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ON A CONNECTION BETWEEN NILPOTENT
GROUPS AND OSCILLATORY INTEGRALS
ASSOCIATED TO SINGULARITIES

RoGgeEr E. Howe

The object of this paper is to demonstrate and promote
some ties between the theory of harmonic analysis on nil-
potent Lie groups theory and another topic the study of
oscillatory integrals associated to polynomial singularities.
Oscillatory integrals are tempered distributions on R*, defined
by integration against the exponentials of (real-valued)
polynomials.

Thus if p is polynomial on R™ with real coefﬁciénts, the as-
sociated oscillatory integral is

(1) E(f) = Smf(x)e*"’"”dx

where f belongs to .“(R"), the Schwartz space of R", and dx is
Lebesgue measure. The main questions of which I am aware con-
cerning the distributions E, are two.
(a) Asymptotic behavior: For te R, how does E,(f) behave as
t— ? In particular, what is the slowest rate of decay of E,,(f)?
(b) Fourier transform: Define the Fourier transform ~: &/ (R")—
S(R") by the usual formula

(2) Fay = |_swermray
where x-y is the usual inner product on R". Define E‘,, by
(3) Byf) = | f—werds .

Can E’,, be represented directly as a distribution? Is it given as
integration against some function? How can this function be de-
scribed if it exists?

The simplest case of interest for questions (a) and (b) is that of
the stable or Morse singularities, when p is a nondegenerate quad-
ratic form. Here both questions (a) and (b) have well-known, satis-
fying, classical answers [5]. We recall the formulas in one-dimension.

TION 14+ 7\ ;e
4 Tita? — T niz2/t
(4) oy = (e, >0
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It turns out that these formulas have very beautiful, I am even
tempted to say deep, interpretations in terms of harmonic analysis
on the Heisenberg group. We give the essence of this interpreta-
tion in §4 (see Theorem 4.3). The purpose of this paper is to in-
vestigate the extent to which the general features of the group
theoretic interpretations of (4) and (5) apply also to higher order
singularities.

Thus one goal of this paper is to show that both questions (a)
and (b) can be embedded into the theory of harmonic analysis on
nilpotent groups. The first question is related to the behavior of
smooth matrix coefficients of irreducible representations, while the
second has to do with the variety of ways to realize a given repre-
sentation as an induced representation. A second goal of course is
to develop some of the relevant nilpotent harmonic analysis. This
development follows two main themes. On the one hand, we study
what might be termed the smooth harmonic analysis of general nil-
potent groups. This takes up some themes touched on in Kirillov’s
original paper [8], but neglected since. On the other hand, we
isolate a class of nilpotent groups, labeled HAT groups, which are
particularly relevant to the concrete problems stated above. It
seems significant that in both of these investigations, groups with
square integrable representations play a distinguished role.

The above described topics occupy §2 and §3. In §4 we draw
some conclusions for the questions (a) and (b). The rest of this
introduction describes how oscillatory integrals naturally embed into
nilpotent harmonic analysis.

The point is that a multiple interpretation may be given to the
exponential polynomial e»**), First, we may regard it as an unitary
operator. If fe L) R"), then U,:f— ¢”?f defines an unitary trans-
formation on L?. We note that the Schwartz space .&“(R") is in-
variant under U,. Going slightly further, we might remark that
the operators U,,, for te R, form a one-parameter group of unitary
transformations, whose infinitesimal generator is multiplication by
p. Another group of unitary operators is provided by the transla-
tions. Explicitly, for fe L? put (T,f)x) = f(x — y), for =z, ye R".
Again, the T, preserve .52 We now compute the conjugate of U,
by T,. We have

(TUULT -y M@) = (U(T-y ))& — 9)
— eip(x-u)(T_”f)(x _ y) — e“’(’"”)f(w) .

In other words, T,U,T_, = Ur,,. The translations do not normalize
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the one-parameter group U,,, but they come close. Specifically, let
D, = D be the space of polynomials on R"” spanned by the partial
derivatives (of all orders) of p», and by the coordinate functions.
As y varies in R", the polynomials T,(p) certainly vary inside 9D,.
Thus U, belongs to a finite-dimensional abelian group D of unitary
operators normalized by the translations. In particular we may take

D={U;qeD,}.

If A denotes the group of translations, we may form the semidirect
product N = A X,D. Then N is a nilpotent group of unitary oper-
ators acting on L*. Furthermore, it is not hard to see that N acts
irreducibly on L?. (This was the point of including the coordinate
functions in ®,, were they not there automatically.) Still further,
N preserves 7(R"), and it may be seen without much difficulty (see
§8 for fuller discussion) that & may be described as the space of
smooth vectors for N. Therefore (since every element of & is a
sum of products of elements of .&”) we see that E,(f) is the value
at U,e D of a smooth matrix coefficient (see §3 for a precise defini-
tion) of the representation of N defined by the above action.

A second, related, interpretation of E, is as follows. It is well-
known that there is precisely one tempered distribution (up to mul-
tiples) on R” which is invariant under the group A of translations,
namely Lebesgue measure dx. (We will give a more precise version
of this fact in §4.) Within N, we may conjugate the group A by U,
to obtain some other abelian subgroup U,AU;!. It is quite clear
that U,AU,' will also allow precisely one invariant distribution,
which will necessarily be E,. Together these three interpretations
of ¢, as operator, as matrix coefficient, and as eigendistribution,
will hopefully motivate the considerations of the next sections.

2. Structural questions. The nilpotent group N constructed
in §1 had various properties. For example, it was a semidirect
product, it was metabelian, it had a faithful irreducible representa-
tion induced from a normal subgroup, the adjoint action on this
normal subgroup was essentially cyclic, and so on. Our task in this
section is to try to outline the interplay between these properties,
to bring out to what extent they make N special, and to describe
the structure of groups having them. The statements of the results
tend to be lengthy, and to avoid tedium, we have omitted most of
the proofs, which are quite easy, on the whole. Modulo the Kirillov
orbit theory, which we review, the discussion is completely algebraic.

We adopt the following conventions for the rest of the paper.
By a nilpotent Lie group we mean a connected simply connected
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nilpotent Lie group, unless we explicitly state otherwise. Similarly,
subgroups will be connected. Nilpotent Lie groups will be denoted
by upper case Roman letters (not conversely!) usually in the middle
of the alphabet. The Lie algebra of such a group will be denoted
by the corresponding upper case German letter. Thus N and .
We write exp for the canonical exponential map from RN to N,
and log for its inverse. The adjoint action of N on R is written
Ad, the adjoint action of 9 on itself is ad. Restrictions and quo-
tients of Ad will usually still be called Ad, hopefully with sufficient
specification of domains to avoid confusion. Dualizations of Ad are
written as Ad*. The descending central series of N is N= N®, N@,
etc. The ascending central series is 2 (N), £®(N), ete. In par-
ticular, N® is the commutator subgroup and 2°(N) the center of
N. The notation for N is parallel.

We now recall the basics of Kirillov’s orbital theory of repre-
sentations [8]. For a nilpotent Lie group N, let N be the unitary
dual of N, the set of equivalence classes of unitary irreducible con-
tinuous representations of N. According to Kirillov, we may identify
N with the space of Ad* N orbits in R*. The identification proceeds
as follows. Let &2 < N* be an Ad* N orbit, and choose ne 2.
Consider the alternating bilinear form B,(z, ¥) = M|z, y]) on . The
radical of B,, i.e., the set of vectors x such that Bi(x, ¥) = 0 for
all y e N is the Lie algebra of the isotropy group of . A subspace
X S M is isotropic for B, if B, is identically zero. The maximal
isotropic subspaces for B; are just the isotropic subspaces of maxi-
mum possible dimension, which is 1/2(dim N + dim R), where R is
the radical of B;. By a polarization of . we mean a subspace I
of M which is maximal isotropic for B; and which is a subalgebra
of . If M is a polarization of A, define 4 = +; on M by r(exp m) =
g™ for meIM. Then 4 is an unitary character of M. The re-
presentation o = p(¢”) corresponding to < may be realized as the
induced representation indj 4.

We will refer to the triple (N, M, 4») as a polarizing triple for
p. We might also refer to (¥, M, \) as a polarizing triple for p.
Since 4+ does not determine N, but only X\, the choice of N\ in
(R, M, v) might seem ambiguous. However, it can be shown [14]
that if Agp = Njg, then A is in the Ad* M orbit of A, so the ambi-
guity in A is unimportant and we will ignore it. Alternatively, we
might consider only \n, and just regard )\ as an element of IM*.

If ~ is an Ad* N orbit in 3N*, then the linear span Y of & is
Ad* N-invariant. So, therefore, Y* = &, the annihilator of Y in %,
is an ideal. Clearly K = exp & is the identity component of the
kernel of o(¢”). Hence p factors to N/K, and is locally faithful
there, that is, has discrete kernel. In particular, if o(#) is locally
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faithful, then < spans N*. This is the same as to say that e
is cyclic for Ad* N.

Let M = N be a normal subgroup. Then &y = {t4n: t € &}, the
projection of ~” on IM*, is a union of Ad* M orbits, and the repre-
sentations of M corresponding to these orbits are the components
into which (), decomposes. Again o(Z”),, is locally faithful if
and only if £, spans IM*. If Ae” then the orthogonal comple-
ment of I with respect to B; is the Lie algebra of the isotropy
group of \q.

Let 2°(W)* < N* be the annihilator of 2 (N). Given e N*, the
Ad* N orbit ¢# through )\ will be contained in N + 2 (%®)*. Thus in
order for ¢~ to span N* it is necessary (and sufficient) that
dim 2°(N) = 1, and that v ¢ 2°(W)*. If this is so, then any normal
M < N will necessarily contain 2 (N).

The possibility that o(<”) be square integrable (see §3) is of
particular interest to us. According to the criterion of Moore and
Wolfe [11], p will be square-integrable modulo 2°(IN) precisely when
Z =n+ Z (. In that case, any irreducible representation de-
fining on 2°(N) the same unitary character as o is equal to p. This
is a generalization of the Stone-von Neumann theorem. We will
refer to p as having the Stone-von Neumann property.

We will be dealing in this section mainly with relations between
nilpotent groups and associative nilpotent algebras. For these, we
will need some notation parallel to that for groups. If S, is a nil-
potent associative algebra, then S=R@ S, will be the algebra
obtained from S, by adjunction of the identity. Then S, forms an
ideal in S, the Jacobson radical of S, the set of noninvertible ele-
ments. S¢ will be the ideal spanned by all products of ¢ or more
elements from S,. It is easy to see that a subspace X & S, generates
S, as algebra if and only if X + S: = S,. The ideal {s€S,: st = 0,
all te S} will be denoted 7(S,). We call it the null-ideal of S,.

We begin our development with a very easy general remark
concerning linear actions of nilpotent groups.

ProrosITION 2.1. (a) Let beV a real vector space. Let ACGL(V)
be a group of wumipotent transformations. Let S = S(A) be the
linear span of A in End (V). Then

(i) S 4s an associative subalgebra of End (V).

(ii) S=RDS,, where R here denotes the scalar matrices, and
S, 18 the Jacobson radical of S, the ideal of nilpotent of noninvertible
elements. S, is a milpotent algebra.

(iii) The Lie algebra A of A is a Lie subalgebra of S,. More-
over, S, =U+ Si. Also A1+ S,

(b) Suppose that the action of A is cyclic, that is, there is a
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vector ve V such that A(w) spans V. Then

(iv) The map e, S—V given by e, s) = s(v) is surjective. The
kernel of e, is the left ideal K, = {ke€S:k(v) =0}. Thus V s iso-
morphic (via e,) to S/K, as an S-module.

(v) The isotropy group of v in A has Lie algebra U N K,.

(vi) K, contains mo two-sided ideals in S,.

(¢) If A is abelian, so 18 S. If A acts cyclically with cyclic
vector v, then K, = {0} so that V = S as S-module. In particular,
the isotropy group of v im A s trivial. Furthermore, S is a
maximal abelian milpotent subalgebra of End (V). There is thus
a 1-1 correspondence between conjugacy classes of maximal abelian
unipotent cyclic subgroups of GL,(R) and isomorphism classes of
nilpotent commutative algebras of dimension n — 1.

If N is a nilpotent Lie group, and M a subgroup, then we will
refer to the pair (N, M) simply as an n-pair. We will modify this
term with adjectives modifying M. For example, if M is normal,
we have a normal n-pair; if M is also abelian, then we have a
normal abelian n-pair; and so on. We may substitute Lie algebras
for groups in these definitions.

Suppose (N, M) is a maximal normal abelian n-pair. Then it is
not hard to see that M is its own centralizer in N. Therefore N/M
acts faithfully on M via Ad. Therefore M fits in an exact sequence

0— M — N A——1

were U < End (M) is a Lie subalgebra of nilpotent endomorphisms.
Let a = a(N) be the cohomology class in H2®; M) defining N. Let
S, = S,(A) be the associative algebra generated by A. We call the
data (I, S, ¥, @) the associative correlative of the maximal normal
abelian #n-pair (N, M).

PROPOSITION 2.2. Attaching the associative correlative (IR, S, A, @)
to the maximal normal abelian n-pair (N, M) establishes a bijection
between such n-pairs and 4-tuples (M, S, A, &) such thaot

(i) I is a real vector space.

(ii) S, 7s a subalgebra of End (IN), consisting of nilpotent endo-
morphisms.

(iii) A ¢s a Lie subalgebra of S,, such that S, = U + S:.

(iv) «a is an element of H*L; IN).

Given these data, N is defined by the sequence

0— M N A 0

defined by the class & and I is the ideal in the maximal normal
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abelian n-pair (N, M).

If (N, M, +) is a polarizing triple for some representation o of
N, then we may attach any adjectives applying to the n-pair (N, M)
to the triple also. Additionally, if o is locally faithful, we will call
the triple faithful.

ProposITION 2.3. (a) Suppose (N, M, v) is a faithful normal
polarization. Then (N, M) is a maximal normal abelian pair. Let
M, S, U, @) be the associative correlative of (N, M). Let A = exp¥l.
Let e IM* correspond to . Then A, acting contragrediently on
M*, acts eyclically with cyclic wvector . Moreover, the isotropy
group of » in A is trivial. Thus if K, = {s€ S, s*(\) = 0} where
s* 1s the contragredient of s, we have M = K+ Z S*, and AN K, = {0}.

(b) Suppose p = indi+ is square-integrable modulo Z(N).
Then dimN=2dimM —1, and S,=APK,. In particular, if
N/M is abelian, A = S,.

(¢) If N is metabelian, then any locally faithful representa-
tion of N (these exist if and only if dim 2" = 1) allows o faithful
normal polarization (N, M, ) with the additional property that
N/M 4s abelian.

Thus 2.3 shows that a normal polarizing triple (N, M, +) is built
in a certain way from a nilpotent associative algebra S,. The next
propositions investigate the extent to which S, depends on N alone,
and how it varies with M. A companion question is of course how
M may vary, or somewhat more generally, what are all the possible
polarizing triples for the p defined by (N, M, +).

PROPOSITION 2.4. (a) Let (R, M, \) be o faithful normal po-
larizing triple. Let (M, S, A, &) be the associative correlative of
M, M). According to our discussion in the definition of polarizing
triples, we consider that MeN*. Let P be any other polarization
of n. We may identify P/(BNM) to & subspace B of A. The fol-
lowing facts hold.

(i) Under the isomorphism IN = K & S*, the intersection PN
M 48 identified to K+ N Bt = (K, D B)*. (Here N signifies \g.)

(ii) B is a Lie subalgebra of A, and the associative algebre
generated by B is contained in K, P B.

(iii) If P is abelian, then B is an abelian Lie subalgebra of
A, and BS S K, P B.

iv) If B is an ideal in N, then B is an ideal in A, and
BEK, DB) S K, and K, BB is a left ideal in S. Since from 2.3
we know P is also abelian, we have also SBS S K, P B.
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(b) If W/M, hence S, is abelian, these facts sharpen and stmplify
as follows.

(i) Since K, = {0}, M = S* and PN M = B,

(i) B is an associative subalgebra of S.

(iii) If P is abelian, then B is an ideal in S,, and is abelian
as associative algebra.

@iv) If P is an ideal in N, then B = 0.

(v) If B is an tdeal and N/P is also abelian, then BS, = 0.

The facts recited above indicate that the existence of groups
other than M from which to induce p requires compatibility 9 with
the associative structure of S. This is clearest in the extreme case.

ProposIiTION 2.5. With the notations of 2.4, suppose B = A, or
i other words N =L + M. Then

(i) A is a complement to K, in S,, i.e., S, = AP K,.

(ii) PNM = 2N) (which is one-dimensional).

(iii) M s isomorphic to the semidirect product A X, Ki. (When
R/M 15 abelian, this is S, X, S*.)

(iv) The representation o = indy « corresponding to the triple
(N, M, \) is square-integrable.

As we will see later on, it is when transversal polarizations exist
for o that the Fourier transform has a nice interpretation.

Finally we have in case N/M is abelian a fairly definitive state-
ment concerning how much of S, is determined by N alone.

PROPOSITION 2.6. (a) If N is nilpotent metabelian, then x€ N
belongs to a normal abelian subgroup with abelian quotient if and
only if x centralizes N®. The centralizer C(N®) of N® is a two-
step milpotent group containing N®. A subgroup M S C(N®) is
maxzimal normal abelian in N with abelian quotient if and only
of M is maximal abelian in C(N®),

(b) Suppose (N, M, ) is a faithful normal polarizing triple
with abelian quotient. Let (IN, S,, U, &) be the associative correlative
of (N, M). Then the image of CN®)/M in A is contained in the
null-ideal 7(S,). Thus the image of S, in Hom (N®), which is the
algebra generated by Ad Nyo and which is canonically attached to
N (i.e., does mnot depend on M) is isomorphic to S,/I where I is o
subspace of 1(S,).

(¢) Suppose the representation attached to (N, M, +r) is square-
integrable modulo Z(N). Let Y = N be any linear complement to
CR®, Put NM=YDNR®. Then N, is mormal im N, and
(N, N®, apy2) 18 @ foaithful mormal polarizing triple yielding a
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square-integrable representation of N,. Choose \eN¥, such that
Mgt corresponds to nyw. Let H be the isotropy group of N in
Ad* N acting on N¥. Then H is an Heisenberg group, and we
have the relations N=H-N,, and HNN, = 2(N) = 2 (N, = Z(H).

We now specialize to a particular class of groups which seem
particularly relevant to the harmonic analysis we wish to do. We
will call a nilpotent group N an HAT group if

(i) N is metabelian.

(ii) N has a locally faithful representation which is square-
integrable modulo 2.

Let N be an HAT group, and fix a representation p of N satis-
fying (ii) above. Let (N, M, 4) be a polarizing triple corresponding
to p. According to Proposition 2.3(c), we may assume M 2 N©@,
so (N, M) is a normal n-pair with abelian quotient. Let (I, S, ¥, )
be the associative correlative to (N, M). Then from Proposition
2.3(b), and 2.4(b) we see that A = S, and M = S* so that N fits into
an exact sequence 0 — S* — %N — S, — 0, such that the action of S,
on S* is the contragredient of left multiplication on S. Moreover,
if N is the linear functional on I corresponding to ., then the
identification of I with S* may be accomplished (i.e., normalized)
in such a way that )\ is identified to 1€ S.

Continuing, we see from Proposition 2.6(b) and (c) that although
S, is not uniquely determined by N, a certain quotient S,/I, with
I < n(8S,), is determined by N. Let N, & N be a normal subgroup
constructed as in 2.6(c). Then N, is also an HAT group, possessing
the normal faithful polarizing triple (N,, N®, 4, y®). The associative
correlative of the n-pair (N, N®) is (N®, S)/I, S,/I, @’) where a’ is
whatever it must be.

Again with an eye towards harmonic analysis, we are interested
in computing the automorphisms of the HAT group N. If N, is as
in the preceding paragraph, then C(N®) S N provides, via Ad,
some outer automorphisms of N, which are trivial on N® and on
N,/N®, We will see below that automorphisms of this sort always
result from embeddings of one HAT group as normal subgroup of
another.

For the automorphism computations, we will offer proofs. From
Proposition 2.6(b) we see that one question of interest for the strue-
ture of HAT groups is to describe for a given commutative nil-
potent associative algebra S, the possible nilpotent algebras T, such
that S, = T,/J, with J< 9(T,). This point is also important for
the description of automorphisms, and is covered by the next prop-
osition.
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PROPOSITION 2.7. (a) For any finite-dimensional nilpotent as-
sociative commutative algebra S,, there is another such algebra S,
and an exact sequence of algebras

0 I 5,-%.8—0

with 1S 77(§0) N S: and possessing the following universal property.
For any exact sequence of algebras

a

0 J T, S, 0

(with T, finite-dimensional, nilpotent, commutative and associative),
and J S 9(T,) N Tz there is a surjective homomorphism a: S,—T,
such that
S,
l ¢
N

T, -8,

N

commutes. In particular, S, in unique up to isomorphism.

o) If0—-J—T,—8S,—0 is any exact sequence of commuta-
tive milpotent algebras, with J < 9(T,), them we can write T, =
T, X, a direct sum of algebras such that J=XPJNT: and
TTY @ X = T,/T?, or in other terms, T: = T;.

Proof. (a) Let U be any complement to S? in S,. Let S(U) =
& be the symmetric algebra over U, and let .54 be the ideal in
& generated by U. Then inclusion U < S, induces a surjective
homomorphism o¢:.%5—S,. The kernel of ¢ will be some ideal
F S, so that S, = SHA/F Put S =US =55 and put
§0 = %/ﬁ Then if I = .~ /JN", we have the exact sequence

0 I 5,8, 0

and I < 7(S;) N S: The claim is that this S, is the S, we want.

Let 0—J— To—a—»So-—>O be an exact sequence of the sort we
are discussing. Choose a space U’ & T, such that a: U'— U is an
isomorphism of vector spaces. Our assumption on J shows that U’
exists. The inverse map o U— U’ C T, induces a homomorphism
7: & — T,. Our assumptions imply 7 is surjective. Moreover, by
construction the triangle

4
)| N
T,— S,
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~

commutes. Therefore z(.#) < J. Since J < 9(T,), we have .# &
ker z. Thus 7 factors to a map a:S,— T, as desired.
For part (b), consider again the exact sequence

0—J T, S, >0

in which we now assume only that J < 7(T,), not that J< T2 Let
X be a complement to JNT: in J, so that J=(JNT:HP X. Let
U be a complement to TP X in T,. Then U X is a complement
to T in T,, so U X generates T,. Thus if T, is the subalgebra
generated by U, then T, = T: X, since X & 79(T,). This finishes
the proposition.

Now turn to direct consideration of automorphisms of an HAT
group N. Let (N, M, +) be a normal polarizing triple with abelian
quotient for a locally faithful square-integrable representation o of
N. Let neN* be in the orbit corresponding to p. Then as vector
space, N has the direct sum decomposition N = Z(N) G kern. If
Y is any other complement to 2°(RN) in N, then Y = ker A’ for some
Nex+ 2. But M+ 2M)* = Ad* N(\) since p is square-in-
tegrable, so Ad N acts simply transitively on linear complements to
Z(N) in N. Thus if Aut (N, ) is the subgroup of Aut N which
preserves kern, we have Aut(N) = Aut (N, \) X,Ad N. Thus we
will describe Aut (N, A). We note that Aut (N, A) is a subgroup of
the “symplectic similitudes” of the form B; on ker .

Let (S*, S, S, @) be the associative correlative to the n-pair
(N, M). Then as we saw above, N fits in the exact sequence

1 S* N 1+8§—1.

Let AutS be the group of algebra automorphisms of S, and let
Aut (N, M, \) be the subgroup of Aut (N, \) also preserving M. Let
r: Aut (N, M, ) — GL(M) be the restriction map.

PROPOSITION 2.8. (a) When M is identified to S*, the group
r(Aut (N, M, \)) is identified to a subgroup of R* x Aut (S)*, where
R* is the scalars, and Aut (S)* is Aut S acting contragrediently on
S*.  Moreover, if r(Aut (N, M, \)) contains a scalar operator, then
N s the twisted direct product (1L + S;) X.S*. In this case,
r(Aut (N, M, \)) 4s all of R* X AutS. Otherwise, it ts isomorphic
to a subgroup of AutS.

(b) The kernel of r acts trivielly on M and on N/M, and is
isomorphic to H'(S, S*) (Lie algebra cohomology). In turn, HYS, S*)
18 isomorphic to I*, where I = I(S,) is the ideal of Proposition
2.7(a).

Proof. It will be more convenient to work with 9 than with
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N. We make the obvious alterations in notation. Choose a¢
Aut (%, M, A). Let @, = r(a) and let a, be the factorization of a to
N/M. We identify I and N/M with S* and S, respectively and so
regard the «; as transformations on these spaces. As we have
remarked, we may assume )y is identified to 1€S. Then if af ¢
End (S) is the contragredient of @, we will have af(l)=t=1¢-1
for some ¢ <€ R, since )\ is an eigenvector for Aut (N, M, \) by defini-
tion. If neN and meIN, then [n, m] depends only on % modulo
M. If » corresponds to s€S, and m to veS*, then [n, m] corre-
sponds to m*(s)(v), where m*(s)(v)(s’) = v(—ss’). Thus we have
a,(m*(s)(v)) = m*(ay(s)),(v). In other words

a,(m*(s)))(s") = m*(s)()(ai(s") = v(—sar™(s")

and this equals
m* (), (V)(s") = v(ar T (—au(s)s)) .

Since v is arbitrary, this implies

—safi(s") = afM(—ays)s’) for seS, and s'eS.
Write s’ = a*(s"), and transform both sides by af to obtain
(1) af(ss") = ay(s)a¥(s’”) for seS, and s”"eS.
In this identity, put s” = 1 to conclude
(2) at(s) = tay(s) for seS,.

Putting this back into (1) we find that ¢~'a* is an automorphism of
S, establishing the first statements in each of parts (a) and (b) of
the proposition.

Next, suppose a,(v) = tv for all yeS*. Then a,s) =s and we
may write Nt = S,P S* where S, is the l-eigenspace of a and S*
is the t-eigenspace of a. Since a is an automorphism, S, is a ‘sub-
algebra of N, and therefore we have exhibited N as the twisted
direct product of S, and S*. Conversely, when % is split, the com-
putations above read backwards guarantee that r(Aut (N, M, N\)) is
indeed all of R* x Aut (S)*. This concludes the proof of (a).

To identify ker 75, let us recall an interpretation of H' which
is perhaps less in the public consciousness than some. Let % be a
Lie algebra and let X be an %-module. Denote the action of A on
X by . The space C'(: X) is defined as the set of linear maps
T: U — X satisfying 7([e, b]) = o(e)z(b) — p(b)z(a). The subspace
B' (¥, X) of C* consists of 7 of the form 7(a) = p(a)r for some ze X.
The quotient C'/B! is the cohomology group H; X).

Consider any Lie algebra & which fits into an exact sequence
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00— X— G —UA——0

such that the action of A induced on X by Ad is just o. We may
write ® = AP X as vector spaces, and the bracket operation in &,
denoted by [,]° will be as follows:

[z, ¥]" =0 for =, ye X;
[a, z]° = po(a)x for x€ X and acU: and
[a, b]° = [a, b] + Y(a, b) .

In the last expression, [a, b] is the usual bracket in ¥, and 7 is an
appropriate antisymmetric bilinear map from ¥ to X.

Suppose that o is an automorphism of & which is the identity
on X and induces the identity map on ®&/X. Then we can write
o(a) = ¢ + t(a) for ¢ €U, where 7 is a linear map from U to X. In
order that ¢ be an automorphism we must have o([a, b]°) = [a(a), a(b)]’.
Expanding this identity out by means of the formulas above, we
find the equation

[@, b] + (@, b) + z([@, b]) = [a, b] + ¥(a, b) + P(a)r(b) — p(b)z(e) .

Cancelling common terms, we find just the requirement that ¢ belong
to C'Y; X). This space is thus canonically identified to automor-
phisms of ® which are trivial on X and on &/X. This is so for
any possible ®.

Among the automorphisms of & associated to C,(2; X), some
will be inner antomorphisms of the form exp ad x, x€ X. Indeed,
if xeX, then ad4* =0 so expadz =1 + adx. Thus expadax(a) =
a + [z, a] = ¢ — p(a)x. Therefore B'(Y; X) is identified to the inner
automorphisms attached to C,(; X). So finally, H'(¥; X) is just the
group of outer automorphisms which are trivial on X and on G&/X.

In the light of this general discussion, we see that ker », since
it forms a complement to Ad M = BYS,; S*) in CX(S,, S*), by virtue
of the discussion preceding this proposition, is indeed isomorphic to
H*Y(S,; S*).

Therefore to complete the proposition, it remains only to com-
pute H'(S,, S*). Since S, is abelian, the cocycle identity for ze
C(8S,, S¥) reduces to m*(x)r(y) = m*(y)r(x) for z, y€S,. We define a
bilinear form F, on S X S, by the rule F.(z, #) = t(x)(z). The cocycle
identity then says

(3) Fzz, y) = F.(2y, %) .

In other words, the map (z, y) — F.(zx, y) is a symmetric bilinear
form on S, X S, for any ze€S. Let S, be the universal null-exten-
sion of S, constructed in Proposition 2.7(a). We have the exact
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sequence
0 I 5-2.8—0

where I = 7(S,). Choose a linear cross-section ¢ to ¢. Then o(x)a(y) =
o(xy) + 0(z, ¥), where 6(x, y) € I. The map 0: S, x S,— I is evidently
bilinear and symmetric, and in fact, d(zx, ¥) is symmetric in 2 and
y for any z€S. Thus if Ael*, we see No0 is a bhilinear form
coming from a cocycle in C*(S, S*). Thus we have a natural map
B: I* — HY(S,, S*). I claim B is an isomorphism. Indeed, if F. is
the bilinear form of a cocycle, put T, = S, L, where L is a line
with basis element [. Define a multlphcatlon o on T, by the rules

sos’' = ss’ + F.(s,s")l for s,s'e€S,, and
lol =80l =0.

The properties of F. make o into a commutative associative multi-
plication with L < 9(T,). Further straightforward computation shows
L & T: if and only if v is a coboundary, in which case F.(x,y) =
p(xy) for some peS¥. This completes Proposition 2.8.

As a consequence of our study of automorphisms, we obtain the
following uniqueness result. We say a faithful normal polarizing
triple with abelian quotient (N, M, +) is split if in the associative
correlative (M, S,, S, @) to (N, M), the extension class a is trivial,
that is, M is isomorphic to S,X;S%t as.Lie algebra. If N allows
such a split triple, then we say N is a split HAT group.

PROPOSITION 2.9. (a) TRhere 4s a bijection between isomorphism
classes of split HAT groups gqnd isomorphism classes of abelian
nilpotent associative finite diménsional algebras. In other words,
if N is a split HAT group with split (normal faithful polarizing)
triple (N, M, ) (with abelian quotient), and if (I, S, S, 0) is the
associative correlative, then S, is determined by N. That s, if
(N, M', ") s another split triple with associative correlative
', S, Si, 0), then S; is isomorphic to S,.

(b) In fact, if n(S,) =S then (S, N C(Ar"®) is uniquely de-
termined modulo 4~®. In particular, if (AZ', S, Si, 0) is another
associative correlative for 4, then 4" =8, + #' =8, + #', so
dividing A4~ by #' defines an algebra isomorphism form S, to Si,

Proof. Write .+~ = SPS*. It is clear that when _#~ is split
A® =n(S)*+ exactly. Consider Z®(_#7). Since 2°(.#") is one-
dimensional, an element % in _#~ can be in 2®(_#") only if the
image of ad n is one-dimensional. Take s€S. Then the kernel of
ad s acting on S* is (sS)*. Thus s can belong to Z®(_#") only if
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se”(S,). Conversely, when _#" is split, then ads(.#") = ad s(S*) =S¢
for sen(S,. Thus

S, N Z(A") =8, N C(p®) = 0(S,)

(If 4" is not split, these equalities are inclusions.) A general element
of 27®(_#") has the form s + \ with s€ S, and M€ S*. Since

ad (s + AM)( A7) 2 ad (s + M)(S*) = ad s(S*)
we see already that se Z2®(_#") by our analysis above. Hence
ZO(A7) = 9(S) B (Z®( A7) N SY) .

For A e S*, we have in ad ) = {\os: s€ S,}. Evidently \es belongs to
2( ") =S for all s if and only if A\(s;s;) = 0 for all s, and s, in
S, Thus

3N 8* = (8H* .

Consider for a moment a general Lie algebra _#~ with one-
dimensional center. The bracket on 2°*(_#") is then an alternating
2Z(_4")-valued form, the radical of which is the center 2 *(_#").
If Y is any subspace of 2 *(_4") complementary to the radical, then
YD 2( ) =27 will be an ideal in _#; and we can write 4" =
C(s7) + &7, with C(S#) the centralizer of 57 in _#. Further

CeyNow =2 () = 2 (%) = 2C(&F)),

s0 ¢ is the “central product” of £# and C(5#°). Furthermore
Z0(27)) = 2(Z2( ")) will be abelian. We will call a Lie algebra
with abelian second center H-reduced, since it is then not possible
to factor off an Heisenberg group as above. Thus any .4 with
one-dimensional center can be factored into the central product of a
Heisenberg Lie algebra and an H-reduced algebra.

I claim that such a decomposition is unique up to isomorphism,
in the sense that if have two central product decompositions of _#~
into Heisenberg and H-reduced pieces, there is an automorphism of
.+~ taking one decomposition to the other. Indeed, two such de-
compositions result from choosing two different complements Y and
Y to 2(2%(+"). Let the resulting decompositions of of _#" be
written in the form

N =0 PYDX
=AY DX’

Here X commutes with Y and X’ commutes Y'. We may represent
an element of Y' in the form
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¥ =y + Aly)

where A€ Hom (Y, 27 (2 ®(4")))
Similarly, we may represent an element of X’ in the

2’ =2 + B(x) + C(x)

where BeHom (X,Y) and CeHom (X, C(Z®(_#")). We will show

that, given ‘A we can find B and C such that the direct sum of

y—y', x—a’ and the identity on C(Z®(_#")) will be an automor-

phism of _#. We will actually choose C e Hom (X, (& ®_4"))).
The condition that X’ and Y’ commute is

0=[a, ¥'] = [¢ + B(@) + Clx), y + A®¥)]
= [z, A(y)] + [B(x), y]

The bracket [z, A(y)] is, as a function of y, an element of Hom (Y,
2 (7). Since bracket makes Y isomorphic to Hom (Y, 2(_#")),
there is a unique choice of B(z) so that we do have [z, y] = 0. It
remains then to choose C so that the indicated map will be an
automorphism of _#7 Since C is to take values in Z(Z (. 4")),
the only brackets to worry about are those of X’ with itself. We
compute

[}, z:] = [#, + B(@)) + Clx,), x, + B(x:) + C(x)]
= [xu 902] + [B(x1)7 B<x2)]
+ [, C(w)] — [, C(2))]

The bracket [B(x,), B(x,)] is an alternating 2°(_#")-valued bilinear
form on X. Since, by construction of X we have

Z(Z( )2 (") = Hom (X, 2°(1))

we see that the bracket ]z, C(x,)] is an arbitrary 2°(_#")-valued
bilinear form on X, and [z, C(x,)] — [x,, C(x,)] is its antisymmetri-
zation. Thus C may be chosen so that [, z;] = [#,, #,], and our claim
concerning uniqueness of the decomposition

N = + C(2F)

into Heisenberg and H-reduced factors is proven.

Now return to our split HAT Lie algebra .+~ =S, S*. We
have computed above that 2°®(_#") is the sum 7(S,)P(S?)*. On the
other hand, the centralizer of 7(S,) in S* is 9(S,)*. Thus Z2®(_#")
is nonabelian if and only if (S%)* & 7(S,)*, that is, if and only if
7(S,) & S:. On the other hand, write S, = X + S, where ¥ is a
complement to S:N7(S,) in 7(S,), and Sz = S22 7(S,). Then we can
write
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A =ED5NBXP X

and X X*P 2°(_+") is Heisenberg, while _# = 5, S* is H-reduced
by the above remarks and the construction of S,. By the essential
uniqueness of such a decomposition, part (a) of the proposition is
reduced to part (b). But by our analysis above, when 7(S,) < Si,
we have

Sy = (A7) + A7) A",

so that 7(S,) is determined modulo .#"® by .47 Therefore if "=
Sy S’ is another presentation of .4~ as HAT Lie algebra, then
7(S)) = 7(S;) modulo #~® = 9(S))* = 9(S;)*. Hence 27(S,) + §'* =
C(_y~®), and therefore .+~ =~ S, S'*, as asserted, and so S, and
S; induce the same algebra of endomorphisms on S’*. This completes
the proposition.

REMARKS. (a) I am grateful to Richard Penny for pointing out
an error in the original formulation and proof of Proposition 2.9.

(b) Bracket in the split HAT Lie algebra .+~ = S, S* induces
a symplectic 2 (.+")-valued from on C(_#"®)/_#"®, and we may
choose as complement to 7(S,) the inverse image in C(_#"®) of any
isotropic complement to 7(S,) in C(_#"®)/_#~®, It is clear that the
automorphism subgroup of _#" leaving S, pointwise fixed acts transi-
tively on the set of such complements.

(¢) It should be pointed out that a split HAT group can also
be represented as a nonsplit HAT group for a different algebra.
Thus if S, is generated by x with #* = 0, we can construct the 5-
dimensional split HAT group .+ = S, S*. This will have basis
{x, 2%, 1., f,, i}, Where f, f., f; is the basis of S* dual to {1, =, 2*.
Thus f, spans the center of _#; and

[z £l = [ fil = /., and [2% fi] =1/,

other brackets being zero. Thus {f}, f;, #*} span an abelian ideal _#;
and 47/ _# is abelian, being spanned by {z, f;}. Further, the action
of | . # on _# is by the algebra generated by x and y, with
2*=xy =9y =0, so 4 is an nonsplit HAT group for this algebra.
Of course, the extent to which this phenomenon can occur is limited
by Proposition 2.6 (b).

3. Smooth harmonic analysis. To relate harmonic analysis on
nilpotent groups to classical problems, it seems necessary to go
beyond I? analysis and consider questions of smoothness. The argu-
ment of this section is that the smooth representation theory of
nilpotent groups is nice and deserving of some development. We
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divide our attention between writing down basic definitions, proving
certain facts, and formulating some problems.

Let V be a real vector space. We recall the definition of the
Schwartz space .&7(V). Let P (V) be the polynomial coefficient
differential operators on V. Contained in ZAZ(V) are F(V), the
polynomials on V, and <=(V), the constant coefficient differential
operators, and .7, as a linear space, is the tensor product of F
and 7. The definition of & is

L (V) ={feCo(V):sup{Tf(x): zc R"} < o, all Te FZ(V)}.

Thus .&” is defined by means of 7%,

By a polynomial diffeorhorphism of ¥V we mean a biregular map,
in the sense of algebraic geometry, from V to V. Concretely,
¢: V—V is a polynomial diffeomorphism if ¢ and ¢ ' are given in
any linear coordinate system by polynomials. Another alternative
is to regard ¢ as an automorphism of 2.

Let ¢ be a polynomial diffeomorphism on R*, and let p € Z(R").
Define ¢*(p) = Ad ¢(p) = pog. Similarly, if v=>7r, »p,0/0x;) is a
vector field, define Ad ¢(v) by Ad ¢W)(f) = W(fop™))od. We compute

Adg) = 3 (p. o pau >

2% ij

where {a;;} is the matrix inverse to the Jacobian {d¢/ox;} of ¢. We
recall the relation

$ (3852 0)00 s,

i=1 \ oz, o0x;,

It follows that det {04;/0x,} is both a polynomial and the inverse of
a polynomial, hence constant. Therefore the «a,; are polynomial
functions also. Thus Ad ¢ defines an automorphism of & and of
the polynomial coefficient vector fields. Since < is generated by
these spaces, we see Ad ¢ (extended in the obvious way) defines an
automorphism of <. Consequently, ¢*:f— fo¢ defines an auto-
morphism of S°(V) (as a topological vector space). In other words,
(V) is a space of functions attached invariantly not to the rigid
linear structure of V but to the structure of V as affine algebraic
variety. (In fact, it is attached to an even looser structure, pre-
served by what one might call the “diffeomorphisms of polynomial
growth,” but the affine structure is flexible enough for our present
purposes.)

Let N be a (connected, simply connected) nilpotent Lie group.
The exponential map exp: %t — N is a diffeomorphism with log as
inverse. We define .&°(N) to be the pullback to N by log of &7 (N).
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In the coordinates on N induced by exp, left and right translation
are both polynomial diffeomorphisms, so N acts continuously to the
right and to the left on S/(N). Also it is not difficult to check
that &#(N) is closed under convolution, and that it becomes a to-
pological algebra with convolution as multiplication.

Let MS N be a connected subgroup. Choose elements {z;};-, &N
such that if IM; is the span of I and the x, for ¢+ < j, then M; is
a Lie subalgebra of % and an ideal in IM;,,, and such that M, = N.
Then define

X ={exptx, ---exptx:t,cR}.

It is well-known that N = X - M, and group multiplication in N takes
X x M diffeomorphically to N. Thus the natural projection N —
N/M takes X diffeomorphically to N/M. We call such an X a
standard smooth cross-section to M in N. We parametrize X, and
hence N/M by means of the coordinates ¢, in its definition. We
define .“(N/M) to be the corresponding Schwartz space. It is well-
known that a choice of a sequence other than x; leads to a repara-
metrization of N/M differing from the first by a polynomial diffeo-
morphism of R'. Thus S“(N/M) is well-defined. We also remark
that if MM is an ideal in N, and U Z N is a linear complement to I,
then exp U also parametrizes N/M and using linear coordinates on
U leads to the same Schwartz space on N/M. In particular, our
definition of &#(N/M) in the case M = {1} is consistent with our
previous definition of &7 (N).

Slightly more generally, take a unitary character + of M. This
will define a line bundle over N/M. The sections of this line bundle
can be thought of as functions on N such that f(nm) = (m)'f(n)
for ne N and me M. We define SP(N/M, ) to be those functions
f which transform as above and whose restriction to X belongs to
“(X). Here a reparametrization leads to a polynomial diffeomor-
phism composed with multiplication by a function of the form ¢
where p is a polynomial. The following easily verified lemma shows
that in this case too the definition of .S#(N/M, ) is unambiguous.

LEMMA 3.1. Let V be a real vector space, let ¢ be a function
on V all of whose derivatives have polynomial growth. Then f— éf,
the operation of multiplication by ¢, defines a continuous endomor-
phism of (V).

We may define LX(N/M, ) similarly to S7(N/M, ). It is the
space of functions f on N such that f(nm) = +4(m)f(e) as before,
and such that fir€ L*(X). (As always, one identifies functions which
are equal almost everywhere on X.) Evidently, S#(N/M, +) is con-
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tained in LA*(N/M, +) as a dense subspace. Moreover, L}(N/M, +r) is
the space of the unitary induced representation indy +, and &~ (N/M, +)
is an invariant subspace. The unitary decomposition of L*(N/M, +)
was more or less described by Kirillov. I would like to draw at-
tention to the following.

Problem. Find a “smooth decomposition” for the “smoothly
induced” representation of N on .Z(N/M, +).

The extreme cases of this problem are of course the case M =1,
the regular representations on the one hand, and on the other, the
case when ind} 4 is irreducible. We will treat the irreducible case
more or less completely. We will also give some attention to the
regular representation, but our discussion will be far from complete.
A full treatment would involve putting a smooth structure on the
unitary dual N of N, and on the “operator algebra bundle” over
it, and then proving a version of the “Paley Wiener theorem” de-
seribing the sections of this bundle defined by .&°(N).

One fact which is basic for all ind} « is this one:

ProposITION 3.2. Consider the map Py = P defined on SF(N)
by Pf(n) = SM«;r(m)f (mm)dm. Then P defines a continuous open sur-
jection from SP(N) to P (NIM, ).

Proof. This is well-known and easy when N is abelian. By
proper choice of coordinates, we can make this projection look like
the abelian case. Indeed, let X be a standard cross-section to M in
N. The map p: X X M— N defined by multiplication in N defines
an isomorphism p*: ¥(N)= A (X x M). On (X X M) we may
define P by Pf(z, m) = SMf (x, mm ) p(m')dm'. If we use canonical co-

ordinates in M, then P has precisely the form of the abelian projec-
tion. Since p*oP = Pop*, the proposition follows.

Now focus on irreducible representations. One of Kirillov’s
original results [8] says that if coordinates from some standard
cross-section to M are used to identify .S/(N/M, 4) to S(R"), then
the action of Z/ (M), the universal enveloping algebra of N on
S (N/M, «y) transfers to the action of all of P (R*) on .(R").
This fact has been siezed on by the universal enveloping algebraists,
but its analytic consequences have not been emphasized. Let us
state the most obvious one.

ProrosiTiON 3.3 (Kirillov). If an irreducible unitary represen-
tation o of N s realized as ind} +r, then C=(p), the space of smooth
vectors for p, is identified to S (NIM, +).
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Consider the operators on L*(N/M, +). These may be realized
as kernel operators, in general with distributional kernels, belonging
to *(N x N)/(M x M), 4 X 4*). If the operator 7' has a kernel
which is a continuous function K(zx, y) with z, y € N and K(xm, ym') =
(m~'m")K(x, y) for m, m’ € M, then for ¢ € .&°(N/M, +), we have

T = | K@ vy .

Note that for a fixed x, the function K(x, ¥)¢(y) is right invariant
by M, so the integral is well-defined. Note also that right and left
multiplication of T by o(IN) corresponds to translation in the first
and second variables respectively. That is, the kernel of o(n,)Tpo(n,)
is K(ni'z, n,y). Thus in any standard coordinate system on N X
N/M x M, the left and right actions of Z7(N) together generate all
polynomial coefficient differential operators, by Kirillov’s result.

We call an operator on L*N/M, ) smooth if it remains bounded
when preceded and followed by arbitrary elements of o(Z(N)). We
denote the smooth operators by C=(Z(p)). By our remark above
on the action of Z'(N) on kernels, we see that C~((p)) is precisely
those operators whose kernels belong to SZ((IN X N)/(M x M), 4 X +*).
It is clear that if fe .S7(N), then po(f)e C(Z(p)).

THEOREM 3.4. The map 0: F(N)— C=(ZL(0)) ts surjective.

REMARK. Since this result is the most delicate of the paper, we
write down most of the proof, although it is of a standard type
and rather clumsy. We proceed quite constructively. Presumably
general methods can be developed to prove results of this nature.
Also the Paley-Wiener theorem suggested above for the regular
representation would imply this theorem very quickly. Reciprocally,
an argument like this one might imply a weak version of Paley-
Wiener, covering representations “in general position.”

Proof. We will actually prove a somewhat more precise result,
which we now formulate. By a basis of .&“(N), or other similar
space, we mean a linearly independent sequence {e;}>, & .&°(N) such
that:

FWN) = {3 aec 3 |a]ir < o all 7).

and the obvious seminorms define the topology on SZ(N). It is
known that bases exist. For .$(R), for example, the Hermite
functions give a nice example. Let us note also that if {¢]}>, is a
basis for &(N) and {f}<, is a basis for S“(M), then {e; ® fi}:i-
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may be renumbered to form a basis for F(N x M) = .S (N)Q F(M).
For example, put ¢,Qf; =g, where k= 1/2)t+ 35— 1)@+ 75 —2)+ 1,
then {g,}i=, is a basis for /(N x M).

We will show

THEOREM 3.4 a. The map p: (N)— C*(Z(0)) is onto. More-
over, ker o is complemented in S (N). Specifically, there is a
sequence {f}, & S (N) such that ||f.|| grows at most polynomially
i 1 for any continuous seminorm on F(N), and {o(fi)} s @
basis for C=(Z(p)).

Our argument proceeds by induction as usual. We may as well
assume that p is locally faithful. Then dim 2°(N)=1 and p is
nontrivial on 2 (N). Let 2, with ae R, denote the elements of
2°(N), and normalize this parametrization so that p(z,) = ¢***. Choose
a one-parameter subgroup X of 2*N), the second center of N.
Elements of X will be x,, bc R. Let N, be the centralizer of X in
N. Thendim N, = dim N — 1 and N, is normal in N. Choose a one-
parameter group Y complementary to N, in N. Let Y be para-
metrized by y,, c€ R. We suppose the parametrizations are normalized
so that Ady.(x,) = ¥.4.9," = x,2;,,. Together the groups X, Y, and
% (N) form a 3-dimensional Heisenberg group H such that HNN, &
Z(N,) and H- N, = N.

We may realize o as ind) o, where M < N,. Necessarily, HN
N, € M. Of course, ¥(z,) = ¢**, and we may assume that 4 (x;) =1
for all b. If we introduce appropriate standard coordinates on N/M,
then we can consider p as realized on functions on R x R*, such
that the following formulas hold. Here te R, and v e R*.

[O(yc)f(t, 7)) = f(t — ¢, ’0)
(@) [, v) = e f(t, v)
om)f ¢, v) = o(Ad y7'(n)f(t, v) ,

for n € N,, where g, is the representation ind} +», and o,(n) acts only
on the R*-variables.

Let SN, be a complement to HNN,, and let U =expll. Then
U is a cross-section to HN N, in N,. Choose a Lebesgue measure
on U so that du db de is Haar measure on N,. For fe.%”(N,),
define p(f)e .c”(U) by

o(f)(u) = Sf (wiryz,)e* *dadq .

Proposition 3.2 says » is a continuous projection of .(N,) onto
FL(U). Moreover o,(f) = g(p(f)du), where the right hand side means
the natural extension of o, to measures.
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Write Ad* y,(g,) = 0., so that o,(Ad* y,(f)) = o,(f). If we define
P(f)(u) = Sf (uwz,)e""**'dadb, then o.(f) = o.(p.(f)dw). Let us com-

pute p,(Ad*y.(f)). We may write Ady.(uxs2,) = A (UW)he(U)2324 15
In this formula A, is the map of U into itself induced by identifying
U = N,/(H N N,) and taking the quotient of Ady,. The term ()
is defined by ), (uw) = Ady,(w)A,(u)"*. The map logor,cexp: 1l —
H NN, is linear. We compute

P(AQ* () = |F(Ad 47 (umiz, e dadb
- §f<A:1<u>>»_c<u>xbz,,_b»emw-b“)dadb
= |z zesedads

= [y s ez e dads

= P (Aoe(w))Do(f)(AT (W)
= ¢(U) A () ,

where we have set ¢, (u) = ¥ *(v_.(w)). Combining this with previous
formulas, we have

ac(¢cAf(p0(f))) = oc(.f) .

In the coordinates on U derived from linear coordinates on U via
exp, the transformation A, is linear and depends polynomially on ec.
Similarly, ¢, is a unitary character depending polynomially on e.
Therefore we see we may find a cofinal family of seminorms || || on
S(U) such that ||¢, AX(g)|] = q(e)||g]| for g€ S(U) and some poly-
nomial ¢ in y. Of course, ¢ depends on || ||.

Choose any w € .%“(R) with S wdt = 1. For ge &P (U) and ee
R
S (R), put

F(g, e)(uxyz,) = (XR¢o(u)AZ*(g)(u)e(C)ez""”bdc)e‘z“"’w(a) .

A straightforward application of the Fourier inversion formula for
R yields the result

p.(F(g, €)) = e(c)p. A (g) .
Hence

0,(F (9, €)) = e(c)a(g) -
Therefore, finally

O(F(g, e)(f(t, v) = et)o(9)(f(t, v)) .
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Moreover, our estimates on ¢,A%(g) show F(g, ¢) depends continuously
on g and c.

By induction, we may assume there is a sequence {fi}:, & (N}
such that ||f;|| has polynomial growth in ¢ for any seminorm and
{o,(f)}, is a basis for C=(<#(0,). In our coordinates then, the
o,(f;) are a basis for the operators on .&“(R*) given by Schwartz
kernels. These may also be regarded as the operators on (R X RF)
which are independent of the R*-variable. We may also regard .&“(R)
as operating on (R X RF), by multiplication operators depending
only on the R-variable. Let {¢]}:, be a basis for (R). As we
saw earlier, we may renumber the set e¢; ® o,(f;) so that it forms
a basis for all smooth kernel operators which leave each subspace
t X R*-invariant, that is, all smooth kernel operators commuting with
o(xz;) for all b. We see, however, from our formulas above that

e; @ 0,(f5) = o(F(0(1y), €0))

and it is clear from the estimates above that || F(p,(f;), €.)|| grows
at most polynomially in ¢ and j for any continuous seminorm || ||
on .&“(N,).

Thus we have shown o maps .&“(N,) onto the smooth kernel
operators commuting with p(z,). It remains only to throw in the
translations along the X-spectrum (i.e., the R-variable). This is
done in straightforward analogy with the above, using the one-
parameter group Y. The details are left to the reader.

COROLLAREA( 3.4.1. o(S(N)) acts algebraically irreducidly on
C=(o) for pe N.

COROLLARY 3.4.2. Let peN and let o be any unitary represen-
tation of N. Let 57, and 57, be the spaces of these representations.
Let T:C(27)— &7, be any intertwining map for the action of
F(N). Then T s tsometric up to multiples.

Proof. Let v, and v, be two orthogonal smooth vectors in S7;.
Let P be an orthogonal projection onto the line through v, so
Py, =v, and Pv,=0. Then PecC~(Z(p)), so P = p(f) for some
fe S#(N). Then also P = p(f*f*), where f*(n) = f(n™), the ~ in-
dicating complex conjugation, and fx*f* means the convolution of
f and f*. Put fxf*=g. Since T intertwines C=(5%) and 7,
we have Twv, = T(o(g9)v,) = o(g)(Tv,), while o(g9)(Tv,) = 0. Therefore
Twv, and Tw, are in distinct eigenspaces of the positive operator d(g)
and so are orthogonal. Thus T preserves orthogonality, so it must
be a multiple of an isometry.



OSCILLATORY INTEGRALS ASSOCIATED TO SINGULARITIES 353

REMARK. Poulsen [13] has proved a similar result for general
Lie groups. A result of this type greatly shortens arguments such
as given in [7] and elsewhere.

COROLLARY 3.4.3. If peN and p=ind}+, then there is in
C=(p)* precisely one eigenvector with eigencharacter « for M.

We now pass to the consideration of some aspects of the regular
representation, mainly its central decomposition. Our proofs in this
discussion will be very sketchy. As noted at the beginning of this
section, .&#(N) is an algebra under convolution. However, one may
convolve a Schwartz function f with a distribution De &7 (N)*.
The result will be a smooth function which may not, however,
belong to S“(N) because it may not die fast at «. In explicit terms,
one has the formulas

(D*f)(n) = D(L,f) and
(f *D)(n) = D(R,~f)

where f(n) = f(n™), and L,f(n) = f(n"'), and R,(f)®) = f(n'n).
These formulas reduce to the more familiar integration formulas if
D is also in S“(N), or more properly, if D = D;, where Df(g) =

S f(n)g(n)dn, where fe SZ(N).

Y Suppose h is a smooth function on N*, such that all derivatives
of h grow at most polynomially. We may regard (integration against)
h as a tempered distribution on M*. Thus the Fourier transform
ko of h exists as a tempered distribution on %, and log, (ﬁ), the
pushforward of h by log, is a tempered distribution on N.

THEOREM 3.6. (a) If h is a smooth Ad* N-tnvariant function
on ETE, with derivatives of polynomial growth, then convolution with
log ., (ﬁ) defines a continuous endomorphism Y(h) of S (N) commuting
with both left and right translations.

(b) The map h—7(h) ts an homomorphism from the algebra
of such functions (under pointwise multiplication) to the endomor-
phisms P (N). That is 7(h)Y(hy) = Y(h.h,).

(¢) If h ts bounded, then Y(h) extends to a bounded operator on
LXN), with norm equal to the supremum of h. Further, the map
s @ *-homomorphism in the sense that Y(h) is self-adjoint +f and
only 1f h 1s real, and Y(h) is positive i1f and only ©f h 1s.

(d) The map h— Y(h) extends to an isomorphism of the W*
algebra of bounded measurable Ad* N-invariant functions onto the
von Newmann algebra on L*(N) commuting with both left and right
translations.
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REMARKS. (a) Again, this is an integrated version of one of
Kirillov’s original results [8]. It is also suggested by the theory
for finite groups [6], where it is an immediate consequence of the
character theory.

(b) Since the (k) act on S7(N), they also act on .&“*(N), and
commute with the action of N there. The spaces & (N/M, +) can
be viewed as subspaces of .&*(N), specified by certain covariance
conditions. Hence v(f) will preserve .“(N/M, ) and thus will act
on ind¥ . Similarly, if " S N is a discrete cocompact subgroup,
then 7(f) will act on C=(N/I'). Thus the Y(f) can be used to de-
compose these representations. The analogue of (d) of the theorem
will probably fail here though, since the Y(f) can only separate the
orbits “in general position.” This raises the question of how to
extend the 7-calculus, which one might call the “smooth central func-
tional calculus” on N, to cope with the “singular representations”
of N, when these occur.

Proof. The proof proceeds by inducction and is quite analogous
to Schiffman’s argument in [15]. One first breaks up everthing into
subspaces transforming under characters of 2 (N), and then one
observes that a distribution which is conjugation invariant and
transforms according th a given faithful character of Z(N) actually
lives on a proper normal subgroup (unless of course N is abelian).

We will focus on (a) which is the most delicate part of the
theorem. ‘

Suppose % is a smooth function on ._#7* such that all derivatives
of h grow at most polynomially. We may regard (integration against)
h as a tempered distribution on _#"*. Thus the Fourier transform
h of h exists as a tempered distribution on .#; and log, (h), the
pushforward of h by log, is a tempered distribution on N. Thus
we can convolve log, (ﬁ) with fe &(N). The result ¢ = log, (ﬁ)* f
will clearly be a smooth function. I claim that for any =€ N, ¢(nz)
will be rapidly decreasing as a function of ze€ 2°(IN). This may be
seen as follows. Let p be any polynomial on _#; and let 4 be the
Laplacian with respect to some basis of _#7 Then (ph)~™* = (p~"Y)(h)
is a sum of partial derivatives of h, while 4 = 4 is a negative
definite quadratic form on _#*, so that (1 — 4)*(ph)~" will be a
continuous integrable function on _#°* for k large enough. Hence
we may write

i) = | gt — 2 pin

where g is a continuous function such that gp is bounded. Therefore
for ne N and z¢€ 2 (N) we have
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log, (h)*f(nz) = log, (B)L,L.(f))
= Lg(mxl — N(LA(L, fexp m)dm

= | atm)1 — 27(L.Fexp(m — log 2))dm .

Since for large %k, the function g will decrease faster than a given
polynomial, and for fixed k, the function (L, Fexp (m — logz)) is
rapidly decreasing as a function of logz, our claim follows.

Now for fe .&¥(N), or more generally if f(nz) is in (2 (N))
for every ne N, we may define, for e 2°(N)",

Fni ) = L(N)f(nz)x(_z)dz .

Then one has
Fnz; 1) = 1) F (w3 )
or in other words fe “(N/Z(N), x), and

fay = foupir

for proper normalization of dy.

For each v e 2 (47)*, let X; in _#°* be the affine subspace of
functionals whose restriction to 2 (_#") is A. Choices of Haar
measure on .#"* and on 2 (_#")* give rise to a canonical Heaar
measure dx on each X,. For A a smooth function on _#7%, let h;
be the restriction of # to X,. We consider h; a distribution on X,
by multiplying it by dxz. Standard abelian Fourier analysis shows
that if y(z) = €052 for ze 2°(N), then

log (A)«.f)(n; ) = (log.. (hx)x f)(n)
= (log, (A3 £(; 2)(m)

where % indicates the natural convolution on &/ (N/Z (N), %), (or more
precisely, of “*(N/Z(N), ) with S (N/2Z(N), %)). Since we know
log, (h)+f is rapidly decreasing in the direction of 2°(N), it will suf-
flice to prove that for 2 as in the statement of the theorem, that
log, (hy)% f(;p is in F(N/Z(N); %), with some sort of uniformity in
x. Note that the estimate given above for the decrease of log,(h)«f
in the direction of 2°(IN) depended only on the rate of growth of
the derivatives of h. Similarly, the estimates given below for
log, (h)*f(;y) will be seen to depend only on the derivatives of &,
and, at the last, on the group law of N, and to grow polynomially
in A. This will suffice.

Consider convolution in F(N/Z(N):y). If Y 2(N) is the
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identity compoent of the kernel of y, then functions in #(N/2°(N), %)
factor to S ((N/Y)/(Z(N)/Y), x.) where y, denotes the factorization
of y to 2(N)/Y. If 2(N/Y) strictly contains 2°(N)/Y, then we
may break &“(N/2 (N), x) into smaller pieces, transforming according
to the characters of 2 (N/Y). In this case we may assume the
desired estimates are true by induction on dim N. Thus the crucial
case is when Z°(N/Y) = 2°(N)/Y. In this case we may as well take
Y = {0}, so dim 2°(N) is one-dimensional, the well-known situation.
Up to this point, we have not used the assumption that h was
Ad* N-invariant. Our reasoning applied to any ~A. But now if & is
Ad* N-invariant, it must be constant on cosets of C(Z"®(_¢"))*, where
C(z®(_#") is the centralizer of the second center of .47 Therefore
k or h, is in the image of the inclusion map

10 SHO(ZO(AN)) — FH(A) .

By induction, we may assume convolution with ﬁx is a continuous
endomorphism of F*(C(2"®(N)/Z(N),x) with estimates depending
only on the derivatives of h, and the group law of C(Z ®(N)) and
with polynomial dependence on . Then it is clear the analogous
statement is true for k;, and S“*(N/Z(N), ).

The other statements of the theorem can easily be proven by
the same argument.

Thus “smeared orbital integrals” give rise to the central decom-
position of S#(N) or of L*N). Suppose ~ is an Ad* N orbit in
N*. Let d<” be the invariant measure on 5. We may regard do”
as a tempered distribution on N* in the obvious way. Although
convolution with log, (d7?) will not be an endomorphism of S#(N),
or bounded on L2, it is still of interest to consider it.

Recall that if p is a unitary representation of N on &% and if
u, v € 57, then the function ¢,, on N given by 4,,.(n) = (u, o(n)v) is
called a (left) matrix coefficient of p. Somewhat more generally, if
T e ¥ (57) is a trace class operator, then tr o(T)(n) = trace (o(n)™*T')
is a matrix coefficient of o, and tr p: T — tr o(T') defines a continuous
map from the trace class operators on 57 (with the trace norm) to
continuous bounded functions on N (with the sup norm). Now sup-
pose o is irreducible. Then if T e C=(<(0)), we have seen that T
is a trace class. We define the image of

tr p: C=(Z(0)) —> C=(I)

to be the space of smooth matrix coefficients of N.

THEOREM 3.7. Let pe N, and let & S N* be the corresponding
orbit. Then left convolution by log, (d?) maps F(N) surjectively
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on the space of smooth matrix coefficients of p.

Proof. It is well-known [8] that if dz” is suitably normalized,
then for fe.57(N) we have trace o(f) = log, (d?)* f(1). The theo-
rem follows quickly from Theorem 8.4 and this fact.

In view of this result and the motivating discussion in §1, it
becomes of interest to know the behavior of d<”. In the nonabelian
nilpotent case, do is never a function—it is always supported on
some proper normal subgroup. Indeed, following Corwin and Greenleaf
[4], and Penney [12], we define the saturation of < to be the set
s(Z)={Nef*: N+ & =¢}. It is not hard to show that s(¢?) is
the orthogonal complement of the ideal in 9 generated by the radicals
of B,, e Call this ideal $,(0). The next result is clear.

PROPOSITION 3.8. d¢2 is a distribution on 9.(0). That is, there

is a distribution (A7), on $.(0) such that do(f) = (df)l(f;@l) for
fe S (N).

One can ask for much more. One can ask for the precise sup-
port of d” and what sense, if any, the “values” or the “size” of
d~ has. In this connection, recent results of Penney [12] should
be helpful.

Even the above crude result helps us to focus on the behavior
of the matrix coefficients. To this end, we define the wawve front
set of an irreducible representation p of N. If ne N, we will say
n is in WF(p), the wave front set of p, if we can not find a neigh-
borhood U of logn in N such that for any smooth matrix coef-
ficient ¢ of p, we have |g(exp tu)| < ¢, (1 + |t|)™* for any we U and
keZ. Clearly Wf(p) is a closed set.

ProPoSITION 3.9. (a) For peN, the set WF(p) is contained in
H,(p). In particular, smooth matrix coefficients of p die rapidly
(faster than any polynomial) in any direction mot in H(0).

(b) Suppose ,oel\7 18 locally faithful. Then o0 1is square inte-
grable if and only if WF(o) = 2 (N). In that case, the smooth
matrix coefficients are precisely F(N/Z(N), y) where ) 1is the
character of Z(N) corresponding to p.

Proof. Statement (a) follows quickly from 3.7 and 3.8. For (b),
it is clear that if WF(o) = 2 (N), then matrix coeflicients of p
vanish rapidly in any noncentral direction, so are square-integrable
modulo 2°(N). Conversely, from our discussion of square-integrable

representations, we know H, (o) = 2°(N), and in fact, d7 is just X
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times Haar measure on 2°(N). This clearly gives the rest of (b)
using 3.7.

Thus we see smooth matrix coefficients vanish rapidly in almost
all directions, but they must decay slowly in certain noncentral
directions unless o is square-integrable. Also note in the situation
of 3.9(b), the space .&/(N/Z (N), y) is a simple topological algebra
under convolution. Moreover, p defines an isometry from L*(N/ % (N),X)
to the Hilbert-Schmidt operators on the space of p.

4. Return to the consideration of the oscillatory integrals E,
defined in §1 (1). It is known that there is an asymptotic expan-

sion [1], [2], [3], [10]
(1) E,(f) ~ Xe, e logkt

with 0 <k <n — 1, and ¢ €@ belonging to one of a finite number
of arithmetical progressions. I would like to address here the issue
of why such an expansion ought to exist.

As in §1, let A denote the translation group on L*R), let D
be the space of operators of multiplication by ¢, where ¢ is a linear
combination of p and its partial derivatives of all orders and linear
functions, and let D be the unitary group of multiplication operators
U,=¢" with ¢e®. Put N=A4 X, D.

Let ©, < D be the subspace generated by linear functions and
all proper partial derivatives of p. Assuming p is not itself linear,
we see that ®, is of codimension one in D, and D =D, P R,. Let
D, D be the subgroup of D corresponding to D,, and let N, =
A X,D,. Then N, is a normal subgroup of codimension one in N.
Thus ¢*? = U, will form a one-parameter group of automorphisms
of N,. We note that N, still acts irreducibly on L*R"), and that
conjugation by U,, quite obviously leaves the associated point of N-
invariant.

Let o be the representation of N defined by its action on L*(R"),
and let o, be the restriction of o to N,. If 4 is the unitary character
on D such that

(2) W(e™) = it

then we may write p = ind) . Thus (N, D, +) is a normal pclarizing
triple for p. Similarly, if 4, = 4, then (N, D, +,) is a normal
polarizing triple for p,.

As we remarked in §1, Haar measure on R" may be interpreted
as the unique linear functional on .&”(R") = C~(p) which is invariant
by p*(A). (Here p* indicates the action on C~*(p) contragredient to
p.) The appropriate group theoretic formulation of this fact is as
follows.
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LemmA 4.1. Let M, and M, be subgroups of the nilpotent group
M such that M = M,M,. Then for unitary characters v, of M,
there is up to multiples at most one distribution N on S (N/M,; )
such that N is an eigendistribution with eigencharacter «, under
the left action of M,. A nontrivial such \ exists if and only if
¥, and +, agree on M, N M,.

Proof. This is obvious.

Going further in our discussion in §1, we noted that the oscil-
latory integrals FE,, defined by (1) of §1 are invariant for
0(Ad U,,(A)), and are characterized up to multiples by this property.
Since the FE,, are defined only up to multiples, it is appropriate to
regard them as points in PC~*(p), the projectivized dual of C>(p)
(concretely, the projectivized tempered distributions). Thus we have
a situation where A, = Ad U,,(4) is moving inside N, (or ¥, is
moving inside N,) and simultaneously F,, is moving inside PC~*(p).
As t— o, we know %, will approach some limiting subalgebra B <
N,. If the E,, approach some limiting point in PC**(p), then this
distribution will evidently be invariant for o(B). The philosophy
we would like to adopt is that the map A,— E,, is actually the
restriction to some open set (an “affine model”) of a continuous, or
even smooth, map from some projective variety X of subalgebras
of M, to (projectived) distributions invariant by the corresponding
subgroups. This hyperplane section bundle on PC~*(p0) would then
induce a smooth line bundle over X, and the evaluation map would
map C~(p) into smooth sections of this bundle. From this point of
view, an asymptotic expansion of the form (1) would then simply
be a Taylor’s series for these smooth sections with respect to ap-
propriate coordinates.

This philosophy works quite precisely when p is an homogeneous
quadratic polynomial. In that case, N, is an Heisenberg group, and
the E,,, — <t < o together with the Dirac ¢ at the origin form
a projective line inside PC=*(p). The standard proof [5] of the
asymptotic expansion (5) of §1 may be interpreted in this light, or
an alternative proof, based directly on the group theory, may be
given.

As might be expected, a direct attempt to apply this philosophy
to general polynomials runs into trouble. Computations reveal the
following facts.

LEMMA 4.2. Let notations be as in the above discussion.
(i) If the partial derivatives op/ox, are linearly independent,
then B is their linear span.
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For (ii) and (iii) assume (i) holds.

(ii) The support of any distribution invariant under B is
contained in the common zeros of op/ox, (the singular points of (p)).

(iii) If p has an tsolated singularity at 0, then the B-invariant
distributions are precisely those combinations of partial derivatives
at 0 which annihilate the ideal in the formal power series generated
by the op/ox,.

From the final fact, we see that B will have an essentially unique
invariant distribution precisely when the op/ox; generate all formal
power series with zero constant term, that is, when p is a non-
degenerate or Morse singularity, or essentially when p is a quadratic
form, that is, N, is Heisenberg. Thus we must skirt the issue in
some way. We will retreat to a more abstract generalization of
the Heisenberg group, where our ideal conditions hold. We will
then attempt to relate this situation to the more concrete one which
motivated us.

Let N now denote a nilpotent group with a locally faithful
square-integrable representation p. Let ) be the character of 2°(N)
defined by p. Let A€ be a point on the orbit corresponding to p.
This orbit will then be A + 27 ()*. Let V Z N be the kernel of .
Suppose (N, M, \) is a polarizing triple for p. If M, =M NV, then
we see M, = ker Ay and M =M, D 2°(N). Also it is not hard to
see that I, is an isotropic subspace of maximal dimension in V with
respect to B,, and that I, is a subalgebra of M. Conversely, if
M, C V is a subspace enjoying these two properties, then putting
M =M, D 2 (N), we see (N, M, \) is a polarizing triple for p. In
summary, we conclude polarizing triples (%, I, \) are in bijective
correspondence with maximal B;-isotropic subspaces of V which are
also subalgebras of M. These subspaces form a closed subvariety
of the flag manifold of maximal B,-isotropic subspaces of V. Call
this subvariety I7I. Over II there is a natural vector bundle C which
attaches to each point in /7 the subspace of V which defines it. If
dim V =2n, then elements of I7 have dimension n. Thus 4*(C), the
nth exterior power of C, is a line bundle over I7, called the volume
bundle of II.

According to Corollary 8.4.3, for each I, € 17, there is on C*(p)
a unique (up to multiples) linear functional AM(3M,) which is invariant
under 0*(M,). Thus we may define a map

\: 1T — PC=*(p)

by M — AM(MM,). Let 4 denote the pullback by M of the hyperplane
section bundle on PC=*(p). This 4 is a complex line bundle over I7.
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THEOREM 4.3. (a) The map )\ is smooth, in the semse that if
£ 00, 11— I is @ smooth curve, then f*(4) is a smooth vector bundle
over [0, 1], and sections of f*(4) obtained by pulling back sections
of the hyperplane section bundle are smooth sections.

(b) If A is the complex conjugate of A, them AR A is the
(complexification of) the volume bundle of II.

REMARK. When N is the Heisenberg group, this result is due
to Kostant [9].

Proof. Given M,cl, we define on .(N/Z(N), ¥) (where 7 is
the complex conjugate of x) a distribution v(},) = v by the formula

uf) = |, fomydm,

where dm is Haar measure on IM,. We will abbreviate SZ(N/Z (N),¥)=
& It is easy to see that v: Il — $°* is smooth, and that the as-
sociated line bundle over I7 is just the volume bundle. Moreover,
y(M,) is both right and left invariant. Since L*(N/2Z(N), ) forms
an irreducible N X N module under right and left translation, this
module being isomorphic to p @ p* (outer tensor product), another
application of Corollary 3.4.3 shows v(M,) is essentially the only left
and right M,-invariant distribution on .2 Moreover, by Proposition
3.2, left or right convolution with v(M,) projects & onto .SZ(N/M, %),
where M = M, 2 (N) and Y, agrees with ¥ on 2°(N) and is trivial
on M,.

Take a vector veC~(0) and define @:C~(p) —.& by O(w)(n) =
(u, p(n)v). The usual theory of square-integrable representations
says @ is isometric with respect to the appropriate inner products,
and embeds the space of p as a submodule of & under the left
action of N. Moreover, @(v) is an idempotent in .4 and the image
of @ is precisely S *®@(w). It follows that the unique p*(I,)-in-
variant distribution is precisely v(M,)*.&”«@(v). It is evident that
this depends smoothly on I,. This proves (a). For (b), note that
MIR) Q@ A(M,) € C=*(0) ® C=*(p) = C**(L(p)) = .&#* will define an M,
bi-invariant distribution on .&, which must therefore be v(I%,). This
proves (b).

The remaining discussion is primarily speculative.

Return to the situation considered at the beginning of this sec-
tion. In particular, reconsider the groups N = A X,D and N, =
AX,D,. We know that (N,, D, ), where +, is as defined in §4,
(2), is a normal polarizing triple for a locally faithful representation
0. of N,. In particular, (N, D,) is a maximal normal abelian =-pair.
If (9,8, % @) is the associative correlative of (N,, D,), then @ =0
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since N, is a semidirect product. The algebra S, is the algebra of
constant coefficient differential operators restricted to ®,, and U is
the subspace first-order operators. We put of %, =S, X,D,. One
easily checks that N, contains N, as a normal subgroup, and that
(1\71, D, 4,) is a normal polarizing triple for an irreducible square-
integrable representation of N,. It follows that N, is the split HAT

group associated to S,.
We may perform the same construction with R, replaced by

M. Let the associative correlative of (%, €) be (D, T, Y, 0). Note
that S, is the quotient of T, by the one-dimensional ideal Z in T,
which annihilates ®,. Define %t = T, X,D. Then N is again an HAT
group, and the inclusion ®, £ D can be extended to an embedding
N,=» N as normal subgroup. In fact, ®, is the commutator ideal
in 0, and its centralizer is Z + ®. Choosing an embedding N, — N
amounts to choosing a complement to Z in T,. Also, it results in
a decomposition of the type described in Proposition 2.6(c). Recall
that our polynomial p defines a complement to ®, in ®. Choosing
this complement defines, in the manner of 2.6(c), a complement S;
to Z in T,. We may use S, to define a standard embedding N,— N
as normal subgroup. Then the line through p in Jt will define outer
derivations of 521, which may be exponentiated (actually, their squares
are already zero) to give a one-parameter group of outer automor-
phisms, expad tp = @,. _ 5 N

Let A=1+ S, & N,. Then A2(N, is a polarizing subgroup
for p,. Therefore there is in C~*(0,) an essentially unique point
fixed by A. Let a, act on N,. Put a,(A) = A,. As t— oo, the
groups A, will approach a limiting position B. According to Theorem
4.3, the distributions corresponding to the A, must approach in
PC~*(p,) the distribution corresponding to B.

How does that look concretely? We may realize 0,, analogously
to p,, as indgg 4r,. Further, we may identify the space of 0, with
L¥A4), and then A will act by translations and D, will act by multi-
plicaton by exponential polynomials in appropriate coordinates. (In
fact, coordinates on A may be introduced so that D, will act by
exponentials of linear polynomials.) In any case, the automorphisms
a, will preserve p,, so that we may extend P, to the group a;. In
this realization 0,(,) will also act as multiplication by an exponential
polynomial. This polynomial on A will be closely related to the so-
called “universal unfolding” of p» [16]. For this reason, it seems

not too far-fetched to call 0, the universal unfolding of p,.
Hopefully the construction of P, affords some sense of why

asymptotic expansions of the type of §4 (1) should exist. However,
something is certainly lost in the process: our original translation
group A is now only a small subgroup of A, and .°(A) is not a
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subspace of .57(4), but must be regarded only as a subspace of
S7*(A). Thus the translation of the asymptotic expansion given by
Theorem 4.3 into an expansion of the type of §4 (1) presents technical
difficulties. These difficulties are quite possibly no less considerable
than the existing proofs of §4 (1). Thus it is moot at this point
whether Theorem 4.3 can be translated into concrete formulas con-
cerning F,,. The answer will require further work.

Finally, we remark that the question of the Fourier transform
of ¢™? is connected with the possibility of realizing 0, also as being
induced from A . 2°(N,), for the intertwining operator between the
two realizations is essentially the Fourier transform.
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