, nx e JV*, then λ — λx = n + nλ e (λ + A*) Π (^ + ΛΓ*).
Going backward is equally easy and proves the lemma.

It is completely clear that the property of being a small lattice
in © is invariant under Ad G. Moreover, if A is a small lattice, and
geG, then Ad g(l + A) = 1 + Ad <?(Λ), and Ad #(Λ2) = Ad £(Λ)2. From
the second formula, we see that if φ is a shallow character of 1 + A,
then Adg(φ)f defined by Ad* g(φ)(Ad g{x)) = £>(α?) is a shallow charac-
ter of Ad* 0(1 + -4). Using the fact that 42 is Ad, Ad*-equivariant,
we see that if λ e (A2)* represents φ, then

Ad flf(λ) e Ad 0((Λ2)*) = ((Ad g{Λ)YY

represents Ad* g(φ).
Now we focus attention on the Ku = 1 + Lv. We shall be much

concerned with the intertwining properties of representations of the
Kv. We review the notions involved. Let <5X and δ2 be irreducible
representations of Kv and Kμ respectively on vector spaces VΊ and V2.
By an intertwining distribution on G for δt and <?2, we mean a func-
tion / from G to Hom(F2, V,) such that fiKyk,) = d1(k1)f(y)δ2(k2) for
fcx 6 iζ,, fc2 6 iΓ ,̂ 2/ 6 G. We will discuss the function of intertwining
distributions later. For the moment, we content ourselves with
describing them. The transformation law for / implies / is locally
constant. It is also clear that f{y) determines / on the whole double
coset KvyKμ, so that there are at most dim ί̂  dim <?2 linearly in-
dependent / supported on a given (K» Kμ) double coset. On the
other hand, the product of / with the characteristic function of any
collection of (J5ΓV, Kμ) double cosets is again an intertwining distribu-
tion for d1 and δ2. The collection of intertwining distributions for
δλ and δ2 forms a linear space under pointwise addition and scalar
multiplication.

We will call the dimension I(δlf δ2, y) of the space of intertwining
distributions supported on KvyKμ the intertwining number of δ1 and
δ? on KvyKμ. We also say y intertwines δt and δ2 I(δ19 δ2, y) times.
If I(δ19 δ2, y) > 0, we say y intertwines δ1 and δ2. If some yeG
intertwines δt and δ2, we say δλ and δ2 intertwine.

There is a way of describing the intertwining number of δx and
δ2 on KvyKμ, originally due to Mackey [18]. Let G be a compact
group, and τx and τ2 two finite-dimensional representations of C on
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U1 and U2. An intertwining operator between τ2 and τx is a linear
map T\U2-*U1 such that T-τ2(c) = τ&ή-T for any ceC. The
intertwining number of τ1 and τ2 is the dimension of the space of
intertwining operators between τγ and τ2. As is well-known [3], if
Γj. ~ J^tf* and τ2 ~ J δ ^ where the σt are irreducible representations
of C, then the intertwining number of τ1 and r2 is Σafii. In parti-
cular, it is symmetric in τί and τ2.

Now consider the double coset KvyKμ. Put Ad y(Kμ) = yKμy~\
and let Ad* y(δ2) be the representation of Ad /̂(JSΓΛ) given by the
formula Ad* y{δ2){yky~ι) = 52(fc) for & e ϋΓ̂ . This notation is of course
consistent with that we introduced earlier for shallow characters. Let
C = K» Π Ad y(Kμ), and let τ1 and τ2 be the restrictions to C of δt

and Ad* 2/(<52) respectively. Let / be an intertwining distribution
for δx and δ2 supported on KuyKμ. Then f(x)eKom(V2, Vx), and if
kxyk2 = 1/ with ^i e Kv, k2 6 i^, then the transformation law for /
says δ1(k1)f(y)δ2(k2) = f(y). We may write &Γ1 = Λ^Γ 1 e C, and then
the above equation becomes /(#) = τ 1(&1)/(τ/)τ2(fcr1) so that /(y) is an
intertwining operator between τ2 and τ lβ Conversely, if T is an
intertwining operator between τ2 and τ1? then putting /(&ii/fc2) =
δx{k^'T'δ2{k2)9 we see / is a well-defined function on KvyKμ, and is
an intertwining distribution for ^ and <52 supported on KvyKμ. Thus
we see that the intertwining number of δx and δ2 on KuyKμ is equal
to the intertwining number of δt and Ad* y(δ2) restricted to Kv Π
Ad y(Kμ). In particular, if /̂ intertwines δt and 52 then the restric-
tions of δj. and Ad* y(52) to Γ̂v n Ad y(Kμ) contain some common
irreducible representation of Kv Π Ad y{Kμ).

For our immediate purposes, the main significance of intertwining
distributions is this very elementary result.

LEMMA 2.2. Let δt and δ2 be irreducible representations of Kv

and Kμ respectively. If there is an irreducible representation p of
G such that δx and δ2 occur in the restrictions of p to Kv and Kμ

respectively, then <5X and δ2 intertwine.

Proof. Assuming that δx and δ2 appear in p, let V1 and V2 be
two subspaces of the space of p, such that V1 is invariant and
irreducible under Ku and of the class of δlf and V2 is invariant and
irreducible under Kμ and of the class of δ2. Let P1} P2 be projections
onto V19 V2 which respectively commute with the actions of Kv, Kμ.
Since p is irreducible, there is g 6 G such that P1p(g)P2 is nonzero.
Then f(Kgk2) = p{k^)Pιp{g)P2p{k2) is clearly an intertwining distribu-
tion between δx and δ2.

Now consider by itself the irreducible representation δx = δ on
iΓv. Let μ be the smallest integer ^v such that Kμ is in the kernel
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of δ. Then Kμ will be called the conductor of δ. Set η equal to
max(v, μ/2) or max(v, (μ + l)/2) according as μ is even or odd. Then
clearly the restriction of δ to Kη is a direct sum of shallow characters
of Kη. We associate to δ the collection of cosets of L* in L^ which
consist of representatives for the shallow characters of Kv occurring
in the restriction of δ to Kv. We denote this subset of ® by β(β),
and refer to it as the dual blob associated to δ. The main use for
the dual blob is to give convenient criteria for intertwining. This
next lemma is a simple consequence of the first two lemmas.

LEMMA 2.3. Let ĉ  and δ2 be irreducible representations of KVχ

and KH respectively. Then if g eG intertwines δλ and δ29 βζδj Π
Ad g(β(β2)) Φ 0 . It follows that if δλ and δ2 intertwine, β(δj) ΓΊ
AάG(β(δ2)) Φ 0 , where AdG(X) = \Jg&Gkάg{X) for X £ ®.

Proof. We have seen that if g intertwines δi and δ2, then the
restrictions of δt and Ad* g(δ2) to KUl Π Ad g(KU2) must contain a
common subrcpresentation. Let Kμ. ue the conductor of δif and let
7]i — max (vt9 [(μt + l)/2]), where [x] denotes the greatest integer less
than x. Then a fortiori, the restrictions of 8X and ^2 to KVl Π Ad g(KVz)
must intertwine. Thus there are shallow characters φt of Kη. such
that φt occurs in the restriction of δt to KVi, and φx and Ad* g(φ2)
agree on KVl Π Ad g(KV2). Now applying Lemma 2.1, and the discus-
sion immediately following concerning how representatives of shallow
characters transform, the result immediately follows, from the
definition of £(£<).

In view of this lemma, it is desirable to know something about
the geometry of the Ad G orbits in @. In fact, for our present
arguments, we do not need to know much, only their very rough
shape. To express this, let us introduce the standard ultrametric
norm on ©. Let | \F be the usual absolute value of F. That is, if
ordj, is the standard valuation on F with ord^ (π) = 1, and if F = R/πR
is the residue class field of F, and F has q elements, then \x\F = q-°IάFW
for xeF. Now iί me®, and m — {aid}, ai3-eF, put ||m|| = max^ \ai3'\F.
Then Mn(E) = Lo is the "unit ball" of ®, that is, Lo = {m e ®, \\m\\ ^ 1}.
Since AdiΓ0 preserves Lo, \\ || is Ad ϋΓ0-invariant.

Let 9Ϊ denote the set of all nilpotent matrices in ©. If X, Y £ ®,
X + Y = {x + y: x e X, ye Y). The basic fact about the geometry
of Ad G in which we are interested is that all Ad G orbits stay close
to yi. Precisely:

LEMMA 2.4. AdG(LU) Q Lv + 31. That is, for geG, me®,
κ {||Ad g(m) - n\\) ̂  mmheG ||Ad h{m)\\.
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Proof. As is well known, we may write G = KQD+K0, where
D+ is the semigroup of diagonal matrices with diagonal entries
{πh, πι\ , π*«}, with lt ^ ls for i ^ j . We have AάD+KQ(Lu) =
AdD+(ZO. Now AdD+ shrinks subdiagonal matrix entries, leaves
diagonal entries alone, and stretches super-diagonal entries. Thus
we see Ad D+(LJ) £ Lu + N+, where iV+ is the set of upper triangular
nilpotent matrices. Finally Ad G(LU) £ Ad KO(LU + N+) Q Ad KO(LV) +
Ad K0(N+) £ Irv + SB. The second statement is clearly simply a
reformulation of the first. It will be convenient later on.

Thus the shape of Ad G orbits is determined by 9Ϊ. On the other
hand, standard linear algebra says the orbit Ad G(m) is more or less
labeled by the eigenvalues of m, so the various Cartan subalgebras
of © form a system of transversals to the Ad G orbits. We want
to show that, indeed, a given Cartan subalgebra SI Q © is transverse
to the Ad G orbits passing through it in a strong global geometric
sense.

As is well known, a Cartan subalgebra SI of © is isomorphic to
a direct sum φ* F't of separable field extensions F\ of F, with
Σt dim (F'JF) = n. Also the restriction of tr (®/F) to 31 is just the
direct sum of the traces of the F'i. These are nonzero, by a standard
result in field theory [20]. We conclude that the form <, > is non-
degenerate on 81. Hence we may write © = 81 0SΪ*. We are con-
cerned with how the points of ίfl look in this decomposition. Specifi-
cally, for me®, we write m = mί + m2 with mιeSί, m2e81*.

LEMMA 2.5. Given 8ί, there is a constant c > 0 swcfc £ftα£ for

neft, IWI^clKII.

Proof. All three of 91, Sϊ*, and Sft are homogeneous closed
algebraic subvarieties of ©. Hence they define closed protective
varieties in the projective space of ©. The statement of the lemma
is equivalent to the assertion that the projective varieties defined
by 8ί and by 9Ϊ do not intersect. But that they do not is clear,
since 8ί consists of semisimple elements, 9ΐ of nilpotent elements.

Having got an idea of the shape of orbits, we return to our
study of the intertwining properties of 1^-types via dual blobs.
Take m e © and define ord(m) by the formula qrord<w> = ||m||. Then
of course ord (m) = min ord^ {aiό) if m = {a^}. We have Lu =
{m: ord (m) ^ v). Thus for v ^ 1, we see m is a representative for
a shallow character on Kv if and only if — 2v <i ord(m), and m does
not represent the trivial character of Kv if and only if — v > ord (m).
More precisely, if m represents the shallow character ψ, then if
ord(m) = — μ, Kμ is the conductor of ψ.

Now take a shallow character ψ of Kv, and consider the set of
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all representatives of ψ, that is, β(ψ). We will say ψ is inessential
if there is geG such that ||Adβr(m)|| < I Ml for all meβ(ψ). The
following alternative description of inessential ψ is very easy, but
it seems worthwhile to make it explicit since it is a key link in our
reasoning.

LEMMA 2.6. Let ψ be a shallow character of Kv, with conductor
Kμ. If ψ is inessential then there is geG such that Adg(Ku) Π Kv

contains Kμ-X and Ad* g(ψ) is trivial on Kμ^. Hence the only re-
presentations of Ku which g intertwines with ψ are shallow characters
whose strictly contain Kμ.

Proof. Since the conductor of ψ is Kμy we have ord(m) = —μ
for meβ(ψ). (We exclude the trivial character from consideration.
It is easy to see it cannot be inessential.) Choose geG such that
ord (Ad g(m)) > —μ for every m e β(ψ). Choose 7 as small as possible
so that KrQKvf) Ad g(KJ). Then Ad* g(ψ) agrees with some shallow
character φ of K7. By Lemma 2.1 and the discussion following it,
we have β(φ) Π Aάg(β(ψ)) Φ 0 . Hence β(φ) contains elements y
such that ord(2/)>— μ. If ψ is nontrivial, then necessarily
ord (y) < — 7. In this case 7 < μ — 1, so Kμ_x £ Ad g(Ku), and φ and
Ad* g(ψ) agree and are trivial on Kμ_γ. Thus the lemma holds in
this case. If φ is trivial, then Kγ^ g Ad g(Kv), and Ad* g(ψ) is trivial
on K7. Therefore we may find a nontrivial shallow character of JKr_1

which agrees with Ad* g(ψ) on Kr^ Π Ad* g(Kv). Following the same
line of reasoning as in the first case, we see the lemma holds in this
case too, so it is true.

Since Ad Ko preserves || || and Ku is normal in Ko, we see that
if ψ is inessential, then Ad* k(ψ) is inessential for any k e KQ. Now
let d be an irreducible representation of Kυ and let Kμ be the con-
ductor of Si and put η = max (p, [(μ + l)/2]) as before. Then β(d) is
by definition the union of β(ψ) for the shallow characters ψ of Kη

occurring in the restriction of δ to Kη. By standard representation
theory for finite groups ("Clifford theory", see [3]), if ψx and ψ2 are
two shallow characters of Kη occurring in the restriction of d, then
ψ2 = Ad* k(ψJ for some k e Kv. We say δ is inessential if one, and
hence all, of the ψ occurring in the restriction of δ to Kv is ines-
sential. If δ is not inessential, then we will say δ is essential. This
division of Kv into essential and inessential representations will be
another aid in the study of intertwining properties of the 5's. One
reason the essential representations are useful is brought out in this
next lemma.

LEMMA 2.7. Let p be any representation of G. Then for any
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Kυ9 essential Retypes occur in p. In fact, suppose μ is the smallest
integer such that Rμ is a conductor of a Retype occurring in p.
Then all Retypes in p of conductor Rμ are essential.

Proof. As usual, put η = max (v, [{μ + 1)/2J), and consider the
iCrtypes occurring in p. By hypothesis and choice of η, there is a
shallow character ψ of Rv of conductor μ occurring in p. Let v be
a vector in the space of p such that p(k){y) = ψ(k)v for keRv. Then
for g e G, and k e Rv D Ad g(Kη), we have

ρ{k)p{g){v) = p(g)p(g-1kg)(v) = f{g~1kg)p{g){v) = Ad* g(γ){k)p{g){v) .

Thus under Rη, v must transform according to representations which
agree with Ad* g(ψ) on Rη Π Ad* g(Rv), in other words, representa-
tions which g intertwines with ψ. But if ψ is inessential, we may
find g e G such that the only representations of Rv which g intertwines
with ψ are shallow characters of conductor strictly containing Rμ.
By choice of μ, such characters do not occur in p. Hence ψ cannot
be inessential, and the lemma is proved.

We note that Lemma 2.7 is a slightly sharpened version of state-
ment (a) of Theorem 1. We will prove the rest of Theorem 1 in
the next few lemmas. The next step is a geometric criterion on d
which is necessary for d e Rv to be essential.

LEMMA 2.8. Let ψ be a shallow character of Rv and let m 6 β{ψ)
be a representative for ψ. Let Rμ be the conductor of ψ. Then if
μ^v + n + 1, a necessary condition for ψ to be essential is
\\m\\ £q*miag9G\\Aάg(m)\\.

REMARK. Lemma 2.8 may be sharpened by assuming m belongs
to some particular parabolic subgroup of G. The constant bounding
m in terms of its "spectral radius" may be made to depend on the
parabolic in question, and is smaller for smaller parabolics. For the
Borel, the constant is 1.

Proof. By Lemma 2.4 we may write m — mf + y with ||m'|| =
min̂ eG ||Adflr(m)|| and ye%l. Since G = R0AU, where AU = B is the
Borel subgroup of upper triangular matrices, we may, up to con-
jugation by JSΓ0, assume y e N+, the upper triangular nilpotent
matrices. Let g be the diagonal matrix with entries (πn, π"'1, , π).
We have β(ψ) = m' + y + L_v. If x = {ati} thsn Aάg(x) = {TΓ^"1 ,̂-}.

We conclude Ad g(L_v) £ !/_„_„, ord (Ad g(m')) ^ ord (m') — n, and
ord Ad g(y) ^ ord (y) + 1. Therefore, if

ord (y) + n + 1 <; min ( — v, ord (m')) ,
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we see ||Ad#0*0|| < JMI for every xeβ(ψ), so ψ is inessential. As-
suming ψ is nontrivial, and \\m'\\ < ||m||, as we may without loss of
generality, we see ord(m) = ord(#) = — μ. Therefore, if we have
—μ + n + 1 ̂  —v and ord (m) + n + 1 <; ord (m'), then ψ is ines-
sential. The conditions of the lemma are direct translations of these.

We have two corollaries of Lemma 2.8 which by Lemma 2.2 are
sharpenings of statement (b) of Theorem 1. For purposes of the
second corollary, we define the conductor of an irreducible representa-
tion p of G to be the group Kμ which is minimal with respect to
the property of containing the conductors of all Ifo-types occurring
in p.

COROLLARY 1. Let δeKu have conductor Kμ. Let δ'eKv, be
essential and have conductor Kμ,. Then in order for δ to intertwine
with δ' it is necessary that μ' 5g max (i/, μ, n) + n. In particular
δ can intertwine with only finitely many essential K^-types.

Proof. If δ has conductor Kμ, then β(δ) £ L_μ. In order for δ
and δf to intertwine, therefore, it is by Lemma 2.3 necessary that
Ad G(β(δ')) intersect L_μ. Suppose μf ^ max (i/, μ) + n + 1, and
consider meβ(δr). By Lemma 2.8, max ί e β ord (Ad g(m)) <: —μ' +
n < — μ, so Ad G(m) does not intersect L_μ. Since m was arbitrary
in β(δ'), the corollary is proved.

COROLLARY 2. Let p be an irreducible representation of G, and
let Kμ be the conductor of p. Let δf e Kυ, be essential, and let Kμ>
be the conductor of δ\ Then if δf occurs in p, μf ^ max (j/, μ, n) + n.

Proof. By the definition of the conductor of p, there exists a
-K"o"type δ of conductor Kμ occurring in p. If δr occurs in p, δ and
δ' intertwine by Lemma 2.2, and then Corollary 1 gives the result.

Since there are only finitely many jK>types with given conductor,
it is immediate from Corollary 2 that only finitely many essential
-K>types occur in p.

We will now finish proving Theorem 1. We have left part (c)
and the corollary. Take δ e Ku and let Kμ be the conductor of δ.
Let p be a representation of G. We want to bound the multiplicity
of δ in p in terms of the multiplicities of the essential ifv-types
occurring in p. We will assume that for δf 6 Ku of conductor Kμf,
with μ' < μ, we have such a bound. (If μf is sufficiently small, then
δ' is essential by Lemma 2.7, and the desired bound is trivial there,
so this assumption amounts to an inductive hypothesis.) Put
7] = max (v, [(μ + l)/2]) and let f be a shallow character of Kη

occurring in the restriction of δ to Kη. Then the multiplicity of δ



492 ROGER E. HOWE

in p is no larger than the multiplicity of ψ in p. If ψ is essential,
then so is δ by definition, and there is nothing to prove. If ψ is
inessential, then by Lemma 2.6 we may find g e G such that Ad* g(ψ)
intertwines only with shallow characters of Kη of conductor Kμ, with
μ' < μ. These shallow characters can only appear in the restrictions
of ULυ-types d' such that the conductor of δ' is Kμ, with μf < μ.
Therefore, the multiplicities of each of these shallow characters of
Kv are bounded by some constant times the sum of the essential
î v-types in p. Since there are only finitely many of these shallow
characters, and the multiplicity of ψ is at most the sum of their
multiplicities, the desired bound on the multiplicity of ψ, and hence
of δ follows. This establishes part (c) of Theorem 1.

To prove the corollary, suppose p is admissible and let X be
the space of p. Let X— Qδek0Xδ be the decomposition of X into
ULo-types. If p is finitely generated, there are vectors {vJLi such
that the vectors {p(g)(Vi)} span X. We may find finitely many JKΓ0-

types {<?iK =i such that the vt are contained in the direct sum of the
Xδ.. Now exactly the same reasoning as in Lemma 2.2 shows that
if δ' occurs in p, then <5' must intertwine with one of the δd. Since
each δj can intertwine with only finitely many essential ifo-types,
there are only finitely many essential ίΓ0-types occurring in p. Let
Xo be the direct sum of the Xδ, with δr essential. Then Xo has finite
dimension since p is admissible. Now let Y Q X be an invariant
subspace. Then Y Π Xo ^ {0} by Lemma 2.7. Suppose among all
invariant subspaces Y7, Y minimizes dim(YΓl-Xo) Then Y must
be irreducible. For if Yx £ Y is invariant, then ^ Π I o = Y Γ) X<>
by the minimality of dim (Y Π XQ). Therefore the quotient representa-
tion Y/Yλ contains no essential ifo-types and so is trivial. So Y1 = Y.
Considering now the quotient representation X/Y, we have

dim(X/Γ)0<dimX0,

so by induction, we may assume X/Y has a finite composition series.
So, then, does X.

We should point out that the above result may be made more
precise in a useful way. Namely, since Xo is defined as the direct
sum of certain if0-isotypic components of X, the projection E of X
onto Xo, whose kernel is the sum of the remaining i?0-types, is the
image under p of some function in C?(K0). It follows that, if
Zo Q Xo is a subspace invariant under the operators Ep(g)E, and if
Z is the G-invariant subspace of X generated by Zo, then Z f] Xo = Zo.
Clearly Z Π Xo 2 Zo. On the other hand, suppose for some z0 e Zo,
some /eCΓ(G), and some xoeXo, the equation Xo = ρ(f)(zQ). Then
also x0 = ExQ = Ep(f)E(z0). Since the isotropy group of any x0 € Xo
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is open in G, we may find constants at and elements gi e G such
that Eρ(f)E = Σ aιEρ{gz)E. Hence α0 = Σ a>iEp{g%)E{zQ), so #0 6 Zo,
as desired. Since conversely, every G-invariant subspace of X must
intersect Xo nontrivially as we have seen, we conclude: there is a
one-to-one correspondence between G-invariant subspaces of X and
subspaces of Xo which are invariant under the operators Eρ(g)E.
We note in particular the length of any composition series for p is
at most the length of a composition series for the operators Ep(g)E
acting on Xo We may trivially majorize this length by the length
of a i£o-composition series for Xo, or by dim Xo.

We would now like to give some complements to Theorem 1.
One concerns series of induced representations, and is an application
of the discussion of the previous paragraph. The other concerns the
structure of spherical function algebras. We will have to recall
some general notions (see [1], [9]) in order to formulate them.

A parabolic subgroup P of G is a group containing a conjugate
of B, the Borel subgroup of upper triangular matrices. A nested
family of subspaces {0} = Vo £ V1£ V2 £ £ Vk = F* in F* is called
a flag. A parabolic group is describable as a group which preserves
some flag in the sense that, if P is the group preserving the flag {Vi},
then p{Vi} = Vi for any peP and all i. The unipotent radical of
P, denoted UP, is the set of u e P such that u acts as the identity
on each quotient VJVi^. Then UP is normal in P, and P/UPd
•φi+iGKVi/Vi-i)- We may find a "Levi component", a subgroup
MP £ P such that P = MPUP and MP Π UP = {1}. Then MP a
φ L i Gl( VJ Vt-ί) also. For each i, we get a map det*: MP —> Fx by
considering for m e MP, the determinant of the linear transformation
m defines on VVVV-i Then we may combine the det* to obtain a
homomorphism log: MP —> Zk, where

log m = (ord^ detx (m), , ord^ detfc (m)) .

We extend log to P by letting it be trivial on UP. By a quasi-
character of P, we mean a homomorphism of P into Cx, the multi-
plicative group of complex numbers. We denote by O the collection
of quasicharacters φ of P of the form φ = φf o log, where φ' is a
quasicharacter of Z&. Obviously O is a group, isomorphic to (Cx)k.
We refer to elements of £} as principal quasicharacters of P.

Let a be an irreducible supercuspidal representation of MP.
Supercuspidal means the matrix coefficients of σ are compactly sup-
ported modulo the center of MP. We extend σ to P by letting it
be trivial on UP. We consider the collection £ι(σ) of representations
,oψ = σ 0 9, for <p 6 Q. We see Q(σ) is in an obvious manner a
homogeneous space for SO,, and the isotropy group of σ must be
finite, as one sees by looking at the restriction of σ 0 ψ to the center
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of MP. Hence we may endow £ι(σ) with the structure of complex
manifold, isomorphic to the quotient of (Cx)h by some finite subgroup.

Now we consider the series of representations of G induced from
the collection O,(σ). More precisely, let X be the space of σ, and
consider the space Y = Y(σ, φ) of all locally constant functions /
from G to X such that f(gp) = σ(p)-1cP('p)-1f(g). The natural left
action of G on the space of X-valued functions on G preserves the
space Y(σ, φ), and the presentation of G thus defined on Y(σ, φ) is
called the representation induced from σ§ζ)φ, and denoted indp (<J(g)φ),
or π(σ} φ). It may be seen easily that for a certain collection of φ,
filling out a real subvariety (actually, a real ^-dimensional torus) of
Q,(<r), the representations π(σ, φ) are unitary with respect to a
natural inner product. Furthermore, Harish-Chandra [10] has shown
that almost all of these unitarizable representations are irreducible.
Here we are concerned with the non-unitarizable representations.

PROPOSITION 2.1. The collection of representations σ ®φ in £l(σ)
such that π(σ, φ) is reducible form a proper complex analytic sub-
variety. There is a finite bound on the number of components into
which any π(σ, ψ) may decompose.

Proof. We have G = K0P. We see that fe Y(σ, φ), by virtue
of its transformation law, is determined by its restriction to Ko.
Moreover, since φβ£l is trivial on Ko, the space of functions on Ko

which are restrictions of functions in Y(σ, φ), is independent of φ.
Call this space Y(σ). Then π(σ, φ) may be regarded as acting on
Y(σ). From this point of view, it is not hard to convince oneself
that, for fixed g e G, the operator π(σf φ)(g) varies holomorphically
in φ, in the sense that, if E is the projection of Y(σ) onto some
finite-dimensional subspace, then Eπ(σ, <p)(g)E is holomorphic in φ in
the obvious sense.

Since KQ acts on Y(σ) in the obvious way, by left translation,
the restriction of π(σ, φ) to Ko is independent of φ. Since at least
one π(σ, φ) is irreducible, the same reasoning as in the proof of the
corollary of Theorem 1 shows that the space Y(σ)Q, consisting of the
span of the essential ϋΓ0-types, is finite-dimensional. It is of course
independent of φ. By the discussion after the proof of Corollary 1,
the length of a composition series for π(σf φ) is bounded by dim Y(σ)Of

the second statement of the proposition is proved.
Now let E be the projection of Y(σ) onto Y(σ)0, with Iζ-invariant

kernel. Then Eπ(σ, φ)(g)E is, as a function of φ9 a holomorphically
varying operator on Y{σ\. The condition that the Eπ(σ, φ)(g)E, for
all g 6 G, have a common proper invariant subspace of Y(σ)0 is clearly
a holomorphic condition on <p, which is not identically satisfied, since
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for at least one φ, π(σ, φ) is irreducible. Hence the set of φ for
which there is a proper subspace of ϊXσVinvariant under Eπ(σ, φ){g)E
for all g e G defines a proper analytic subvariety of £l(σ). But by the
discussion following the proof of the corollary to Theorem 1, this is
the subvariety for which π(σ, φ) will reduce. This finishes the
proposition.

REMARK. The fact that the invariant subspaces of Y(σ) under
π(σ, φ) may be determined by looking at the operators Eπ(σ, φ)E on
the finite-dimensional space Y{σ\ could be of use in calculating for
specific σ when π(σ, φ) reduces and what its components are.

The second complement to Theorem 1 is essentially a reformula-
tion of part (c) of Theorem 1 in terms of spherical function algebras.
Again we must recall a few notions. Let δ be an irreducible re-
presentation of K». Denote by J%"(δ) the space of all compactly
supported intertwining operators between δ and itself. An element
of Sί?{δ) is a compactly supported function from G to Hom(F, F)
(where Fis the space of δ) satisfying a certain transformation law.
Now the space of all compactly supported functions from G to
Horn (F, F) is an algebra under convolution, and it is easy to see
that £ίf(δ) is closed under multiplication, and so forms a subalgebra.
We refer to £$?($) with this algebra structure as the Hecke algebra,
or spherical function algebra of δ.

It is well-known that a representation p of G gives rise to a
representation p(δ) of ^(δ). We sketch how this happens. Let Y
be the space of p, and V the space of δ. The convolution algebra
C™{G, Horn (F, F)) of compactly supported locally constant Horn (F, F)-
valued functions on G is naturally isomorphic to C?(G) (g) Horn (F, F).
Consequently, we get a representation p of C?(G, Horn (F, F)) on
F(g) F. The explicit formula giving the representation is p{f) =

[ P(θ) ®f(g)dg, for fe C?(G, Horn (F, F)). Note that p is irreducible

if and only if p is.
Now let eδeC?(G, Hom(F, F)) be defined by eδ(k) = δ(k) for

k e Kv, and eδ = 0 outside Kv. Then, assuming Haar measure to be
normalized so that Kv has measure one, eδ is an idempotent, belongs
to and is the identity of £έf(δ), and f—*eδ*f*eδ is a projection of
C?(G, Hom(F, F)) onto <^T(S). Thus for fe JT(δ), we have p(f) =

P(eδ)p(f) = p(f)p(eδ). On the other hand, one has p(eδ) = \ p(k) (g)

δ(k)dk. Therefore (p(k) (x) δ{k))p{eδ) = p(eδ) = p(eδ)(p(k) (g) δ(k))f and
one sees that p(eδ) is the projection of Y® V onto the space E of
fixed vectors for the representation p (x) δ of Kv on F (g) F. Further-
more p^Sίf^δ)) consists of all operators in p(C?(G, Horn (F, F))) which
preserve £7 and annihilate the JK>stable complement of E. Thus o
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gives rise essentially to a representation of gέ?(β) on E. If p is
irreducible, then so will £έ?(β) act irreducibly on E, by a standard
argument. But now we may regard V as (F*)* f which gives Y® F ~
Hom(F*, Y). From this point of view, E is precisely the space of
intertwining operators between the representations S* and p of Ku,
where δ* indicates the representation of Ku on V* adjoint to δ. In
summary: a representation p oί G gives rise to a representation of
Jg^(δ), which is irreducible if p is, and which is of dimension equal
to the multiplicity of δ* in p.

Thus we see the degrees of the representations of the <βί?(δ)
control the multiplicities with which δ* can occur in representations
of G and conversely. (It is easy to see that enough representations
of §ίf(δ) arise from representations of G in the above way to separate
the points of 3ίf{$) — consider §{f{δ) acting on L\G).) We will say
an algebra A is mildly non-abelian if for some integer s, A has
sufficiently many representations of degree at most s to separate
the points of A; that is, no element of A is in the kernel of the
representations of A of degree at most s. This is known [4] to
imply that all irreducible representations of A have degree at most
s, because A then satisfies a certain polynomial identity. In Harish-
Chandra's terminology [9], if A is mildly non-abelian, A is s-abelian
for some s. With this lengthy recollection finished, we may quickly
dispense with our result.

PROPOSITION 2.2. // £έf{δ) is mildly non-abelian for all essential
δ 6 Kvy then έ%f{δ) is mildly non-abelian for all δ e Kv.

Proof. Suppose δ e ίtu. Then by Theorem l(b), δ* can occur in
an irreducible representation p of G with finitely many admissible
i£>types {<55}Li and the multipliciy of δ in p is bounded by a constant
c times the sum of the multiplicities of the δ'i. If Sίfψi) is mildly
non-abelian for each i (note that δ* is essential or inessential accord-
ing as δ is since β(δ*) = — β(β)), then <?ί can occur at most some finite
constant m* times in p. Thus δ* can occur at most c(Σί=iW&i) times
in p, and so the representation of Sέfip) derived from p has dimension
at most c(Σi=i w{). Since as p varies, these representations separate

is indeed mildly non-abelian.

REMARK. By virtue of this proposition, it becomes interesting
to know the structure of £ίf(δ) for essential δ. In the next section
we will show that for many essential δ, β^(δ) is abelian.

We turn now to the consideration of characters. Let p be an
irreducible representation of G on a space X Let X = Σ*e^^ί be
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the decomposition of X into i^-types. Let Eδ be the Z>commuting
projection of X onto Xδ. As we said in the introduction, we are
concerned with the partial traces θPιδ(g) = tr Eδp{g)Eδ. The main
observation we use in our analysis is the following slight refinement
of Lemma 2.2, which we simply state: If θPtδ(g) is nonzero, then
Eδp(g)Eδ Φ 0, and hence g intertwines δ with itself. As a corollary
to this, suppose Kv £ Kv9 and g intertwines no irreducible component
of the restriction of δ to Kη with itself. Then θPtδ(g) = 0. Thus
we are led to look further at the intertwining properties of if^-types.

Let ψ be a shallow character of some Kv. If the conductor of ψ
is K2V or iί^-i, if ψ is inessential, and if β(ψ) contains a nilpotent
matrix, then we will say ψ is highly inessential. By Lemma 2.8,
if the conductor of ψ is K2V, and if β(ψ) Π 9ί Φ 0 , then in order for
ψ to be inessential, hence highly inessential, it is sufficient that ΎJ
be ^n + 1. Let δeKv have conductor Kμ, and put

η = max (v, [(μ + l)/2]) .

Then β(β) is the union of β(ψ) for certain shallow characters f of
.K,. If μ ^ 2v — 1, then these characters have conductor K2η or KiV^.
Thus we will say, if the conductor of δ e Kv is Kμ with μ ^ 2v — 1,
that S is highly inessential if one, and hence all, of the shallow
characters ψ of Kη occurring in the restriction of δ to Kη, is highly
inessential. Equivalently, if v > n, δ e Kv is highly inessential if
the conductor of δ is Kμ with μ ^ 2v - 1 and β(δ) f]3lφ 0 . With
this terminology, we may state two lemmas which together will
imply Theorem 2.

LEMMA 2.9. All but a finite number of Retypes appearing in
p are highly inessential. More precisely, if Kμ is the conductor
of p, and if the conductor of δ eKυ is Kμ>, and δ occurs in p, then
δ is highly inessential ίfμ>2 max (n, v, μ').

Proof. If δ eKu occurs in p, then δ must intertwine with the
trivial representation of Kμ,, which means β(δ) intersects Ad G(L_μ,).
Thus β(δ) intersects L_μr + Sft. Now β(δ) is a union of cosets of L_η,
with Ύ) = max (v, [(μ + l)/2]). If η > μ', then evidently β(δ) intersects
?i. Since 2η ̂  μ, our hypothesis on μ shows indeed η > μf, and also
guarantees that the other criteria given just above for δ to be
highly inessential are satisfied.

LEMMA 2.10. Let X be a compact subset of regular elements of
a Cartan subgroup A of G. Then there is v > 0 such that no x in
X will intertwine any highly inessential Retype with itself.
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Proof. Let 81 be the Cartan subalgebra of ® corresponding to
A. Write © = 9ί 0 9ϊ*. Since X is compact, we can find an integer
b > 0 such that ord (Ad x(y)) ^ ord y — 6 for x in X and # in @.
Since X consists of regular elements, if we choose 6 large enough,
we will also have ord (Ad x(y) — y) <; ord y + 6 for # in 3ϊ*. Hence,
by Lemma 2.5, we can also choose b large enough so that if y is in
31, then ord (Ad x(y) ~ y) ^ ord # + 6. Put v = 26 + 1. Let 5 be a
highly inessential iζ,-type of conductor Kμ. Choose y in β(δ) f] Sft.
If η = [(μ + l)/2] (so that, by definition of highly inessential i^-type,
we have η ^ v), we know that β(β) = Ad JΓv(i/) + L_v. We have
ord (y) = -μ. Thus Ad KM Qy + Lv_μ. Hence /3(δ) Qy + Lv_μ.
Therefore, for x in X, we have Ad x(β(3)) £ Ad &(#) + Lv_μ_h. If a?
intertwines δ with itself then β{8) intersects Ad x(β(δ)), which means
Ad x(y) — y is in Lv_μ_b. But by choice of 6,

ord (Ad cc(#) — y) ^ —^ + 6 .

Whence —μ + b^v — μ — b, or v <Ξ 26, which is false. Thus the
lemma is proved.

It is standard that if X £ δϊ is a compact open set of regular
elements, then Ad K»(X) is an open set in G. Therefore if ω Q Gf

is a compact set of regular elements, we can find a finite number
of Cartan subgroups At and compact sets Xt contained in At Π G',
such that ω £ Ad JBΓV(U* ̂ Q

From Lemmas 2.9 and 2.10, and the discussion preceding the
definition of highly inessential i^-type, we see that for any irreduci-
ble admissible p, we have θPtδ(x) = 0 for x in U* Σif for all but a
finite number of Jϊ^-types δ. Since each θPtδ is invariant under con-
jugation by Ku, it follows that θPtδ =Ξ 0 on ω for all but a finite
number of δ, so Theorem 2 is proved.

3* Fourier analysis of sufficiently regular K-types* In the
previous section we distinguished certain classes of j^-types and
tried to illustrate the different roles they played in harmonic analysis
on G. In particular we saw that the essential i^-types served to
partition the representations of G into relatively small sets, with a
given ίΓv-type occurring only in a few representations of G. This
section expresses this fact in a more quantitative way. We will
select a certain set of essential i^-types and describe in some detail
the representations of G in which these i^-types occur. Actually,
in our construction, we will not deal directly with the K»'s, but
with certain subgroups constructed from the Ku's. The groups we
construct have a more convenient shape for computational purposes
than do the ϋΓ/s. The substantive differences are slight. Specifically,
we will construct a certain representation, denoted by δ', of a certain
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open compact subgroup J7. We will give an explicit parametrization
for those representations of G in which δ' occurs, and we will give
explicit realizations of these representations as induced representa-
tions. We will show that the unitary representations in which S'
occurs are all irreducible. We will show <?' occurs at most once in
any representation of G. On the basis of these results, we will
give the Fourier analysis of the algebra £Z?(δn), where δn is the
representation of Jf contragredient to δ\ We will show 3$f(δn) is
abelian and isomorphic to an aίϊine algebra. We will compute ex-
plicitly the <5'*-spherical functions and the Fourier transform on
^f{δn). From this we will compute the Plancherel measure of the
representations in which δf occurs. The unitary representations of
G in which δ' occurs will be parametrized by a certain finite number
of real tori (e.g., products of circles), and the Plancherel measure
on these tori will be ordinary Lebesgue measure suitably normalized.

The considerations of this section are "local" in the sense that
they concern first the construction of a single representation δ', then
a study of the properties of <5' in relation to harmonic analysis on
G. In the next section we will deal with more "global" aspects of
representation theory for G. We will show that in a certain sense,
the δ' of this section account for "most" of the Fourier analysis of
G. Of course, in another and very important sense, it is precisely
the representations for which we cannot account that are most
interesting. We will discuss this and similar problems in the next
section.

We want to emphasize what will no doubt be apparent: the con-
siderations of this section represent only the next stage in precision
beyond § 2. They are still quite crude. Nevertheless the arguments
are noticeably fussier than in § 2. The crudity is partly to ease the
exposition, but also partly from present lack of understanding. In
various favorable cases (see [12] and [13] for examples) refinements
of the techniques used here lead to quite complete results on certain
series of representations. From the point of view implicit in these
methods, it is an important problem to extend the list of favorable
cases.

We have seen that, roughly speaking, the dual blobs of essential
-Bv-types lie along Cartan subalgebras of ®, whereas inessential Ku-
types lie along 3ΐ. Therefore we fix a Cartan subalgebra 9ί of @
and look at those jK>types intersecting SI. By imposing a geometrical
condition on Sί and by looking at a certain subset of Sί, consisting
elements which are "sufficiently regular" in a certain sense, we will
arrive at a set of representations we can analyze. In the next sec-
tion, we will show our conditions are not too restrictive. Before
going into the details of the conditions, which are somewhat techni-
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cal, let us describe their value. One may roughly say that if one
could analyze Jg^(δ) for most or all i^-types δ, the Fourier analysis
of L\G) would follow. Thus given δ e Kv, one might try to find out
the structure of £ίf(δ). As a first step, one could try to determine
which (Ku, Kv) double cosets support nontrivial elements of 3(f{$).
As an approximation to this, guided by Lemma 2.3, we could try
to find those geG such that Ad g(β(δ)) Γ) β(δ) is nonempty. Clearly
if Aάg fixes some point in β(δ), then indeed Ad g(β(δ)) Π β(δ) Φ 0 .
Thus, making another approximation, we could try to determine
the isotropy groups of the points of β(δ). The point of our condi-
tion on δί and of the notion of sufficient regularity is that they
make this latter problem very easy and simultaneously make it
essentially equivalent to the original problem. We now plunge into
the details.

Let A be the Cartan subgroup of G corresponding to Sί. In A
there is a unique maximal compact subgroup Ao, and A/AQ ~ Zr for
an appropriate integer r, called the split rank of A. Also in A is
Aaf the maximal split subtorus of A. We have As ~ {Fx)r and
AI(A0A8) is finite. Let M be the centralizer of As in G. It is a
standard fact that M is the Levi component of a certain finite
number of parabolic subgroups, which are in one-to-one correspondence
with orderings of the roots of As. (See [1].) Let P be one of these
parabolics, and let P be the "opposite" parabolic to P — that is, P
corresponds to the ordering of the roots of As opposite to the
ordering defining P. We have P — M Z7P, where UP is the unipotent
radical of P, i.e., the maximal normal unipotent subgroup of P.
Likewise P = ikf UPf where Up is the "opposite" of UP. Let &, 9ft,
^ , and ΊF be the Lie algebras of P, M, UP, and Up respectively.
Then © = 3ft 0 ^ 0 ϋ ' , and all three spaces are invariant by Ad A.
Let Mv, Pvy etc., be the intersections of M, P, etc., with Ku. Let
3ftv, ^ U etc., be the intersections of 3ft, &, etc., with L>. Then we
assume that for v ^ 1, Lu = ^ 0 Sft̂  0 ^ , , or what is equivalent,
since it is easily seen that Mv = 1 + Sftv and so forth, that Ku =
(Up)v-Mv-(Up)v. It is easy to see by setting up coordinates that any
conjugacy class of Cartan in © contains an Sί for which these de-
compositions hold. Harish-Chandra [10] has shown similar decomposi-
tions are obtainable in any semisimple p-adic group.

Now we say what conditions an element of Sί must satisfy in
order to be sufficiently regular. Recall Sf denotes the set of regular
elements of 81. The group ^Γ £ G consisting of those g e G such
that Ad #(8ϊ) = Sί clearly contains A, and it is well-known [1] that
y^\A = W is a finite gr<4up, called the Weyl group of Sί. Since
Ad A leaves 9ί pointwise fixed, W may be regarded as a group of
linear transformations on Sί. It is known that for αeδf we have
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w{a) Φ a for any w eW. Since W is finite we can choose a constant
τ0 so that \\w(a)\\ ^ 70 | |α|| for all αeSΪ, weW.

Let {%i}i=1 be a set of coset representatives for AQAS in A. Since
Ao is compact, we see that if the constant 70 of the preceeding
paragraph is taken large enough then we will also have ||Ad^αo(m)|| ^
7 0 | |m| | for ΐ = 1, •••,&, and every aoeAo, me®. Put c0 =
[logg70] + l.

Write ©=81081*. Given me®, write m=x+y with αe81, 2/e8Ϊ*.
We have by the ultra-metric inequality that ||m|| ^ max(||#||, ||y||).
On the other hand, we may find a positive constant 7X such that
||m|| ^ 7X max (|M|, ||y||). Put c, = [-log, 7j + 1.

Recall for m19 m2 e © the formulas ad m2(m^ = [mlf m2] = mιm2 —
m2m^ If αe9ϊ, then Sί and 3ϊ* are invariant under adα. If αeSΓ,
then SI = ker ad (a) and ad (α) is nondegenerate on SI*. For ε > 0,
we define Sί'(e) to be the set of αe8ί satisfying the following two
conditions. First, ||ad(α)(i/)|| ^ 6||α||||i/|| for all yeW. Second,
\\w(a) — α|| ^ ε||α|| for all weW. Clearly SΙ'(β) is an open and closed
subset of 8f, and it is not hard to see that 3Γ = \Jε>0 SΙ'(ε).

Now take αeSί, and suppose ord(α)= —μ, with μ>0. For
the purposes of this paper, we will say a is sufficiently regular if
for some e > 0, a eSϊ'(ε), and μ ^ 6(β + c0 + cL + 1), where β =
[—log9ε] + l. It is not hard to see that the set of sufficiently
regular elements of 91 is quite large. Indeed, for any x e §ί', rx is
sufficiently regular for all reF with \r\ sufficiently large.

Let us now derive some properties of sufficiently regular ele-
ments. It is well-known that the conjugacy classes of elements in
an open set in δί' fill an open set in ©. Our first lemma is a
quantitative expression of this fact. Compare [12], Lemma 6.

LEMMA 3.1. Take aeW, and suppose for δ e S Ϊ * , \\[a, b]\\ ^ | |

for some constant 7 > 0. Put e = [—log^7] + 1, and let ct be as in

the definition of sufficient regularity. Then for any I > 0,

Ad KCl+ι(a + 9ίc + C l + ι) 2 a + Lc+2ei+ι .

REMARK. Note that Ί1 ^ 1, so that cx ^ 1. Also note that if
x eSΪ, and ord(#) ^ c + cx + 1, then ||g|| < 7, and so ||[a?, δ]|| < 7||δ||
for any b e SI*. Thus ||[α + x9 δ]|| ^ 7||δ|| and in particular a + x eSί'.

Proof. Consider me® oί the form m = x + y, with xeSί, yeW,
and ord (x) and ord (?/) ^ c + cx + ϊ. By the hypothesis on a, we can
find z e 81* such that [α, z] = ?/ and ||«|| ^ 7"11|#||, or ord iz) ^ ord (y) -
c^ cι

Jr I. We compute
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Ad (1 + z)(a + m) = (1 + z)(a + x + y)(l + z)~ι

= a + x + y + ([z, a] + [z, m])(l - s(l + z)~l)

= α + a? - 2/3(1 + 2)"1 + [z, w](l + z)"1

= a + a? + m' ,

where

m' = ([#, m] — ys)(l + z)~ι.

Hence ord (m') ^ min (ord (#), ord (y)) + ord (y) — c^ ord (j/) + cx + ϊ.
Thus if m' = a?' + »' with x'eSί, i/'eSί*, since

we have ord (#') ^ ord (m') — cx ^ c + cx + I; and similarly ord (y') ^
ord (m') — cx > ord (y). I t follows that we may successively move
a + m closer and closer to Sί, so that it is eventually conjugated
into an element of a + 8ίc+Cl+z. Moreover, we note that, again by
the relation | |m|| ^ ^ m a x (\\x\\, \\y\\\t we may, with x and y in Lc+Cl+ι,
express any m e Lc+2(.1+Z. Finally we observe that to do our con-
jugating we only required elements of the form 1 + z with ord (z) ^
cx + I. This concludes the lemma.

We may now state the main properties of sufficiently regular
elements.

LEMMA 3.2. Suppose αeSt is sufficiently regular, and choose
ε > 0 such that a e 3ί'(ε), and μ = —ord (a) ^ 6(e + c0 + cx + 1), where
these constants are all as in the definition of sufficient regularity.
Then a has the following properties. Put η = [(μ + l)/2] and v =

( i ) ||ad (a)(y)\\ ^ eqμ(y) for y e SI*. In other words ad (α)(8ϊ*) 2

3+6 Oi) Ad Kv{a + 8U_.β0--βl) 2 α . t L_,_Co.
(iii) i^or any nontrivial w e W, w(a + Sί_9_β0_βl) is disjoint from

a + »U_β 0_β ι.
(iv) Every element of a + 9ί_^_Co_Cl is regular.

Proof. Statement (i) is a trivial calculation from the definition
of δl'(ε). From Lemma 3.1, using c = e — μ, as derived from (i),
for (ii) we see we must have v <S cι + I, where I is determined by
the equation —37 — c0 = e — μ + 2cx + Z. Substituting in this the
inequality for v, we see we need μ — 27 — v ^ 0 + c0 + cί9 and this
is satisfied if μ ^ 6(e + c0 + cx + 1).

For (iii), we note that for any nontrivial w e W, we have
ord(w(α) — a) ^ — μ + 0, by part of the definition of 9l'(ε). On the
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other hand, if x e 8ϊ_9_β0_βl, then orά(w(x))^ —η — 2co — c1 by part of the
original definition of c0. But — 7) — 2c0 — cx ^ —μ + 3(e + c0 + cj —
2c0 — eι >'—μi+ e. Hence ord (w(a + x) — α) ^ —μ + e < —^ — c0 — c l f

so w(α + 8L7_β0_βχ) is indeed disjoint from α- + 8L9_β0_βl, and (iii) is
proved. Finally, (iv) is an immediate consequence of the remark
following the statement of Lemma 3.1. This finishes the lemma.

We now turn to harmonic analysis. We fix for the rest of this
section a sufficiently regular element αeSί. Let ord(α) = — μ with
μ> 0 and let η = [(μ + l)/2] as usual. Then a represents a certain
shallow character ψ of Kη. The conductor of ψ will be Kμ, and the
dual blob of ψ will be a + L_v. In this section ψ will always denote
this particular shallow character of Kv.

Let {Xi}i=1 be the representatives for AOAS in A used in the
definition of sufficient regularity. Put v = [(μ + 2)/3]. Let Jv =
Π t i Παoβ4O

 A d xtθo(K») T l i e n K» 2 J» 2 Kv+eo 2 -BΓ,. Moreover, since
Kv — (Up)u Mυ (UP)v, and Z7p, M, and C/P are normalized by A, we
see that Ju = (Jv Π Up) (Ju Π ikf) (e/^n i7P). By construction J y is
normalized by -4.0, and / . f i l is even normalized by A since As is
central in M. Also note

Ad JJiβ + 8U_β 0-β l) - ή Π Ad (^αo)(Ad ^ ( ά + Sί_,_C0_Cl))

3 Π Π Ad (XiOoXa + L_,_co) 2 a + L_η.
i=ί a e Ai=ί

Let d be a representation of J^ lying over ψ. That is, the
restriction of δ to ίΓ9 contains ψ. From the inclusions given above,
we can deduce the support of

LEMMA 3.3. The only (Jvf Jv) double cosets which support non-
zero elements of SifiS) are of the form JJ6JV with be A.

Proof. If g e G intertwines δ with itself then g certainly inter-
twines the restriction of δ on Kv with itself. Thus for some klf k2 e Jv,
we have that Ad* kx(Ψ) and Ad* #(Ad* k2(ψ)) agree on Kv Π Ad g(Kv).
(Recall δ restricted to Kη will consist of a direct sum of shallow
characters of Kη of the form Ad* k(ψ) with keJu.) If we apply
Lemma 2.3, we see that for some xlf x2 e L_v, we have Ad k^a + a?x) =
Ad g(Ad kz(a + x2)). Now by the inclusion given above, we have
a + Xi = Ad /^(α*) for i = 1, 2, and /^ 6 Jv, atea + 8ϊ.9_β0.βl. Thus
Ad kji^a^ — Ad r̂(Ad k2h2(a2)), or Ad (h^k^gkji^a^ = α lβ Since αx

and α2 are regular in Sϊ by statement (iv) of Lemma 3.2, we see
Ad ( Λ Γ ^ Γ ^ A A ) W = ^^ a n d s o hzιkzιgk2h2 defines an element w of TΓ.
Since w(a2) = αx, w does not transform α + 9ί_3?_Co_Cl out of itself,
so w must be the identity. Hence h^k^gk^eA, or geJvAJv9 as



504 ROGER E. HOWE

was to be proved.
As this point it seems worthwhile to point out that if A is

minisotropic, which in our case means A is the multiplicative group
of a field extension of F of degree n, then we have just constructed
a series of supercuspidal representations of G associated to A. Indeed,
in the case when A is minisotropic, A8 consists of constant matrices
and M'= G. Hence Jv is normalized by A, and A-Jv is a subgroup
of G, compact modulo the center of G.

PROPOSITION 3.1. Let δf be any representation of A Jυ lying
above δ on Jv. Then δ' induces an irreducible supercuspidal represen-
tation of G.

Proof. Indeed, by Lemma 3.3, the only (A Jv, A JJ) double coset
which supports an intertwining distribution for δ' is A* Jv itself. In
these circumstances it is known [18] and easy to see that the re-
presentation induced to G from δ' is irreducible.

For general A, the supercuspidal representations of Proposition
3.1 must be replaced by series of representations induced from P.
The construction of these series requires close examination of the
structure of δ. Define Jμ analogously to Jym That is

Jμ = Π Π Ad xMKμ) .
ί = l aoeAQ

Mf

Define J2V similarly. By the analogous statements for K», K2v, and K
we see JJJ2v is abelian, and J2JJμ is central in JJJμ. Thus JJJμ is
a two-step nilpotent group. Since Jμ £ ker δ, δ is a representation
of a two-step nilpotent group. Also, the restriction of δ to J2v is
some multiple of ψ restricted to J2v. Since 81* 2 3K* = ^ r © ^ both
UP Π J2v and Up Π J^ are contained in the kernel of ψ, hence of δ.
Put A = Λf fΊ J» and Γ2 = (UP Π J»)*(Up Π Jv) J2V. Then ΓrΓ2 = /,.
Also ΓΊ normalizes ?7P Π Jv and C7p Π Ju9 and centralizes them modulo
the kernel of δ. Thus Γx and Γ2 commute modulo the kernel of δ,
and Γ1f)Γ2 = J2u n Af is central modulo ker δ. It follows that the
restriction of δ to Γt is a multiple of some irreducible representa-
tion δi9 Moreover δ is the direct image of the outer tensor product
of the δif in the following sense. If δ acts on V and δt acts on Vi9

then V ^ Vi (8) V2 in such a way that the following diagram com-
mutes.

Horn (70 0 Horn (F2) =: Horn (7) .
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The upper horizontal map a is the product of the inclusions. That
is, if xeΓtQ J» and yeΓ2Q Jv, then a(x, y) = xy. Although a is
not a homomorphism, it is a homomorphism modulo the kernel of 5.

Under the action of Ad A, it is obvious that the above situation
is stable in the following sense. For any b e A, we have Ad &(/\) = Γlf

and the restriction of Ad* 6(5) to Γλ is a multiple of Ad* 6(50.
Similarly Ad 6(Γ2) Π J» = Ad 6(Γ2) Π Γ2, and the restriction of Ad* 6(5)
to Ad b(Γ2) is a multiple of Ad* 6(52). Finally, Γx Π Γ2 is normalized
by 6, and 5 and Ad* 6(5) agree on Γx Π Γ2. These facts immediately
lead to the conclusion that the intertwining number of δ and Ad* 6(5)
on J,, Π Ad &(/»,) is equal to the product of the intertwining numbers
of 5, and Ad* 6(5,) on Γ, and Ad &(Γ,). Since Ad δ(Λ) = Γίf the in
tertwining number of δj. and Ad* δ(5J on /\ is one or zero according
as δι and Ad* 6(5J are equivalent or not. Let us now look more
closely at 52 and Ad* δ(52).

We recall some facts about computing intertwining numbers in
terms of characters. Let C be a compact group, and σx and σ2 two
distinct irreducible representations of C. Let χ(σ<) denote the
character of σt. Let dx be Haar measure, and let C have total
measure m(C). Then the Schur orthogonality relations for C say

= 0
Jc

and

r

Here ~~ indicates complex conjugation. From this it is immediate
that if zx and τ2 are any finite-dimensional representations of C,
with characters χ(τt)f then

X(τ1){x)χ{τ2){x)dx = m(C)I(τlf τ2)
JC

where I(rίf τ2) is the intertwining number between τt and τ2. For
as we have seen, if τ1 = Σatσt and τ2 = Σb^i with αίy bteZ where
the Oi are distinct and irreducible, then I(zlf τ2) = lafi^ while χ(τt) =

and χ(τ2) = 2'6ίχ(σί), so that

= S
JC

If now Ci and C2 are open compact subgroups of G, and τt is
an irreducible representation of Ci9 let /(r^ r2, g) be the number of
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times g intertwines τ1 and τ2. We have seen I(τί9 r2, g) is equal to
the intertwining number of the restrictions of τ^ and Ad* g(z2) to
d Π Ad g(G2). Let χ(r,) now denote the function on G which equals
χ(Ti) on Ci and vanishes off C*. The formula χ(Ad* g(τt))(x) =
%{Ti){g~lxg) is immediate from the definitions. Therefore we have
the formula

( 1 ) I(τlf τ2, ^) = m{C, Π Ad (/(C,))-1 ϊ χ(τ1)(x)χ(τ2)(g-ίxg)dx .
JCiΠ Ad g(C2)

Here now c£# is the restriction to Cx Π Ad f/(C2) of some fixed Haar
measure on G.

Now we apply the above remarks to δ2. Let Δ Q Γ2 be the
inverse image in Γ2 of the center of Γ2/keτδ2. The restriction of
δ2 to Δ will then be a multiple of a character <p(δ2). Of course φ(δ2)
agrees with ψ on J2v. (Note J 2 e72v.) Since /yker <52 is two-step
nilpotent, it is known and easy to verify that χ(δ2), the character
of δ2, is supported on Δ. There it is given by the formula χ(<52) =
(dim δ2)φ(δ2). Thus if be A, then from (1) we may calculate

I(δ2, δ2, b) = m(Γ2 Π Ad b(Γ2)Γ \ X(δ2)(x)χ(δ2)(b-ίxb)dx
JΓ 2 n Adδ(Γ2)

= m(Γ2 Π Ad &(Γ2))~1(dim δ2)
2 \ φ{δ2){x)φ{δ2){b~1xb)dx .

J j n Ad6(4)

The last integral is either 0 or 1 times m(Δ n Ad b{Δ)). Another
elementary fact about two-step nilpotent groups is that (dim δ2)

2 =
%Γ2/Δ)f the index of Δ in Γ2. Thus I(δ2, δ2, b) is either 0 or 1 times
the quantity

m{Γ2 n Ad 6(Γ2))"1m(zί n Ad b(Δ))\Γ2/Δ)

- \Γ2 n Ad b(Γ2))/(Δ n Ad b{Λ)Y"{ΓJΔ) .

We want to show I(β2f δ2, b) is either 0 or 1; hence we will try to
show the two indexes above are equal.

Write UP Π Γ2 = 1 + Y where Y is a lattice in %S. Similarly
write Up Π Γ2 = 1 + Ϋ. Consider the function Bψ on Γ2 x Γ2 given
by the formula B+(x, z) = ^(ίc^α?"1^"1) for a?, 25 e Γ2. Simple checking
shows that for fixed x, Bψ{x, ) is a linear character on Γ2; similarly
for fixed z, Bψ{ , z) is a linear character or Γ2. Moreover Bψ(x, z) =

2, a?). Thus J5f- is a Γ-valued antisymmetric "bilinear form" on
Γ2. Moreover, since δ is a multiple of ψ on J"2,, which contains the
commutator subgroup of Γ2, it follows from the definition of Δ, that
Bf(x, •) is the trivial character of Γ2 if and only if xeΔ. That
is, Δ is the "radical" of Bψ. Let x = 1 + yx + yί9 z = 1 + y2 + y2

with 2/i e Γ , yte Ϋ. Then an easy computation shows B+(x, z) =

+ [̂ i + î» V* + Vz\) = ^(α)([»i + 2/i> 2/2 + ^2]) Thus let us define
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the antisymmetric, T-valued bilinear form B on ^ @W by B(u,v) =
Ώ(a)([u, v]) = Ω0((a, [u, v]}), for u, v e <%/ 0 ^7. Here Ωo is the "basic
character" of F used identifying ® and ©. Thus if u, ve Γ 0 Ϋ,
B(u, v) = JB (̂1 + %, 1 + v).

For a given lattice Λ £ ^ φ ^ l e t Λ = { t t 6 ^ φ ^ ? ; 2?(%, v) = 1
for all t; 6 A). Since, ^ 0 IF £ 2fc* g 81*, ad a is nondegenerate on
^ 0 <%/. Also, ^ and ^ are paired nondegenerately against each
other by < , > (see [10]). Therefore, rewriting (a, [u, v]) = <[α, u], v),
we see this is a nondegenerate bilinear form on ^ 0 IF. Since Z
is obviously an ϋJ-module, and since ker Ωo = R, we see an alterna-
tive description of A is A = {u e ^ 0 ^ <α, [u, v]> C JB for all v e A}.
It follows that A is also a lattice, and the usual duality relations
hold: (Λ)~_= ̂ , (Λ + Λ)~ = Λ Π A2, and (-4X Π Λ)^ = A + J2. Now put
vl = F φ Ϋ . From the relation between B and Bψ on ί̂, we conclude
Δ n (1 + 4) - 1 + (A n A). Since Λ = (1 + ^) M2V, we see \Γ2/J) =

*μ/j n i). _
Now take δ e i . Since α, ψ*, ̂  0 ^ and i? are Ad 6 invariant,

we see that if we repeat the same analysis for Ad* b(d2) and Ad δ(Γ2),
we will get *(Ad δ(Γ2)/Ad δ(J)) = *(Ad δ(^)/Ad b{Λ n 1)), and Ad δ(4)~ =
Adδ(J). Combining the two situations, we get

\(Γ2 Π Ad δ(Γ2))/(J n Ad b(Δ))) = \{A n Ad b(A))/(A f)Af)Aάb(Af) Λ))) .

Now I claim that actually A g= A. If this is so, then the desired
equality of indexes holds, as we calculate, putting Ad b{A) = N. We
have

%(A n N)/(AΠ N)) = *(ΛjΛ n Nr^A/Af] N)

- \A\A n Ny^A/AγiA/Api N) .

Similarly %(A n N)/(Af] N)) = *(iV"M n Ny^N/NyiN/An N). Multi-
plying these equations gives

- *((il + N)/(A n

Now the two outer factors cancel by duality. Since JV = Ad δ(/ί),
we have \AjA) = *(N/N). Hence taking square roots gives

Translating this into terms involving Γ2 gives the equality of indexes
we sought.

REMARK. The above equality of indexes is related to the re-
presentation theory of Heisenberg groups, and may be proved in
those terms.
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It remains to show A Q A. We recall that by virtue of a string
of definitions, A = f\k

i=1 ΓiaoeΛo Ad feαo)(^ 0 ^ ) . Here the K}ti
are as in the definition of sufficient regularity and ^v = ^ Π Lv,
i ; = f fliv as usual. Therefore A is the lattice of <%f 0 H7

generated by the lattices Ad (^α o)((^ 0 IF)7) where {& 0 ^7\ =
^ 0 ^T Let us calculate ( ^ 0 fF)Γ. Because of the expression
of # in terms of < , >, we have ( ^ 0 IF);r = ((ad α ( ( ^ 0 iF)v)* ΓΊ
( ^ 0 ^ ) . Since ^ 0 I F £ 81*, we may apply statement (i) of
Lemma 3.2, and conclude ad a{& 0 #Fχ 2 ( ^ 0 ^7)^e-μ. Thus
( ^ 0 ^ ) Γ £ ( ^ 0 ^)μ-,-e- Therefore we get 1 £ ( ^ 0 aVv_β_β0.
On the other hand, the expression for Λ given above implies A 2
( ^ 0 ^O*-β0 Therefore if v — c0 < μ — v — β — c0, we are done.
But μ — 2v ^ 2(e + cQ + cx), by part of the definition of sufficient
regularity, so we are indeed done.

We record one result of the foregoing discussion.

LEMMA 3.4. Notations as above. The coset JJ)JV, for be A,
supports at most one nontrίvίal intertwining distribution for δ.
That is 1(3, δ, b) ^ 1.

Now we want to show how to choose d2 so that I(β2f d2, b) = 1
for all be A. Consider Γ" — {Jv Π UP) J2V. Modulo the kernel of ψ,
(«7L Π UP) is normal in Γ". Since ψ is trivial on UP Π K2V9 we may
extend f to a character ψ" on Γϊ9 by letting ψ" be trivial on
(Jj, Π UP). Let Γ'2 be the annihilator of Γ" with respect to the form
Bψ on Γ2 introduced above. That is Γ2 = {x e Γ2: Bψ(x, y) = 1 for
all 7/ € /T}. Since ψ extends to a character of Γ", we see Γg contains
77. Since Γ2 - 77 (Γan £7"?), we may write Γ2 = Γ'2' (Γ2n Up). Now
JB^ is trivial on Γ2 Π Up, so Γ2 Π Up annihilates itself as well as Γ".
Hence Γ2 is commutative modulo ker^. Therefore on Γ2 there is a
unique character ψ' which is trivial on Γ2 Π Up and agrees with ψ"
on Γ". Now it follows from elementary facts about representations
of two-step nilpotent groups that ψf induces an irreducible represen-
tation δ2 of Γ2, and any other irreducible representation of Γ2 lying
above ψ on J2V is of the form δ2(x)φ, where φ is a linear character
ofΓ2/J2v. From now on, we will let δ2 stand for the representation
of Γ2 induced from ψr on Γ2.

We want to express the intertwining properties of δ2 in terms
of those of ψ'. To do this, we must once again recall some facts
about intertwining numbers. (See [18].)

Again let Cλ and C2 be open compact subgroups of G, and let
τ1 and τ2 be irreducible representations of C1 and C2 respectively.
Suppose C'tQCi are open subgroups and suppose the τt are induced
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from representations σi of C[. We have the Frobenius formula for
induced characters: χ(τt)(x) = Σ i XfaXVijWVϊf)* Here χ(τ,) is the
function on G which is the character of τt on Ct and zero off Ci9

and χ(σt) is defined analogously. The {yiS} are a set of coset re-
presentatives for C'i in Ct. That is, Ct = \J3 C'tyiS, the union being
disjoint. If we plug this into formula (1) for I(τif τ2f g), g eG, we
obtain

miC, Π Ad g(C2))I(τlf τ2, g)

(Σχfo)
lAdfir(C2) j

-sί.
(where gjk =

= Σ w(C; n Ad gik(&))I(σlf σ2, gjk) .
3,k

Taking first C[ = G29 then Cι — C[, one may reduce this in stages to

( 2 ) I(τif r2, g) =

where C^Cg = Ui C[hiGf

2, and the union is disjoint. (The reduction
is very simple, when, as in our case, G\ is normal in C<.)

Apply this to δ2 and ψΛ For any be A, we know I(<52, δ2, δ) ^ 1.
On the other hand, φ' is trivial on Γ2 Π UP and on Γa Π Up, and
equals | on ΓJίl M. Since ψ on Γ'2PΪ M is Ad* A-invariant, we
conclude I(f, ψ', b) = 1. Then equation (2) shows I(δ2, δ2, b) = 1, and
I(ψ', Ψ'> V) = 0 f o r a n y double coset ΓίyΓJ ^ ΓίδΓί for some 6 e A.

Now consider Γ3 = Γ^Γ*, and let δ3 be any irreducible represen-
tation of Γ3 whose restriction to Γ2 is a multiple of ψ'. Then it is
obvious that <53 induced up to Jv is an irreducible representation
whose restriction to Γ2 is δ2. We see from this that δ3 restricted
to Γ1 is an irreducible representation δ1 of Γx. Summarizing the
discussion since Proposition 3.1, we find we have established the
following result.

LEMMA 3.5. The only (Γ3, Γs) double cosets which support non-
zero intertwining distributions for δ3 are those which contain re-
presentatives in A. Moreover if be A, I(δs, <53, b) ^ 1, and is equal
to one or zero according as Ad* b(δj) is equivalent to <5X on Γx or not.
Furthermore δ3 and Ad* b(δ3) restricted to Γ3 ΓΊ Ad b(Γ3) are both ir-
reducible.

Now we look at δx and put it in good shape. Then the con-
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struction of our induced series of representations will be a simple
matter. Let X denote the set (1 + 3Γ) Π Γx. Then (AnΓ1) .X =
(l + « y ) .χ 2 l + sίv + (mu+co n a*) 2 1 + aκ,,+β0+βl 2 1 + mη = if,.
Since (A Π Λ) X S Λ S M,, and Mv = 1 + 2R,, and 3K* g 2K2V S 2R9,
it follows that (An ΓJ X — Γ[ is a group, and a normal subgroup
of Γλ. Since A normalizes /\ and Ad A preserves SK Π 3Ϊ*, we see
A normalizes Γί. I claim the representation <5X of /\ may be induced
from Γ[. In fact, more is true. Let δ[ be an irreducible component
of <?! restricted to Γ[, and assume the restriction of δ[ to Mη contains
the restriction of ψ to Mη. Such a <?J clearly exists. We notice that
in the proof of Lemma 3.1, the only elements used for conjugating
x 6 a + Le+2Cl+ι into a + Sίc+Cl+Z were of the form 1 + z with z e 81*+ι.
It follows from this and the discussion before Lemma 3.3, that
Ad Γ[(a + 8L9_ei) 2 a + 3K_̂ . Here α is, as it has been, our fixed
element of 3ί, a representative of ψ on Kv. Now the proof of
Lemma 3.3 applies to Γ' and shows that the only (Γ[, Γ[) double
cosets in M which intertwine d[ with itself are of the form Γ[bΓ[
with be A. Since A Γ) Γx £ ΓJ, it follows that in particular δj induces
an irreducible representation of Γ19 and since δ[ is contained in δlf

this irreducible representation must be <?x.
So now forget δλ and look at δ[. Let Ai be the subgroup of A

such that Ad* a(δ[) = δ[ if a e Ax. I claim Ax — A and δj may be
extended to a representation of A-Γ[. To see this, let Bψ now be
defined on Γ[ x Γί by the formula Bψ(hu h2) = ψihJτ^K1). As with
the previous i?^, one verifies easily this Bψ defines an antisymmetric
bi-additive Γ-valued form on Γ[. Let Δ be the radical of Bψ, e.g.,
Δ •=• {h 6 Γί: JŜ (fe, JΓJ) = 1}. Since one easily calculates for 1 + xr

1 + yeΠ t h a t BΨ(1 + x,l + y) = ΩQ((a, [x, » ] » = Ω0«[a, x\ y})> w e

see AnΓ[Q Δ, for if x e Sί, then [α, ̂ ] = 0. I claim Δ Q (A Π Γί) ilf,
In fact, we see this would be implied by the inclusion Δ f] X Q Mη.
In view of the form of Bψ, precisely the same calculation that in
the discussion of δ2 showed Λ Q Λ, shows in this situation that indeed
Δ Π X Q Mv.

From the elementary theory of two-step nilpotent groups, the re-
striction of δ[ to Δ is a multiple of some linear character χ of Δ, and
χ determines Δ. Since δ[ lies over f on Jlί,, the restriction of χ to
Δ[\Mη must agree with ψ. Since (A Π Γ[) (Δ Π Mη) = Δ, we see χ,
hence δ[, is determined by the restriction of χ to A Π Γ[. Since
Ad* b clearly leaves χ on A Π Γ[ unchanged, it also leaves δ[ un-
changed, so Ai = A as claimed. Since δ[ is Ad* A-invariant, ker δ[
is normalized by A. Again by the representation theory of two-
step groups, we have ker δ[ S Δ, and so ker δ[ = ker χ. It follows
that I ( Ί i £ kerS[. Therefore X/XΠ Λ forms a set of coset re-
presentatives for Δ in ΓJ, and since A normalizes X, these represen-



QUALITATIVE RESULTS ON THE REPRESENTATION THEORY 511

tatives have the property that, if Ad A centralizes them modulo A,
it centralizes them modulo kerdί Now the theory of Weil's re-
presentation for finite groups (see [12], [15], [24]) tells us the
following fact: there is a well-defined one-to-one correspondence,
involving no arbitrary choice of basepoint, between the extensions
of χ from A Π Γ[ to A, and the extensions of δ[ from Γ[ to A-Γ[.
For a given character φ of A extending χ, let τ(φ) denote the cor-
responding extension of δ[ to A ΓJ given by Weil's representation.
If we fix a character φ0 of A, then the relation τ(φoφ) = τ(φ0) (x) φ
holds for any character of A/A ft Γ[. We may also use this formula
to define τ(φoφ) for an arbitrary quasicharacter φ of A/A Π Γ[. Let
us note for completeness' sake that an arbitrary representation of
A'Γ[ lying above ψ on Mv has the form τ(φo)®φ where φ is now
any character (or quasicharacter) of A/Af)Mv, extended to A-Γ[ by
letting it be trivial on X*Mη.

Now define Jf = Γ[ Γ2, and let <?' be the representation of Jr

whose restriction to Γ2 is a multiple of ψ' and whose restriction to
Γ[ is δ[. (We note that these conditions do indeed define an irreduci-
ble representation of J'.) It will be our business from here to the
end of the section to analyze the representations of G containing
the J'-type δ'. First we will construct them. To this end let ^ =
A Γl Up. We consider the set Ά(δ') of all quasicharacters φ of A
which agree with χ on A Π Γ[ = A Π J', and we denote by τ\φ) the
representation of ^ which is trivial on UP, and which agrees with
τ(φ) on A-Γ[.

Although we have thus far spoken of intertwining only in the
context of compact open subgroups of G, we can extend this
terminology easily to noncompact, nonopen subgroups. Specifically,
if H19 H2 are any closed subgroups of G, and if σt are finite-dimen-
sional representations of the Hi9 then for g e G, we define I(σlf σ2, g)
to be the intertwining number of the restrictions of σι and Ad* g(σ2)
to Hλ Π Ad g(H2). There is an interpretation of I(σlf σ2, g) in terms
of intertwining distributions between σt and σ2, where these are also
defined in analogy with the case of Ht open and compact. We say
g intertwines σx and σ2 if I(σlf σ2, g) Φ 0. We say the σt intertwine
if some geG intertwines them. Applying these concepts to J' and
<?', ^f and τ\φ) we get the following result.

LEMMA 3.6. (a ) The only g e G which intertwine d' with itself
belong to J'AJ'. For every be A, I(δ', δ', b) = 1.

(b) The only (J', ^J?) double coset which supports an inter-
twining distribution for δ' and τ\φ) is J ' ^ itself. We have
I(δ'f τ\φ\ 1) = 1.

(c) The only (^ cJ?r) double coset which supports an inter-
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twining distribution for τ\φ) with itself is ^ itself.
(d) If φxΦ φ2, τ'(Φι) and τ'(φ2) do not intertwine.

Proof. The statements that I(δf, δ', δ) = 1 and I(δ', τ\φ\ 1) = 1
are clear from the construction of δ' and τ\φ). Just observe that
τ\φ) and δ' are irreducible and equivalent on Γ[, and that A
normalizes Γ[ and leaves δ[-invariant there, and use Lemma 3.5,
plus the construction of δ[ from διm The fact that only double cosets
of the form J'bJ' with be A support intertwining distributions for δf

with itself is almost immediate from Lemmas 3.4 and 3.5. We leave
the details to the reader. Now consider the intertwining properties
of τ\φ). The group Mr UP = 1 + (2K, 0 ^ 0 is a subgroup of J".
The function ^ (1 + x) = Ω(a)(%) can easily be verified to be a linear
character on MV UP, trivial on Mμ-UP. Of course ψ coincides with
ψ on (Mη UP)f)Kv. Precisely the same reasoning as used in Lemmas
2.1 to 2.3 tells us the following two facts. First if g e G, then g
intertwines ψ with itself if and only if a + (2ft, 0 ^ ) * intersects
Ad βr(α + (2β 9 0^O*). Second, g intertwines ψ and ψ if and only
if a + £_>? and Ad g(a + (SJΪ̂  0 ^ ) * ) intersect. But if g intertwines
τ\ψ) with itself, or τ\φ^ with τ\φ2), or δ' with τ'(φ), then some
element of ^ g ^ or Jfg^ must intertwine ψ with itself or ψ»
with ψ. A simple calculation gives (Wlv 0 ^ ) * = Wl_v 0 i^. In the
discussion since Lemma 3.5 we have seen that AάΓ[(a + 5ί_^_Co_Cl)2
α + SW-ί?. Since ad a is nonsingular on <&, we sae Ad Z7P(α) = a + ^ .
Combining these facts gives A d ^ ( α + δί_>7_Co-Cl)2α + (9K_3?0^). Now
exactly the same proof as used in Lemma 3.3 shows g must belong to
^AJ? = J? to intertwine ψ with itself, and must belong to J'A^
to intertwine ψ with ψ. From this the lemma follows immediately.

We are now in a position to construct the series of induced
representations attached to δ'. For each φ in Ά(δ'), we let π(δ', φ) =
π{φ) be the induced representation π(φ) = ind^ τ\φ).

PROPOSITION 3.2. Those of the π{ψ) which are unitary are
irreducible. Those of the π(φ) which are irreducible are pairwise
inequivalent.

Proof. Using Lemma 3.6, this result is immediate from Bruhat

[2].

At this point I would like to digress briefly and comment on
the relationship of this result to Harish-Chandra's philosophy of cusp
forms, and more particularly to his theory of the Eisenstein integral
on p-adic groups [10]. First let us give an alternate description of
the π(φ) in terms of series induced from P = M- UP. Recall the map
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log:P —>Zr as defined in §2. In the present situation, r is the split
rank of A and log (A) has finite index in Zr. Recall that & was
the group of quasicharacters of P which factored through log. By
restriction, & is mapped into the group of quasicharacters of A.
The kernel of this restriction map is finite, of order equal to the
index of log (A) in Z. Since (ker log) Π A = Ao, the image of &
under the restriction map is the group of quasicharacters of A/Ao.
If <pe&, let φ be its restriction to A. We see that if <poeA(δ')>
then φoφ e Ά(δ') also for φ e &. Thus έ? acts on Ά(δ'). Under this
action Ά(δ') clearly breaks up into finitely many orbits, each orbit
being a set of quasicharacters with fixed restriction to Ao. Let
{ΦiYi=u with I = \A0/A Π J'), be a set of unitary characters of A,
one from each orbit of & in Ά(β'). Then every element of A(δr)
may be written in the form ψiψ, with <pe& and φt uniquely
determined. Define σύ = ind^ r ' (^). Then the series of representa-
tions έPiCi) = {Gi®φ for φe&}, as defined in §2, is the same set
as {ind^ (τ'(&) <g> Φ)} = {ind^ τ'(φtφ)}. Thus \Jι

i=ί &(σx) = {ind*- τ'(£'):
^ ' e Jϊ(δ)}. By transitivity of induction we have indjί σt 0 φ — π(φtφ).
By the same reasoning as in Proposition 3.1, we see that the σt are
all irreducible unitary supercuspidal representations of P. Therefore
we conclude that the π(φ')9 for φ' e Ά(8'), are equivalent to the
representations of finitely many series of representations of G induced
from supercuspidal representations of P. Thus this construction of
the π(φ')9s falls within the scope of the philosophy of cusp forms.
In this connection let us also note that Harish-Chandra has formulated
a version of Bruhat?s theory which applies to representations induced
from supercuspidal representations of parabolic subgroups. It would
follow from Lemma 3.5 that the σi^φ would always be unramified
in Harish-Chandra's sense, so that his results would also imply
Proposition 3.2.

With the above description of the π(φ'), we may identify the
φf which yield unitary representations. Indeed, for yeP, define
dP(y) = |det (Adyι?/)\. Then it is well-known [9] that if σ is a
unitary representation of P, indf σ (x) dp1/2 is a unitary representation
of G. Therefore we conclude that π{φ'dpιn) is unitary if φ' is
unitary. In a while, we will see the converse is also true.

We end this digression with some further remarks on the ir-
reducibility of the π(φ'). What the techniques of Bruhat and Harish-
Chandra show is that π(φf) allows no intertwining mappings with
itself, and that there are no intertwining mappings from π(φ[) to
π(φ'i) if φ[ Φ φ[. These results are true for arbitrary φ', φ[, φf

2 e Ά(δ').
However, it is only when π(φ') is unitary, or when the π(φ[) are
irreducible that one may deduce irreducibility or inequivalence
directly from the lack of intertwining operators. Nevertheless, it
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is to be expected that π(φf) irreducible for all φ\ We will not
attempt a proof here, but we will comment on the methods available
for such a proof. They appear to be at least three. One is that
used by Wallach [23] in his study of reducibility of nonunitary
principal series for semisimple Lie groups. This method uses cyclic
vectors. As we will see shortly, the J'-type δ' occurs with
multiplicity one in each π(φ'). It seems it would not be hard to
demonstrate that vectors of type <5' in π(φr) are cyclic. The second
possible method is that of c-functions. We will give explicit formulas
for the δ'*-spherical functions. These formulas will probably imply
the c-functions Harish-Chandra [10] attaches to the series ^(σt) will
be constant, or perhaps exponentials. When Harish-Chandra's theory
is completed, this should in turn imply irreducibility for all φr e Ά(δ').
The third possible method which would necessitate taking a to be
very nondegenerate would involve an analysis of all essential /'-types
which might possibly occur in the π(φ'). Execution of any of these
three methods of attack would yield interesting additional informa-
tion on the π{φ').

We now return to our main concern, the Fourier analysis of

LEMMA 3.7. The representation δr of Jr occurs exactly once in
the restriction of π{φ') to J', for any φr e Ά(δ').

Proof. This lemma follows from Lemma 3.6 together with some
general considerations [18] concerning the quantitative relation
between intertwining and multiplicities, which we now review.

Suppose C is a compact open subgroup of G, and choose δ e C.
Let H be some closed subgroup of G, and τ an admissible representa-
tion of H. Let p — ind£ τ be the representation of G induced from
τ on H. Explicitly, if V is the space of τ, then X, the space of
p, is the space of all locally constant functions / from G to V,
compactly supported modulo H and satisfying the transformation
law f(gh) = τ(h)~ιf(g) for all geG, heH. The action p of G on X
is given by ρ(g)f(x) = Λg^x) for g, xeG. We want to consider the
restriction of p to C, and in particular, to compute the multiplicity
of δ in p. The first observation is that if / e l and a is any right
if-invariant complex-valued function, then afeX. In particular we
could let a be the characteristic function of a (C, H) double coset.
Then we see that the subspace Xg of X consisting of functions
supported on the CgH is invariant by ρ(C)9 and that X is the direct
sum of the spaces Xg.

Consider the action of G on Xg. By virtue of its transformation
law, feXg is determined by its restriction to Cg. The function fr
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on C defined by f'(x) = f(xg) for xeC is easily seen to satisfy the
transformation law f'(xy) = Ad* g{τ){y)~ιf\x) for y e G Π Ad g(H).
Conversely given / ' : C —* V satisfying this transformation law, define
/ on CgH by f(xgh) = TQhy f'ix). Then fe Xg, and the correspon-
dences /«->/' are mutually inverse. In this manner one concludes
that the representation of C defined on Xg is equivalent to
indg Ad* g(τ), where B — G Π Ad g(H). Since G is compact, we may
apply Frobenius reciprocity to conclude that the multiplicity of δ in
indg Ad* g(τ) is equal to the intertwining number J(<5, r, #) of the
restrictions to B of δ and Ad* #(τ). Note that this will be finite by
admissibility of τ and openness of B in Ad g(iϊ). Therefore the
total multiplicity of δ in p is the sum of I(δ, τ, g) over all (C, IT)
double cosets.

Now taking C = J', 8 = <5', if = ^ and τ = r'(£) for any ^ e Ά(δ'),
we see that Lemma 3.6 implies Lemma 3.7.

Recall from the discussion in §2 that the occurrence a times of
δ' in a representation of G leads to a representation of Sίfψ1) of
degree α. Therefore, attached to each π(φ) we have a one-dimen-
sional representation of J%f{δn), that is, a homomorphism from
<^(δ") to C. We will now explicitly calculate the spherical functions
attached to these representations. This will yield the Fourier de-
composition of J%?(δn) and will allow computation of the Plancherel
measure of the {π(φ)}. For the usual principal series, this analysis
was done in [12]. Again we must begin with recollections of the
general context of our discussion.

If Z is the space of δ', then Z*, the complex vector space dual
of Z, is the space of δn. If T e Horn (Z), let Tb e Horn (Z*) be the
transformation adjoint to Γ, and likewise if S e Horn (Z*), Sb e Horn (Z)
is the adjoint of S. Remember £έf{δn) is the space of all compactly
supported functions f:G—>Horn(Z*) such that for geG, x1 and
x2eJ', the formula f{x,gxz) = δ'\xύRg)δn{xύ. Since £"(&,) - {δ'(x%)-ι)\
we see that, defining f\g) == (f(g))\ we have

for fe<%*(δn). By a δ'*-spherical function we mean an intertwining
• distribution Φ for δn with itself, such that there is a homomorphism
λ : ^ ( δ " ) - + C such that for any / e ^ O Γ ) , f*Φ = χ(f)Φ. Here
/ * φ indicates the convolution of / with Φ. There is a well-known
method (see [6]) to construct from π(jp) a <?f<-spherical function whose
associated homomorphism of §ίf(δn) is the same as the homomorphism
defined by π(φ). We will now perform that construction.

We remember π(φ) = ind^ τ\φ) for ψ e Ά(δ'). For convenience,
we suppose τ\ψ) acts on the space Z of δ' in such a way that
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δ'(χ) = τ'{φ)(x) for xeJ'Γ\ ^ Then the space X of π(φ) is the space
of locally constant functions a: G-+ Z such that a(gy) —
for g 6 G, 2/ e ^ " and such that α has compact support modulo
To construct our spherical function, we consider X®Z*. We see
X(x)JίΓ* is the space of locally constant functions a:G—>Hom(F)
such that f{gy) = τ'(φ)(^/~1)/(^), for ye ^ and # 6 G, and which are
compactly supported modulo^f. Let Xδ = {ab: a e X(x) Z*}. Then if
/3eΓ, we find for geG, y e ^ that β(gy) = β{g){τf{φ){y'v))h =
β{g)τf{φ)\y). The action π(^) of G on X was given by π(φ)(g)a(u) =
a(g~ιu) for g,ueG, and α e l . Transferring this action to X®Z*
by letting G act trivially on Z*, and thence to Xδ by letting the
isomorphism α: —> α& for α 6 X (x) 2̂ * be an intertwining map, we still
find π(φ)(g)β(u) = (̂fir-1 )̂ for g,ueG, and /3 6 Xδ.

Denote by X(δ') that subspace of the functions βeXb such that
π(φ)(x)β=δn(x)β for # e /'. Then /3& 6 X®Z* is an intertwining map
between δ' and the restriction of π(φ) to J'. Thus Lemma 3.7 shows
X(<?') is one-dimensional. Alternatively, by virtue of the transforma-
tion law defining X\ any βeX(δ') is an intertwining distribution
between δn and τ\ψ)\ so Lemma 3.6, which applies as well to δn

as it does to δ', shows dim X(δ') = 1. In any case, we see that if
βQ: G -> Horn (Z*) is defined to be zero of fJ9^ and on J'^ to be
given by the formula βo(xy) = Sn{x)τr{φ)\y) for xeJ', ye^ then
ô is a well-defined nonzero function in X{δ'). Since X(δ') is one-

dimensional, and since, as is easily checked, left convolution by
feβ^(δn) preserves X{δ'), it follows that for any fe £ϊ?{δn)y f*βQ =
X(f)β0 for some complex number λ(/). Then /—> λ(/) is by definition
the homomorphism of J^(δ'*) associated to π(9>). There is a very
simple way to produce from βQ an intertwining distribution for δn

with itself. Namely, define

Φ{Φ)(g) = Φ(g) = \jt βo(gχ)δ'*(χ'1)dx , for ^ e G .

Since right convolution commutes with left convolution, we still
have Φ(xg) = δn(x)Φ(g) for xeJ'9 geG, and we still have f*Φ = λ(/)Φ

Moreover, if yeJ', we compute

Φ(gy) = ^ βo(gyχ)dn(χ-1)dx =

Hence Φ is a δ'*-spherical function with associated homomorphism λ.
Let us compute Φ explicitly. By Lemma 3.6, Φ is supported on

JΆ'J', and because of the transformation law Φ satisfies, it will be
enough to compute Φ(b) for be A. We fix Haar measures dg, dΰ,
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dm and du on G, Up, M, and UP respectively, such that the measures
of Ko, Up Π J', and M Π Ko are one, and so that dg = dudmdu. All
integrations below are taken with respect to the restrictions of these
measures to the sets appearing in the integrations. We get

Φ{b) -

(J'ΓiUp)
= \

= a 1 βlbyx)dy, ,
JJ'ΠUp

where a = m(J' Π P) is the measure of /' Π P, since δ'* is trivial on
Jr Π Up and δ'* and r'(<p)* agree on J' Π P. Write J' n Up = C.
Continuing the calculation we get

( βoΦVi)dy1 = \ βoibyfi'tydy, = m(C n Ad b~\C))βo(b)
JC JC

since for ^ € Z7p, βo(ub) is equal to /50(6) or zero according as u is or
is not in J\ Since βo(b) = τf(φ)\b), we finally get

( 3 ) <P(6) = m( J ' Π P)m(C Π Ad b-\C))τ'{φ)\b) .

Now we may compute the Fourier transform on J%f(βn), some-
times called the spherical (Fourier) transform. If Φ(φ) denotes the
spherical function associated to π(φ) for φeΆ(δ'), then ioτ fe£g?(δ')
we define a function / on A(δ') by the formula / * Φ(φ) — f{ψ)Φ{φ).
Since Ά(δ') has the structure of a finite union of complex affine
varieties, each isomorphic to (Cx)r, there is defined on Ά(δ') a
preferred ring of functions, the affine functions. Denote this ring
&*(Ά(δ')). We see &(A(δ')) contains the functions b gotten by
evaluating φ e A(δ') at 6 — that is, $(φ) = φ(b). In fact as b ranges
over A, the b form a basis for

PROPOSITION 3.3. ( a ) i^or

(b) The resulting map ~: £%f(δn) —> ^(A(δ')) is α?ι isomorphism
of algebras.

(c) J% particular, 3ίf(δn) is abelian, and isomorphic to an
affine algebra.

(d) The homomorphisms f—>f(φ) for φeΆ(δ') are the totality
of complex homomorphisms of έ%f(δn).

(e) If for be A, fbe β^(δn) is the function which is supported
on J'bJ' and given there by fh(xj>x2) = δn(x1)τf(φo)

t(b)δn(x2), where
x€ G J' and φ0 e A(δ') is a fixed unitary character, then

( 4 ) ?h $
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where the constant a(b) is given by

(5) a(b) = m(C n Ad b{C))m{J'bJ')φΛb) .

Proof. Clearly (e) implies (a) and (b), since the /6's form a basis
for J^(δ"). But (c) follows from (b) and (d) follows from (b) and
(c) and Hubert's Nullstellensatz. So we need to prove (e) and to do
this we see it is enough to compute fb * Φ(φ)(T). We get

= ί Mg)Φ{Φ)(g-ι)dg = \ fh{g)Φ{φ){g~ι)dg
JG JJ'bJ'

where the constants at are given by: ax = m(J' Π P)m(C Π Ad b(C)),
and a2 = m(J'bJ')m(J')~2, and a3 = m(J')2. Combining these constants
and plugging them into the definition of fh, using Φ(φ)(l) — m(J' f] P),
we get fb(Φ) = m(C Π Ad 6(C))m(J'&J')^o"1(δ)^(&). This equation is by
inspection equivalent to (4) and (5).

COROLLARY. Any irreducible representation of G containing
the tΓ-type 3' is isomorphic to a sub-quotient of some π(φ). In parti-
cular <5' can occur at most once in any representation of G.

REMARK. When the π(φ)'s are shown all to be irreducible, then
this sub-quotient result may be replaced by an isomorphism result.

Proof. The reasoning that leads from Proposition 3.3 to this
corollary is standard. In fact, if the irreducible representation p
contains δ\ then the representation of 3if($n) associated to p produces
some Φ(φ) as a matrix coefficient of p, by (d) of the proposition.
Then Φ{φ) generates under left translations by G a space Y of func-
tions, and G acts on 7 by a representation equivalent to p. See
Harish-Chandra [10] for details. But we may map the space X of
π(σif φ) into Y by right convolution with the identity of £%f{hn), in
the same way as we constructed the Φ(JPY$, and this mapping is
clearly an intertwining operator for the left action of G on X and
Y.

In order to establish "Fourier inversion" for Sίfψ1) and compute
the Plancherel measure on Ά(δ'), we must establish an inner product
on £έf{δn). Here we use the fact that <5' and τ'(φ0) are actually
unitary representations. Thus choose a τ(^0)*-invariant Hermitian
inner product on £*, the space of δn. For TeHom(£*), let T*
denote the adjoint of T with respect to this inner product. If
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/: G —>Horn (Z*) is a function, then the function / * is defined by
f*(g) = (Λff"1))* for geG. We say Γ or / is self-adjoint if T = Γ*
or / = /*. We note that since δ'* will be a unitary representation
with respect to our inner product, ^f(δn) is self-adjoint in the sense
that if feβg?(δ"), then also /* e^(δn).

If Tίf T2 e Horn (Z*), then tr(2\jΓ2*) is the usual Hilbert-Schmidt
inner product of T1 and T2. We use this to define an inner product
on 3(fψ). If flf /2 6Jg^(δ'), then their inner product is given by

C/i, /.) - tr ((/, * /*)(1)) - ί tr (fM(M9)r)dg .
JG

If fb is as in Proposition 3.3, part (e), we compute

(fb,fb) = (dim δ't)m(J'bJ')

since fh(x) is unitary on J'bJ', and zero off J'bJ'. We also note that
for bl9 b2 not congruent modulo Af)J', fhl and fH are orthogonal, so
the /δ's form an orthogonal basis for βί?(δn) with respect to (,).

Certain of the π(φ) are unitary. Let <&(A(δ')) denote the set
of ψ for which π(φ) is unitary. If we identify φ and π(φ) for the
present, then the Plancherel measure on A(δ') is by definition a
measure dφ, supported on <%f(A(δ'))9 such that with respect to it,
the spherical Fourier transform becomes a unitary map. That is,
the equation

should hold for all fs£l?(δn). The Plancherel measure is known to
exist uniquely [4]. We will now determine ^(A(<5')), and then
determine the Plancherel measure.

If π(φ) is unitary, then Φ(ψ) must be self-adjoint. From formula
(3), we deduce the necessary and sufficient condition for Φ(φ) to be
self-adjoint is

{ 7) m(C Π Ad b~KC))τ(φy(b) = m(C n Ad KCfiWφγQΓ1))* .

Suppose Φ(φt) are self-adjoint for i = 1, 2. Then dividing equation
(7) for φ1 by equation (7) for φ2, we get Φ2φr\b) = WfΨdΦ). That
is, ^^Γ 1 must be unitary. But we already know, from the digres-
sion following Proposition 3.2 that if φ 6 Ά(δf) is unitary, then
π(φdpm) is unitary. Thus we conclude ^(A(<5)) = {φdp1/2: φ e Ά(δ'),
φ unitary}. Thus as one would expect, no "complementary series"
occur among the π(φ). Also note if φ is unitary, then (r^)*^"1))* =
τ(φ)\b). Plugging this in (7), we get the relation

( 8) m(C n Ad b-\G))dP(b)m = m(C n Ad b(C))dP(bYιn .
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The unitary characters in Ά(δ') fill up \AJA Γ) J') real r-dimen-
sional tori. We see %/(Ά(δ')) is simply the translate of this set of
tori by dp1/2. Thus ^/{A{δ9)) also is the disjoint union of \AJA Π /')
real r-dimensional tori. We may now state the final result of the
section.

PROPOSITION 3.4. The Plancherel measure on any component
torus of %f(Ά(d')) is ordinary Lebesgue measure, normalized so that
the total measure of the torus is equal to

7 - \AJA n J'Yιm(J')~ι dim δn .

Thus the total Plancherel measure of the representations {π(φ)} is
equal to 7' = %A0/A f] J)Ύ = m(J')~l dim δn.

Proof. We note that if the Plancherel measure dφ is as stated,
then for \ and b2 in A, not congruent modulo A n J', part (e) of
Proposition 3.3 plus the usual orthogonality relations for characters
of abelian groups shows that fH and fH are orthogonal in

L\^W')\ dφ) .

Since fH and fH are orthogonal in έ%f{δn) as we have already
remarked, we see if we verify (6) for f = fb, the proposition will
follow.

From (4), and our knowledge of which φ belong to

we see that on ^(A(δ')), fbfb has the constant value a(b)a(b)dp\b),
with a(b) as in (5). Using the known value of (fb,fb), we may
translate (6) into the relation

(dim δn)m{J'bJ') = 7'm(C n Ad b{C))2m{JrbJJdpιQ)) .

Now recall J ' = C (ikfn J ' ) Ά where C = J' Π Up as before and
D - J' n Up. We see m{J'bJ') = m{JJm{Jr n Ad δ(J*))'1. Since b
normalizes M Π J\ and since by our normalization of Haar measures
dg — dΰdmdn, we see

m(Jf Π Ad δ(J')) = m(C n Ad b(C))m(D n Ad b{D))m{J' n M) .

If C = 1 + Γ and J5 = 1 + Γ, then ^ = 7 φ Ϋ is, by the construc-
tion of Γ'2 £ J', a self-dual lattice in ^ φ ^F* with respect to the
form B used in the discussion preceding Lemma 3.4. Since Ad b
preserves B and m(C) = 1 by agreement, it follows that

m(D n Ad δ(JD)) = m{D)m{C n Ad δ

Therefore we finally get
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m(J' n Ad δ(JO) = m(Jf)m(C n Ad b(C))m(C n Ad fc^

Putting this back into our equation for 7' and simplifying, we get
dim δ" = 7' m(C f] Ad b{G))m (C Γ) Ad 6"1 (C)Γ1 m(J')dpι (&). Now using
(8), this becomes simply dim δft = Ύ'm(J'), and the proposition is
proved.

4* 99(44/100)% of the Plancherel formula* In the previous
section we constructed a single representation δ' of a single compact
subgroup /', and essentially performed an analysis of indj, δ'. In
this section we will consider many δ"s and J"s simultaneously. We
will try to get a picture of how they interact, try to see how much
of the harmonic analysis of L\G) they account for, and try to see
the nature of the portion unaccounted for and some of the difficulties
to be overcome in obtaining it.

If we take feC?(G), we can decompose it into its Fourier com-
ponents with respect to the action of Ko on G by right translations.
In this way we get the easy decomposition

C?(G) - Σ (dim δ) ind|0 δ .
δeK0

Thus if we could perform for arbitrary δ the kind of analysis carried
out in §3, we would in some sense have done the harmonic analysis
of G. In this form, however, the problem is both too hard and the
wrong problem. It is too hard because, as we said in the introduc-
tion, it seems unlikely that we will even enumerate all δeK0, let
alone decompose ind|0 δ. It is the wrong problem because it gives
a decomposition of C?(C) into left-invariant subspaces, rather than
bi-invariant subspaces. Upon right translation the above decomposi-
tion will not be preserved. There will be a great deal of mixing.
This mixing will be precisely expressed by the intertwining of the
δ's. As a simpler, more appropriate, and vaguer problem, one might
ask if there is a subset S £ ίt0 which has the following properties:

( i ) The subspace of CT(G) consisting of functions whose
Fourier coefficients under right translations by Ko lie in S generates
all of C?(G) under right translations by G.

(ii) For δ e S, ind|0 δ is analyzable.
(iii) There is only a small amount of mixing between different

elements of S.
All three conditions are subject to interpretation of course. In

(i) we can specify in what sense (algebraically, uniformly-on-compacta
limits, in L2, etc.) C?(G) is to be generated. Condition (ii) depends
on the degree of explicitness you require. Small is clearly the key
word in (iii). As a minimal requirement, we should demand that
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any element of S intertwine with at most finitely many others. If
this is all we ask, then Sections 1 and 2 show that the essential
KQ-types more or less satisfy Conditions (i) and (iii). On the other
hand, for the rough results of those sections we needed only a very
rough decomposition of ί£0, and on closer inspections one sees many
superfluous representations of Ko have been labeled essential by that
classification. Thus it seems unlikely that the essential i^-types
will satisfy (ii).

On the other hand, in §3 we found some representations which
satisfy (ii) extremely well. We will see in this section they also satisfy
(iii) very well. They do not satisfy (i), but we shall see that in a
certain sense, they fail to do so only by terms of lower order. I
would hope that the set of representations of §3 and this section
could be enlarged suitably so as to satisfy (i) while still satisfying
(ii) and (iii).

Conditions (i) and (iii) together say that elements of S mix only
weakly with each other, but very strongly with ifo-types not in S.
In order to discuss these conditions intelligently therefore, we should
have some quantitative measure of the amount of mixing between
two iΓ0-types. We will now develop such a measure. To do this,
we will have to discuss the Plancherel measure. Since G is known
[11] [21] to be type I (in fact C?(G) acts on irreducible modules by
finite rank operators) this entails no difficulty.

Let G denote the dual space of G, that is, the space of
equivalence classes of unitary representations of G. There is a
standard topology and compatible Borel structure on G for which G
becomes a reasonable Borel space. For a nice G such as ours, G,
or many parts of it, should even be endowable with the structure
of real analytic space.

Then it is known [4] that there is unique measure dp on G such
that for feϋT(G)

(1)

The measure dp is called the Plancherel measure. For our purposes,
there is a somewhat more suggestive way of writing (1). For
fe C?(G), define /* by the recipe f*(g) = fϊΪΓ1), geG. Then we note
that (/„/,) - \ A(g)fMdg = \ ίMftig^dg = Λ * Λ*(l). Hence we

JG JG

may rewrite (1) as

(2) (Λ, /,) = ί A θP{fx * f*)dp = L tr (fKA)ρ(ff))dp .
JG JG

Thus the usual inner product in L\G) is decomposed into an integral
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over the Hilbert-Schmidt inner products in the spectrum of G.
Now suppose C QG is an open compact subgroup, and take

some δeC. For each peG, let ω(p, δ) be the multiplicity with
which δ ccurs in the restriction of p to C. Then ω(p, δ) is a positive,
integer-valued, tolerably well-behaved (semi-continuous) function on
G. Let χ(δ) be that function on G which is equal to the character
of δ on C and is zero off C. Let m(C) denote the measure of C with
respect to the Haar measure on G. Then E(δ) = m{G)~ι (dim δ)χ(β)
is an idempotent in CC°°(G), and for each peG, p(E(δ)) is projection
onto the δ-isotypic component of p restricted to C. Hence θp(E(δ)) =
(dim δ)ω(ρ, δ). Thus in this case, equation (1) specializes to

( 3 ) m(C)-\dim δ) = [A ω(p, δ)dρ .
JG

A
G

Compare this with Proposition 3.4. Also, note that if we integrate
<o(p, δ) only over some subset of G (for example, the discrete series)
we get an inequality. Compare [9], Chapter 1.

Now suppose Cx and C2 are two open compact subgroups of G,
and take δt e Ĉ . Then we define ^(δlf δ2), the interaction of δt and
S2, by the formula

4) ^(δl9 δ2) = [ ω(p, δ X f t δ2)dp
JG

It is fairly clear intuitively that ^{δx, δ2) will measure how often
<?! and δ2 appear in the same representation of G. It is a sort of
weighted intertwining number for δ1 and <52, It also can be of use.
Suppose that we know the function ω(p, δλ) very well. Then ^(βlf δ2)
gives us some knowledge of ω(p, δ2). Let G(δx) be the support of
ω(P, î) — that is, G(βι) is the closure of the set in G where ω(p, δx)
is nonzero. Then a weak form of Frobenius reciprocity says that
it is essentially the representations p e G ^ ) that occur in ind^ δt.
Suppose for instance that ω(p, δt) is always zero or one. Then
^(βu δ2) gives an estimate of what portion of information about the
spectrum of <%?(δi), (where δl is the representation of C2 contra-
gredient to δ2) we could expect to derive from decomposing i n d ^
into C2-types. To be extreme, if we had J^{δu δ2) = m(C2)~

1(dim δ2),
then we should be able to perform the complete (I/2!) Fourier analysis
of 3ίf{δ2) from knowledge of ind^ δt. If on the other hand ^{δ19 δ2) = 0,
then ind^ ̂  for i — 1, 2 give essentially irredundant information about
harmonic analysis on G. We may also state the ideal form of Con-
ditions (i) and (ii) in terms of interactions. Is there a set SeKQ

such that: (i) for δlf δ2 e S, J^{δ19 δ2) = 0; (ii) for δ e S, ω(p, δ) ^ 1;
for any δ'eK0, Σ^s^iδ, δ') = m(Zo)"1 dim δ'? To this extreme
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form of the question the answer is no. It is no already for Gl2;
the trouble comes from the special representation. However, it is
conceivable that a slightly weaker form of the question would have
an affirmative answer.

Our first item of business will be to see how in certain cases
to compute ^(δlf δ2). Specifically, we shall consider the case where
one of the S's is an arbitrary shallow character and the other is a
shallow character related to the representations we considered in § 3.
For finite groups, the main tool for computing ^(δlf δ2) is the
Frobenius formula for induced characters. Although we must tread
more lightly here, the idea is the same. Our main goal (see Theorem
4.1) will be an interesting, useful, and suggestive expression for
J^{Slf δ2) in terms of the geometry of dual blobs. To those familiar
with Kirillov theory [14] this will come as no surprise, although
again it is interesting to see these principles working so far from
their apparent home turf. We remark in this regard that considerably
more precise results are obtainable in characteristic zero.

The general computation we have in mind is somewhat laborious.
Before treating it in all its technicality, we will illustrate the main
ideas of the argument by dealing first with the supercuspidal case.
As in the constructions of § 3, this case is much simpler than the
general case. Also, it gives us the opportunity to do some general
calculations of related interest. Specializing these computations step
by step will lead us to the desired formulas.

First we give an integral formula for the actual (unweighted)
intertwining number of two finite-dimensional representations. Take
an open compact subgroup G of G and a representation d e C. Let
H be another closed subgroup of (?, not necessarily compact, and
let τ be a finite-dimensional representation of H. (We could also
take for τ an admissible representation whose character is a locally
integrable function on H.) Following the discussion in Lemma 3.7,
we see that the total multiplicity I(δ, τ) of δ in indjr is given by
the sum over the (C, H) double cosets of the intertwining numbers
I(δ, τ, g), for g 6 G, of δ with indĝ  Ad* gτ, where Cg - C Π Ad g{H).
Although it has not been our custom, we could also compute I(δ, τ,g)
as the multiplicity of AdflΓ1^) in indi^-l^n^r. Let us fix a Haar
measure dg on C and a right Haar measure drh on H. Let χ(δ) be
the function on G which equals the character of δ on C and is zero
off C. Let χ(τ) on H be the character of τ. Then the parallel in
the present situation of formula (1) of § 3 is

( 5) I(δ, τ, g) = mH(Aά g~\C) n HΓ \

Here mH(X) indicates the measure of the set I g ί f with respect to
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the measure drh. Note that this expression is independent of g e CgH
even though H may be nonunimodular. Summing (5) over (C, H)
double cosets we obtain:

(6) I(δ,τ) = Σ m
geC\GH

As a special case we can take H = Π-H', where JET is an open
compact subgroup of G and Π is the subgroup of the center of G
generated by a prime element π e F. Then we can take drh to be
the restriction of dg to H. Then for any g e G, Ad g~\C) Π H =
Ad sf~XC) Π ίf'. Thus, if m(X) denotes the measure with respect to
dg of X Q G, we have the relation

ms(Aά g~\G) n H) = m{C)m{H')m{CgH'yι .

Also, the restriction of τ to H' will be an irreducible representation
τ' of iΓ, and we have I(<5, τ, #) = I(<5, r', #) for any # e G. Hence we
see that in this case (6) may be rewritten

δ, τ) = m(CΓm{H'yι \ dg(\

Here dg denotes the Haar measure on G/Π which makes the natural
projection of G onto G/Π measure preserving on sets which are pro-
jected one-to-one into G/Π. Note that the projection of G onto G/Π
is locally one-to-one since Π is discrete. Note also the integrand of
the integral over G/Π is a nonnegative function, so the integral
either is convergent or properly divergent to +oo. Compare [9],
Chapter V. Since the contribution to the integral from any (C, Hf)
double coset in G/Π is a finite integer, the integral will be convergent
if and only if it has compact support.

Let us now specialize further and assume C = 1 + Λ and Hf =
1 + N ίor certain small lattices Λ, N £ ©. Let us take δ and τ' to
be shallow characters of G and H respectively. With these choices,
we see the inner integral in (7) has the value

and I(δ, τf, g) is one or zero according as δ and τ coincide on C Π H
or not. We see we can choose a Haar measure dz on ® such that,
if ^£(X) denotes the measure of X £ © with respect to dz, then
^f(X) = m(l + X*) whenever X is a small lattice. Since if XL £ X2

are two lattices in ® we have \XJX^) = \Xf/Xf), there is a constant
ζ such that m(X)m(X*) = ζ for any lattice X Q ®. (Since we have
set things up so that Lo* = LQ, we may calculate ζ by the formula
ζ = ^£{Jj$.) We also note the relation



526 ROGER E. HOWE

, n x 2 ) .

From these formulas we compute ^r(Xf n X2*) = C~**W Π Xs*)*)"1 =
ζ^-Xi + X2)-χ - ζt^r(X1)~1^^(X2)-1^^(X1 n X2). Denote by /3(δ) the
set of elements in (S which represent δ in the sense of §2, and let
β{τr) be the set of representatives for τ\ Then β(δ) is a certain
coset of Λ* in ©, and /S(τ') is a coset of N*. Thus Ad g~\β(δ)) Π jβ(τ'),
if it is nonempty, is a coset of Ad g"ι(Λ*) Π .ΛΓ*. On the other hand,
Lemma 2.3 says I(δ, τ', g) is one or zero according as Ad g~\β(β)) Π
β(τf) is nonempty or not. Putting these facts together and plugging
them in (7), we see that for this special situation (7) becomes

(8 ) I(δ, τ) = ζ - ( ^ ( A d βΓ W ) ) n β(τ'))dg .
JGIΠ

REMARK. AS a simple but suggestive preliminary observation
from (8), let us remark that, in order for ind|τ to be admissible, it
is necessary and sufficient that β{τ') be contained in the set of
regular elliptic elements. If this happens, then indfτ decomposes
into a finite number of supercuspidal representations. By a regular
elliptic element of © we mean a regular element which belongs to
a minimally split Cartan subalgebra. For our © = Mn(F), a minimal-
ly split Cartan subalgebra is just a subfield of Mn(F) of degree n
over F. The observation follows because the isotropy group under
Ad(? of me(3 is compact modulo the center of G if and only if m
is regular elliptic.

We will now use (8) to compute κJ^~(δ, τ) when τf is one of the
representations of §3. Specifically, let §ί be a minimally split Cartan
subalgebra, and let αeSί be sufficiently regular in the sense of §3.
(Note that the geometric condition on Sί required in §3 is vacuous
for minimally split Cartans.) Let ord (a) = — μ, and put η = [(μ + l)/2],
and let ψ be the shallow character of Kv represented by α. Let J '
and J? be the groups constructed for ψ in § 3. Briefly, if A is the
Cartan subgroup of © corresponding to SI, and if v = [(μ + 2)/3],
then J' - (A n JSΓJ X, where X = f\beA Ad b(Ku Π (1 + Si*)) and J" =
A-J'. Let φ be any character of A which agrees with ψ on A Π Kvt

and let τ'{φ) be the corresponding irreducible representation of ^J?
lying above ψ on Kη. Recall the bilinear form Bψ defined on J' by
the formula Bψix, y) = ψixyx^y"1), and let Δ be the radical of this
form. (See the discussion following Lemma 3.5.) We have seen
J - ( / ί l A ) ( i n l ) and Δ n XQ Kv. Put / = 4fl Kv. Then Δf =
1 + 7 for a small lattice Y, and F = ( Γ n 81) θ (Γfl SI*). Let ψ'
now denote the restriction of ψ to Δ\ Then φ' is a shallow character
of Δr and a represents ψ', and β(ψ') = α + F*. Moreover, the
restriction of τ'(^) to J', for any φ, is a multiple of ψ\ The precise
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multiple is, of course, dim τf(φ)f which by the standard theory of
two-step nilpotent groups ([3]), is equal to \J'IΔ)1/2. It follows easily
from Lemma 3.7 and the corollary to Proposition 3.3 that ψ' on Δr

occurs with Uniform multiplicity %J'/Δ)1/2 in each representation
π(φ) = indj> J'(φ), and that these are the only unitary representations
in which ψ' can occur. Thus ^(δ, ψ') will indeed give us fairly
sharp information on the occurrence of δ in the π(φ).

Notice that Δ' is normal in ̂  and ψr on Δf is Ad* ^-invariant.
It follows that Ad* x(β(ψ')) = β(ψ') for any x e J". On the other
hand, if g e G, and Ad* g(β(ψ')) intersects β{ψr), then g intertwines
α/r' with itself, and it follows almost directly from Lemma 3.6 that
g e ̂  Thus we see Ad G(β(ψ')) = \JgeG/j- Ad g(β(φ')), the union being
disjoint.

Now in (8) we let H—Π Δ' and let τ be any extension of <ff

from Δf to H, so that τf = ψ'. Then, observing that the right hand
side of (8) is actually symmetric in 8 and τ', and using the decom-
position of AdG(β(ψ)) given above, we see

J(S, τ) - ζ-'m(jriΠ)^€{β{8) n Ad

where m(^f/Π) is the measure of ^/Π £ G/Π with respect to dg.
That is, m{^IΠ) - *(^r/J' 77)m(J') where m(/') is as before the
measure of J'QG with respect to dg. Now according to Proposition
3.2 ind|τ consists of *(^/J' Πy(Δ/Δ') different irreducible representa-
tions, each occurring with multiplicity \J'jA)U2. Moreover, for two
different extensions τx and τ2 of ψ' to H, the components of ind|rx

are all distinct from the components of ind|τ2. Proposition 3.3 says
that as τ runs over all possible unitary extensions of ψ' to H, the
components of ind^r run over G(ψf), the set of unitary representa-
tions of G containing the J'-type φ'. Proposition 3.4 says the
Plancherel measure of G(f) is \ΔIΔ')m(J'yι\J'IΔ)ι/\ Putting these
facts together, we conclude that

x \^IJ'-Π)^tm{J')(β{δ) n AάG(β(ψ'))).

Cancelling terms gives

( 9 ) jr(δ, f) - ζ-V'/Λ)1/2^(/3(S) Π Ad G(β(f))) .

Of course to compute the integral of ω(p, δ) over G(ψ'), we must
divide (9) by (J'/Λ)1/2, since ω(p, ψ') is identically equal to (J'/z/)1/2 on

We write the result explicitly.

(10) (A ω(p, δ)dp = ζ-^iβiδ) n Ad
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We will now consider the general case. Our goal is to develop
formulas analogous to (9) and (10) for the case when Sΐ is not
minimally split. Considerations of length force us to treat some
parts of the argument sketchily. We begin by re-establishing our
notation. We will have frequent recourse to the results of § 3,
and our notation is borrowed more or less wholesale from that
section.

Let Sϊ be a Cartan subalgebra of ($. Suppose 2Ϊ satisfies the
geometric condition of §3. A is the Cartan subgroup of G cor-
responding to Sΐ. As is the maximal split torus in A; M is the
centralizer of As in G; P is a parabolic subgroup of G such that M
is a Levi factor for P; UP is the unipotent radical of P; Up is the
unipotent group opposite to UP; &*, ^f, ^, and ^ are the Lie
algebras of P, M, UP, and UP respectively. Let a e Sί be a sufficient-
ly regular element. Put μ = — ord (a), and η = [(μ + l)/2]. Let ψ be
the shallow character of Kη represented by α. Let Jf and ^ be
the subgroups constructed for ψ in §3. Recall Jr is open and
compact, and UP Q ^ £ P J' Π P S^/Γ Let A(ψ) be the set of
quasicharacters of A which agree with ψ on A Π Kv. For ψ e Ά{ψ),
let τ\ψ) denote the representation of ^ lying over ψ on Kv Π P,
and corresponding to φ, as constructed in §3. Let π{φ) = ind^r'(^)
be the corresponding irreducible representation of G.

The first step in our computation is an integral formula for θsfa.
This formula is more or less standard (see [10], [22]) and is essential-
ly the Frobenius formula for induced characters in this situation.
Let dg be the Haar measure on G normalized so that the total
measure of Ko with respect to dg is equal to one. Let dk be the
restriction of dg on KQ. Recall we have G = K0P. Let drp denote
the right Haar measure on P such that dg — dkdrp in the sense that
for/eCr(G)

(11) ( f(g)dg = \ f(kp)dkdp .
JG JKxP

Putting / equal to the characteristic function of Ko shows that the
measure of Ko Π P with respect to drp is equal to one. Let dm and
du denote the Haar measures of M and UP respectively, normalized
so that the measures of Ko Π M and Ko Π UP are both equal to one.
Since KQ Π P = (Ko Π M) (KQ Π U) we see that drp = dudm in the
sense that for feC?(P)

S c
f(p)drp = I f(um)dudm .

P JUXM

Using (11), (12) we find the familiar formula:
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(13) ί f(g)dg=\ f(kum)dkdudm, for feCΐ(G).
JG jKxϋpXil

Put σ(φ) = ind^ τ\φ), so that π(φ) = ind£σ(φ). Let 0σ(£, and θκ$)
denote the characters of σ(φ) and π(φ) respectively. Since P is not
unimodular, θσiφ) is not invariant under inner automorphisms of P.
However, we may express θo(φ) in terms of an invariant distribution
on M as follows. For convenience, we will suppress φ in this
discussion. Thus σ = σ{φ), θσ = θσfa and so forth. Let σ° be the
restriction of σ to M, and let θ°σ be the character of σ\ so #° is an
invariant distribution on M. For feC?(P), define f°eC?(M) by the
formula

(14) /°(m) = ( f(mu)du .
hip

Since cr is trivial on Z7F, one may verify directly from the defini-
tions that

(15) σ(f) = σ\Γ) for feC?(P).

Thus we may immediately assert

(16) <?,(/) = W O ,

the desired equation.
We may also express θx in terms of θσ. In fact, for

define α(/) e CΓ(P) by the formula

(17) α(/)(p) - (

Then the equation

(18) <?„(/) - θo(a{f)) holds for / G C Γ ( G ) .

We will not prove (18). Proofs are available in [10] and [22]. We
remark that in case / is supported in Ko, equation (18) is immediate
from the standard Frobenius formula for induced characters of com-
pact groups, and we shall only be interested in the formula for such
/. For general /, some checking is necessary to verify (18).

Now write J? = ^ ° UP, where ^ ° = ^ n M. Let τ° be the
restriction of τf to ^ . Then τ° is irreducible since τ' is trivial on
Uβ, and it is clear that σ° = ind^o r°. Since σ° is an irreducible
supercuspidal representation, and in particular admissible, and since
^ ° is open in M, it is easy to check that the analogue of the usual
Frobenius formula holds here. Thus, let dj° be the restriction of
dm to ^ \ and let dm be counting measure on M/^J?0, which is



530 ROGER E. HOWE

discrete. Let χ(τ°) be the character of τ\ Then for feC?(M) we
have the formula

(19) θl{f) = \ dm(\

Since σ° is admissible, the outer integral will in fact reduce to a
finite sum, so there is no problem of convergence. Combining
equations (14) through (19) we are led to the following formula for

( 2 0 ) dm(\ dj{\ du(\

for
Now return to /'. Recall the Γ-valued bilinear form Bψ on /',

defined by Bψ(x, y) = ψ{xyx~ιy~ι) for x, y e J'. Let J g / be 'the
radical of Bψ. That is A = {x e J': B+(x, y) = 1 for all y e /'}. Let
Z £ © be the small lattice such that 1 + Z = /' . As we saw in §3,
if zlf z2 e Z, then B+(l + zlf 1 + z2) = ψ(l + [2;̂  «J) = Ω(a)([zif z2]) =

ώo«α, K, ^2]» - Λ0([ά, «i], ^2). Thus J = {1 + z:zeZ and [ά, «] e Z*}.
Suppose z/ = 1 + Zx. We know by the construction of Jr that Z —
(Z Π 81) 0 (Z Π 81*). Hence also ZL = ( ^ n §ί) θ (^1 Π 81*). Moreover
Zx n Sί = Z n δί. Put Γ = ( ^ Π Si*) + Si,, and put z/' = 1 + Y. It is
easy to see Δf is normal in J', and since Δrζi=A9 we see Ad x(ά + Y*) =
α + Γ* for any x e / . I claim that Ad«Γ((ά + Γ*) n 81) = α + Γ*.
This fact is implicit in the construction of J'. We summarize the
pertinent details. First we had Ad(J ' Π M)(α + 8L,_βl) 2 α + 9K_7,
where Cj. was the constant used in the definition of sufficient
regularity. Next, we note 30ΐ_̂  = SK* n SK, and 1 + 3 ^ £ J ' Π If.
By the theory of two-step nilpotent groups, the characters
Ad (eΓ Π Λf)(Ψ0, restricted to 1 + 90^, constitute all characters of
1 + 201, agreeing with ψ on / f l l S H 33^. Thus we may con-
clude that Ad (J'nΛΓ)(α + SΆ_v_ei) 2 α + (Γ* ί l ^ / ) . Next, we recall
that by construction «Γ Π ί/p £ Δ 2 J ' Π ?7p. Hence 7 n ^ = 2 f l ^
and Γ n ^ 7 ^ ^ ί l ^F". Moreover, again by construction, we had
[α, ^ Π ̂ 1 = (^ Π ̂ 0 * Π ̂ , and the same holds with ^ and ^
received. Combining these facts, using an expansion in series as in
Lemma 3.1, the claim follows. The same reasoning also shows that
[d'f Z]= Γ* Π Sί* for any S e (d + Γ*) Π 8ί, or in other words,
AdG(ά') n (α + Γ*) - Ad J'(α').

Put Sΐ(ψ) = α + (Γ* Π 8Ϊ). By what we have just seen

Ad G(α + Γ*) - Ad G(Sί(π/r)) .
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Since every element of $Ά(ψ) is a regular element of Sί, it is seen
that AdG(Sl(ψO) is an open and closed set in (S. The second step in
our computation is to give a formula analogous to (20) for the
integral of a function /eCc°°(©) over AdG(8ϊ(ψ)).

The isotropy group under AdG of any point of %{ψ) is A. Thus
we have a bisection ζ: G/A x SΆ(ψ) -> Ad G($t(φ)) given by ζ(gA, α') =
Ad g{df) for g eG, a' e Sί(ψ>). Let dz be a Haar measure on ©, and
let dz be the pullback by ζ of dz to G/A x W(φ). The fact that ete
is invariant by Ad G translates into the decomposition dz — dgtda
where dg1 is a G-invariant measure on G/A and da is a measure on
SΆ(ψ). See [9]. Thus, using (13), we see that if dmί is a suitably
normalized invariant measure on M/A, we have for /eCΓ(©)

C(2)d2 - \
Jβ/4

= \ /° ζ(kum,
J-fiΓxεΓpxitfMxsic^)

We observe that dα must be the restriction to Sί(^) of a Haar
measure da on 81. This follows because Ad G(af) f]d + Γ* = Ad J'(ά')
for any o! e 8l(ψ). Now the restriction of ζ to M/A x 9ί(α/r) gives a
bijection of M/A x Sl(ψ ) onto Ad Λf(8l(^)), which is an open set in
SJl. The same argument used to identify dz shows that the direct
image of dmxda under ζ is the restriction to AdΛf(8ϊ(ψ)) of a Haar
measure dx on 9JΪ. Furthermore, for any meM, α'eSί(α/r), the
restriction of ζ to (UPm, άf) gives a bijection of this set onto
Ad m(o!) + <%S. The direct image of dn under this mapping is, again
by the invariance argument, seen to be a suitably normalized Haar
measure dn on <%/. Although the normalization of dn might depend
on m and α', in this case it does not. This is because the normaliza-
tion is well-known to depend only on ||det (ad (Adm(ά')))||, and this
quantity is always independent of m, and is independent of W e δί(^)
by construction (see the remark accompanying Lemma 3.1). Using
these remarks we may retranslate the last expression in (21) to
obtain, for feC?(®),

(22)

Next, observe A £ J"\ and Ad ^°(Sί(ψ)) - (α + Y*) Π SK = S
is an open subset of 9ft. Thus we may write

\ f(z)dz=[ dx([ dn([
jAd<7(2lC^)) JAdM(%(t)) \JϊS \J

dm.dJi dn([ dfc(/(Ad fc(Ad m(α') + n))))) .

Ad M(δϊ(t)) - U Ad m(S) ,

the union being disjoint. Thus we may convert (22) into
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( f(z)dz
/ Λ Λ χ J AdG(2l(VΊ)
( 2 3 ) f /f /f /fI dmί \ dxl I dm I dk(f(Aά k(Ad m(x) + ?t)

jif/^o VJs \ j ^ V J ^

Now consider a small lattice /ί £ ($, and let C = 1 + -4 £ G, and
let J be a shallow character of C, with set of representatives
β(δ) £ ©. We will apply formula (20) to χ(δ), the function on G
which equals (the character of) δ on C and vanishes off G, and we
will apply formula (23) to the characteristic function of β(8). Then
we will compare the results.

In (20), recall that τ° = τ\φ) depends on the quasicharacter
φ 6 Ά(ψ). Fix a discrete, torsion free subgroup 77 £ As such that
AJΠ is compact. Put H = 77 «(z/' Π Λf). Let ψx be the restriction of
f to / ΓΊ M, and let τ1 be any extension of ψ1 to ίZ". Specifying τ1

essentially amounts to specifying a quasicharacter of 77. We see
that ind^° τλ consists of *(J' n MjΔ Π M)1/2 = *(J'/J)1/2 copies of each
of those τ°(<p) such that φ agrees with ^ on i n 7J. There are
\A\A Π H) = #(^°/77 (/' Π M))-\AIAr) such £. Extend τt to H UP

be letting it be trivial on UP. Put πt = indl.^Γi. Then performing
the indicated sum in (20) gives

din
(24)

X ( L
Here dh is the restriction of dj° to 7ϊ.

In (24), take / = χ(β) and consider the integrals over H and UP

first. This is legal since all three inner integrals in (24) converge
absolutely and so may be interchanged at will by Fubini's theorem.
By inspection the integral over UP is zero unless Ad* k~\δ) is trivial
on Ad k~\C) Π UP, in which case it is equal to the measure with
respect to du of Ad k~\C) Π UP independently of m and h. Suppose
Ad* k~\δ) is trivial on Ad k~\C) Π UP. Let CP(k) be the projection
of Ad k~\C)Γ)P onto M under the identification M~P/UP. Let
δP(k) be the character of CP(k) gotten from Ad* k~\δ) via this
identification. Then CP(k) = 1 + ΛP{k) for a small lattice ΛP{k) £ Wl
and δp(&) is a shallow character of CP(k). By construction of
H, CP{k) n f f = Cp(&) Π (4' Π M"). The integral over H is zero unless
Ad* >mr\δP(k)) agrees with ψ on Ad wr\CP(Jc)) Π H. If Ad* m~\δP{k))
and ψ do agree, then the integral over ίZ" is just the volume with
respect to dm (e.g., dh) of Ad m~\CP(k)) f) H. It is clear these
conditions are equivalent to, the integral over H is zero unless δP(k)
and Ad m(ψ) agree on CP(k) Π Ad m{Ar i l l ) , in which case it is equal
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to the measure of CP{k) Π Ad m{Δ' Π M). Put Δ" = {Δf n M) E7p. The
restriction of dmdu to J" is a two-sided invariant Haar measure on
Δ"., The same is true of the restriction of dmdu to Adm(J") —
Ad m(Δ' n -Λf) Dp. (Note, however, that the transform of dmdu by
Ad m is not necessarily dmdu, but some multiple of it.) If we put
the integrations over UP and H together, we see that the result is
zero unless Ad* k~\δ) agrees with Ad* m(ψ) on Ad* k~\C) fΊ Ad m{Δ"),
and if they do agree, the result is the measure of Ad* k~\C) n
Adm(zf'), with respect to dmdu.

In (23) put / equal to the characteristic function of β(8), and
do the integrations over S and ^. An analysis precisely parallel to
that of the preceding paragraph shows that the result is the
measure, with respect to dxdm, of Ad k~\β(δ)) Π (Ad m(S) + f2S).
Now S is a coset in 2K of Γ* n 2R, and β(d) is a coset of A*.
Hence if this intersection is nonempty, then its measure is equal to
the measure of Ad k-\A*) n (Ad m(Γ* n SK) θ <%f).

Now z/" = 1 + ((Γfl Wΐ) © ̂ 0 , and since

r= (Γna«)e(rn^)Θ(Γn^),

we see that ((Γfl 2R) θ ' ^ ) * = (Γ* Π 2K) 0 ^ . Therefore, we can
assert that Ad* k"\3) and Ad* m(ψ) will agree on Ad k'\C) Π Ad m(z//;)
if and only if intersection of (AdAr1^*) and Ad m( Γ* Π 2K) 0 ^ ) is
nonempty. Moreover, there is a relation between the measures of
the intersections. Let m(X) denote the measure of a set l £ ( S
with respect to dz. Similarly, let J^P{X) indicate the measure of
a set I Q ^ with respect to dxdn, and ^£m(X) the measure of
X Q 3K with respect to dx. Let us assume we have so normalized
dz so that if X Q ® is a small lattice, then ^/£{X) equals the
measure of 1 + X £ G with respect to dg. Once dz is fixed dxdn
is determined by (22) or (23). There will be a positive number <xQ

such that if X is a small lattice in ̂ , then ^£p(X) is equal to α0

times the measure of 1 + X with respect to dmdu. In particular,
the measure of Ad k~\G) Π Ad m(Δ") equals

αo-
1^,(Ad fc"1^) Π (Ad m( Γ n 9K) φ

As we have seen before, there is a constant ζ such that

. ^ ( X ) ^ ( X * ) = .^(Lo)2 = ζ .

We may again deduce for lattices X, Z 2 ©, the relation

* n #*) =

Suppose Z = ̂  0 ^ _ v 0 (^ n 971). Then Z* = ̂  0 ^ _ , 0 (Z* Π 2K).
Put ζ,f - ,/SM(m,\ and ζP = . ̂ (9K0 0 ^ 0 ) 2 . Then we have the
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formula Λ(Z) = Q'%MU%Λ€AZ (Ί Tl). For v sufficiently large, we
have Xf)Z = ^ φ ( X Π Z n 0>) and X* Π Z* = ^φ(X* Π Z* Γ\
When this is so, we see that ^C(X Π Z) = Ί%υ%^^£P{X Π Z Π
and ^ ( X * Π £*) = 7"ζ1/2ζp1/2^^(X* Π £* Π ^») hold, where 7 = 9 - a i m ^.
Plugging these facts in the relation between ^"(X* Π Z*) and
^ ' ( X Π ^ ) , and taking the limit as v goes to <*>, we conclude that
for a lattice Zt Q S3Ϊ, we have

^ ( x n {{Zf n

If we put X = AdAΓXΛ) and Z, = Adm(Γ(Ί SW), then (25) reads

"V*) Π (Ad w(Γ* Π SK) φ ^ ) ) )

(26) = ζ 1 / 2 ζ

x ^/ίP (Ad fc-^/t) n (Ad m(Yf)

Now taking (26) and using it to compare (23) and (24) for our
choices of functions, we find

^f(β(δ) n Ad

Recall πx — \τΛG

H.υp τu where τι was an arbitrary extension of ψt on
Δ' Π M to H. Now let r t vary in such a way that πx varies over all
unitary representations in G(^). Taking into account the discussion
preceding (24) concerning the structure of τrt, using the Plancherel
measure of G(ψ) as given by Proposition 3.4, and remembering that
XQ)*χ(δ) = ^(Λ)χ(δ), we get

( ( / n Ad

( 2 8 ) = a&'XΨ^ui Y Π SR

Here in (J') is the measure of J ' £ G with respect to dm.
It remains only to consolidate the constants appearing in (28).

To do this, the simplest thing is to take d = ψ', the restriction of ψ
to Δ'. This is not strictly legal, but is easily justified. Then

= a + Y* S Ad G(9ί(t)) - Ad

Hence ^(/3( f ) n AdG(Sl(f))) = ^//{Y*)^ ζ^//{Y)~\ On the other
hand, the total Plancherel measure of G(ψ) is equal to

and ψ' occurs in representations of G(ψ) with uniform multiplicity
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(jfμy/2. Thus

= m(A')~ι =(Λ

JG{ψ)

Plugging these into (28) gives

(29) m{J'Yι\AIΔ% = aQζv%ψ^fM{ Y n SK)"1

and also gives the final formula, which we formally enshrine.

THEOREM 4.1. Let %be a Cartan subalgebra of © satisfying the
geometric condition of §3. Let αeSί be sufficiently regular. Put
μ = — ord(ά) and η = [(μ + l)/2]. Le£ ^ be the character of Kη re-
presented by ψ. Then for any shallow character δ of some compact
group C — 1 + Λ Q G, with Λ a small lattice of ©, we have the
formula

(30) (A ω(p, δ)dp = ζ"1^T(^(δ) n Ad G(β(ψ))) .

Here, for X Q ©, Λ€{X) denotes the measure of X with respect to
the Haar measure dz, which satisfies the relation ^f(X)^f(X*) = ζ
and ^£{X) = m(l + X), where m(T), for T £ G is the measure of
T with respect to the Haar measure dg of G. The measure dp is
Plancherel measure on G(ψ), which is that subset of the unitary
dual G of G consisting of representations whose restrictions to Kv

contain ψ.

Now we shall consider many ψ's simultaneously in order to
place our results in a larger perspective. We seek here to give a
general view of the state of affairs, and will give no proofs. Let
us fix representatives {9ίJ for the conjugacy classes of Cartan sub-
algebras of G. If F is of characteristic zero, these will be finite in
number, but for F of positive characteristic there may be infinitely
many 9ί/s. (There will be if n ^ p.) Let At be the Cartan subgroup
of G attached to %. It is not hard to see (see [12]) that we may
arrange that for each i, (A0)i9 the maximal compact subgroup of
Aίf is contained in KQ, and we assume we have arranged this.
Then the Weyl group of each At will have repreentatives in Kot

and so will act by isometries on %. (It is also not hard to see
(see [12] again) that one may arrange for the constant c0 occurring
in the definition of sufficient regularity to be less than or equal
to 2 for any %. The constant clf however, is not controllable, it
depends in an essential way on ramification-theoretic properties of
%.) In any case, given these normalizations of the %, it is clear
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that ^?(i , μ) is the set of sufficiently regular xe% with ord(α) =
— μ9μ> 0, then Ad G(&(ί, μ)) and Ad G(&(j> v)) are disjoint unless
i = j and μ — v. As always, if a e %(μ), and ΎJ = [(μ + l)/2], <x
represents a shallow character of IT,. Since by Lemma 3.2,

α + L_, = £(ψ) £ Ad(?(^?(i, /*)) ,

we see that as 21* and μ vary, the sets G(ί, μ), where G(i, μ) is the
union of G(ψ) for shallow characters ψ of iΓ̂  having representatives
in ^ ( i , μ), form a collection of disjoint compact open and closed
subsets (with no limit point in G), each of finite Plancherel measure.

Now consider Kv and an arbitrary shallow character φ of Kv.
According to Theorem 4.1, we have

\ U G(i, μ)ω{p, φ)dp = ζ-^//{β{φ) π (U Ad G(^( ί , μ)))) .
J i,μ i,μ

If in particular β(φ) £ U*,̂  Ad G(.^(i, ^)), then according to the
discussion at the beginning of this section, all the harmonic analysis
of <%?(φ)> as far as L\G) is concerned, is wrapped up in the G(i, μ).
It seems most likely that one could show without too much difficulty
that in fact G(φ) £ \Jί>μ G(i, μ). In any case, since it is clear that
£%f{φ) is mildly non-abelian in the sense of §2, since it is clearly
faithfully represented in L\G).

Consider again ά e ^ ( i , μ), representing ψ on Kη. The totality
of representations of G in which ψ occurs corresponds to the set
Ai(ψ) quasicharacters of At which agree with ψ on At Π Kη. Let
Ά(i, μ) be the set of quasicharacters of A which are in Άi(ψ)f where
ψ is a shallow character of Kη with representative in &{i, μ).

The following statements seem fairly clear from the definition
of sufficient regularity.

(1) As μ —> oo f most of the quasicharacters of At are in
U^ A(i, μ), in the following sense. The ratio of the number of
characters of Ao vanishing on Ao Π Kμ to the number of such charact-
ers which are the restriction of elements of U~'=i A(i, μf) decreases
to one as μ goes to oo.

(2) As μ —> oo 9 the ratio of the number of shallow characters
of Kv (with η = [(μ + l)/2]) of conductor Kμ, to the number of such
characters whose dual blobs are contained in \Jitl,AάG(&(ίfv))
decreases to one. Even more quickly, the ratios of the number of
essential shallow characters of Kv of conductor Kμ to the number of
such essential shallow characters with dual blob in \JiίVAάG(&(i, v))
decreases to one,

( 3 ) As μ —> oo, the ratio of ^f(L_v) to

_vn(U Ad
i
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decreases to one.
These statements together can be taken to mean that, in an

asymptotic sense, most of the quasicharacters of the tori of G have
been associated to representations of G, and these representations
account for most of the representations and most of the Plancherel
measure of G.

One the other hand, the representations we have constructed
are so uniformly well-behaved, they are almost dull. This is, of
course, the reason we could construct them. More interesting series
of representations, with nonconstant Plancherel measure, and reduci-
bility in the analytic continuation, will be encountered in trying
to extend the above analysis to more singular shallow characters.
It will be in these series that the non-supercuspidal discrete series,
complementary series, and so forth will be found. Not only will
these representations be interesting at the local level, but globally
they are unavoidable, since UL0-spherical representations, in same
sense the most singular representations of G, will occur as factors
at almost all places of an adele group over a global field. It is
clear that the analysis of these series will not proceed along the
straightforward lines followed here. One will need the techniques
of Harish-Chandra [10] and MacDonald [17], and probably other
methods, as yet undeveloped.

In closing, I would like to pose a question suggested by Theorem
4.1. Is it possible to extend the set collection {G(i, μ)} so as to
write G = U Ga, where each Ga is a compact, open and closed subset
in G of finite Plancherel measure, and characterized by the uro-types
occuring in p e Ga, and to associate to each Ga a set Sa Q ©, with
Sa open, closed, Ad G-invariant and equal to Ad G(Xa) with Xa com-
pact, in such a way that for any shallow character δ of C QG,
with C = 1 + A for Λ a small lattice in © the formula

ω(p, δ)dp = ζ-^//(β(δ) n Sa)

holds? If so, this would make a very pleasant version of the full
Plancherel formula. Moreover, if the characters turn out to be as
incomputable as they now seem, it might also be the most practical
version.
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