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ON A CONNECTION BETWEEN NILPOTENT
GROUPS AND OSCILLATORY INTEGRALS

ASSOCIATED TO SINGULARITIES

ROGER E. HOWE

The object of this paper is to demonstrate and promote
some ties between the theory of harmonic analysis on nil-
potent Lie groups theory and another topic the study of
oscillatory integrals associated to polynomial singularities.
Oscillatory integrals are tempered distributions on Rn, defined
by integration against the exponentials of (real-valued)
polynomials.

Thus if p is polynomial on Rn with real coefficients, the as-
sociated oscillatory integral is

(f) = \
jRn

E

where / belongs to S^{Rn), the Schwartz space of Rn, and dx is
Lebesgue measure. The main questions of which I am aware con-
cerning the distributions Ep are two.

(a) Asymptotic behavior: For teR, how does Etp(f) behave as
^^oo? j n particular, what is the slowest rate of decay of Etp(f)Ί

(b) Fourier transform: Define the Fourier transform "
by the usual formula

02) f(x)= \ f{y)e~^ ydy
jRn

where x y is the usual inner product on Rn. Define Ep by

( 3 ) Ep(f) = \ f(-
jRn

Can Ep be represented directly as a distribution? Is it given as
integration against some function? How can this function be de-
scribed if it exists?

The simplest case of interest for questions (a) and (b) is that of
the stable or Morse singularities, when p is a nondegenerate quad-
ratic form. Here both questions (a) and (b) have well-known, satis-
fying, classical answers [5]. We recall the formulas in one-dimension.

t>o
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( 5 )

It turns out that these formulas have very beautiful, I am even
tempted to say deep, interpretations in terms of harmonic analysis
on the Heisenberg group. We give the essence of this interpreta-
tion in § 4 (see Theorem 4.3). The purpose of this paper is to in-
vestigate the extent to which the general features of the group
theoretic interpretations of (4) and (5) apply also to higher order
singularities.

Thus one goal of this paper is to show that both questions (a)
and (b) can be embedded into the theory of harmonic analysis on
nilpotent groups. The first question is related to the behavior of
smooth matrix coefficients of irreducible representations, while the
second has to do with the variety of ways to realize a given repre-
sentation as an induced representation. A second goal of course is
to develop some of the relevant nilpotent harmonic analysis. This
development follows two main themes. On the one hand, we study
what might be termed the smooth harmonic analysis of general nil-
potent groups. This takes up some themes touched on in Kirillov's
original paper [8], but neglected since. On the other hand, we
isolate a class of nilpotent groups, labeled HAT groups, which are
particularly relevant to the concrete problems stated above. It
seems significant that in both of these investigations, groups with
square integrable representations play a distinguished role.

The above described topics occupy § 2 and §3. In § 4 we draw
some conclusions for the questions (a) and (b). The rest of this
introduction describes how oscillatory integrals naturally embed into
nilpotent harmonic analysis.

The point is that a multiple interpretation may be given to the
exponential polynomial eip{x). First, we may regard it as an unitary
operator. If feL\Rn)9 then Up:f-+eipf defines an unitary trans-
formation on If. We note that the Schwartz space £f{R%) is in-
variant under Up. Going slightly further, we might remark that
the operators Ut9f for t e R, form a one-parameter group of unitary
transformations, whose infinitesimal generator is multiplication by
p. Another group of unitary operators is provided by the transla-
tions. Explicitly, for /eL 2 , put (Tyf)(x) = fix — y), for x,yeRn.
Again, the Ty preserve S< We now compute the conjugate of Up

by Ty. We have

(Ty(Up(T.yf)))(x) = (UP(T_yf))(x - y)

= eip{χ-y)(T_yf)(x -y) = eip^f{x) .

In other words, TyUpT-y — UTy(p). The translations do not normalize
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the one-parameter group UtP9 but they come close. Specifically, let
2)p = © be the space of polynomials on Rn spanned by the partial
derivatives (of all orders) of p, and by the coordinate functions.
As y varies in Rn, the polynomials Ty(p) certainly vary inside S)p.
Thus Up belongs to a finite-dimensional abelian group D of unitary
operators normalized by the translations. In particular we may take

If A denotes the group of translations, we may form the semidirect
product N = A X8D. Then N is a nilpotent group of unitary oper-
ators acting on IΛ Furthermore, it is not hard to see that N acts
irreducibly on IΛ (This was the point of including the coordinate
functions in 3)p, were they not there automatically.) Still further,
JV preserves S^(Rn), and it may be seen without much difficulty (see
§ 3 for fuller discussion) that Sf may be described as the space of
smooth vectors for N. Therefore (since every element of S? is a
sum of products of elements of £f) we see that Ep(f) is the value
at Up e D of a smooth matrix coefficient (see § 3 for a precise defini-
tion) of the representation of N defined by the above action.

A second, related, interpretation of Ep is as follows. It is well-
known that there is precisely one tempered distribution (up to mul-
tiples) on Rn which is invariant under the group A of translations,
namely Lebesgue measure dx. (We will give a more precise version
of this fact in §4.) Within N, we may conjugate the group A by Up

to obtain some other abelian subgroup UpAUp1. It is quite clear
that UpAUp1 will also allow precisely one invariant distribution,
which will necessarily be Ep. Together these three interpretations
of eίp(x), as operator, as matrix coefficient, and as eigendistribution,
will hopefully motivate the considerations of the next sections.

2* Structural questions* The nilpotent group N constructed
in § 1 had various properties. For example, it was a semidirect
product, it was metabelian, it had a faithful irreducible representa-
tion induced from a normal subgroup, the adjoint action on this
normal subgroup was essentially cyclic, and' so on. Our task in this
section is to try to outline the interplay between these properties,
to bring out to what extent they make N special, and to describe
the structure of groups having them. The statements of the results
tend to be lengthy, and to avoid tedium, we have omitted most of
the proofs, which are quite easy, on the whole. Modulo the Kirillov
orbit theory, which we review, the discussion is completely algebraic.

We adopt the following conventions for the rest of the paper.
By a nilpotent Lie group we mean a connected simply connected
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nilpotent Lie group, unless we explicitly state otherwise. Similarly,
subgroups will be connected. Nilpotent Lie groups will be denoted
by upper case Roman letters (not conversely!) usually in the middle
of the alphabet. The Lie algebra of such a group will be denoted
by the corresponding upper case German letter. Thus N and 3Ϊ.
We write exp for the canonical exponential map from 3Ϊ to N,
and log for its inverse. The adjoint action of N on 9ΐ is written
Ad, the adjoint action of 9ΐ on itself is ad. Restrictions and quo-
tients of Ad will usually still be called Ad, hopefully with sufficient
specification of domains to avoid confusion. Dualizations of Ad are
written as Ad*. The descending central series of N is N = N{1), N{2),
etc. The ascending central series is %ΌJ\ ^{2)(N), etc. In par-
ticular, N{2) is the commutator subgroup and %*(N) the center of
N. The notation for 31 is parallel.

We now recall the basics of Kirillov's orbital theory of repre-
sentations [8]. For a nilpotent Lie group N, let N be the unitary
dual of N, the set of equivalence classes of unitary irreducible con-
tinuous representations of N. According to Kirillov, we may identify
N with the space of Ad* JV orbits in 91*. The identification proceeds
as follows. Let & £ 9ΐ* be an Ad* N orbit, and choose λ e ^ .
Consider the alternating bilinear form Bλ(x, y) = λ([α?, y]) on 9Ϊ. The
radical of Bλ, i.e., the set of vectors x such that Bλ(x, y) = 0 for
all y e SSI is the Lie algebra of the isotropy group of λ. A subspace
X Q 3i is isotropic for Bλ if Bλ{x is identically zero. The maximal
isotropic subspaces for Bλ are just the isotropic subspaces of maxi-
mum possible dimension, which is l/2(dim 31 + dim 31), where 3ΐ is
the radical of Bλ. By a polarization of λ we mean a subspace 2ft
of Sft which is maximal isotropic for Bλ and which is a subalgebra
of 3i. If 2ft is a polarization of λ, define ψ — ψλ on M by ψ(exp m) =
tfπuw for me30fl. Then ψ is an unitary character of M. The re-
presentation p — p{^) corresponding to & may be realized as the
induced representation indj ψ.

We will refer to the triple (N, M, ψ) as a polarizing triple for
p. We might also refer to (31, 3K, λ) as a polarizing triple for p.
Since ψ does not determine λ, but only λ)9K, the choice of λ in
(31, 2ft, λ) might seem ambiguous. However, it can be shown [14]
that if X'm = λ|3κ, then λ' is in the Ad* M orbit of λ, so the ambi-
guity in λ is unimportant and we will ignore it. Alternatively, we
might consider only Xιm and just regard λ as an element of 2ft*.

If #* is an Ad* N orbit in 3i*, then the linear span Y of #> is
Ad* -W-invariant. So, therefore, Y1 = $, the annihilator of Y in 3i,
is an ideal. Clearly K — exp B is the identity component of the
kernel of ρ(^). Hence p factors to N/K, and is locally faithful
there, that is, has discrete kernel. In particular, if p(#) is locally
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faithful, then έ? spans 9β*. This is the same as to say that λ e ^
is cyclic for Ad* N.

Let M £ N be a normal subgroup. Then ^ m = {μ[m: μ e <?}, the
projection of ^ on 3K*, is a union of Ad* M orbits, and the repre-
sentations of M corresponding to these orbits are the components
into which p(^)\M decomposes. Again ρ(&)\M is locally faithful if
and only if ^ m spans 3ft*. If λ e ^ , then the orthogonal comple-
ment of M with respect to Bλ is the Lie algebra of the isotropy
group of λ|«.

Let %φ)L £ 9ΐ* be the annihilator of ;T(9ΐ). Given λe9ΐ*, the
Ad* N orbit & through λ will be contained in λ + ST^Siy. Thus in
order for d? to span 9Ϊ* it is necessary (and sufficient) that
dim^(9ϊ) = 1, and that λg^ODΐ)1. If this is so, then any normal
M £ N will necessarily contain S^(N).

The possibility that p(^) be square integrable (see § 3) is of
particular interest to us. According to the criterion of Moore and
Wolfe [11], p will be square-integrable modulo 3ί(N) precisely when
<$> = λ + ^(Sϊ) 1 . In that case, any irreducible representation de-
fining on %*(N) the same unitary character as p is equal to p. This
is a generalization of the Stone-von Neumann theorem. We will
refer to p as having the Stone-von Neumann property.

We will be dealing in this section mainly with relations between
nilpotent groups and associative nilpotent algebras. For these, we
will need some notation parallel to that for groups. If So is a nil-
potent associative algebra, then S = R 0 So will be the algebra
obtained from So by adjunction of the identity. Then So forms an
ideal in S, the Jacobson radical of S, the set of noninvertible ele-
ments. So will be the ideal spanned by all products of i or more
elements from SQ. It is easy to see that a subspace X Q SQ generates
So as algebra if and only if X + SI = So. The ideal {s e So: st = 0,
all teS0} will be denoted η(S0). We call it the null-ideal of So.

We begin our development with a very easy general remark
concerning linear actions of nilpotent groups.

PROPOSITION 2.1. (a) Let beVa real vector space. LetAQGL(V)
be a group of unipotent transformations. Let S = S(A) be the
linear span of A in End (V). Then

( i ) S is an associative subalgebra of End (F).
(ϋ) S = R 0 So, where R here denotes the scalar matrices, and

So is the Jacobson radical of S, the ideal of nilpotent of noninvertible
elements. So is a nilpotent algebra.

(iii) The Lie algebra SI of A is a Lie subalgebra of So. More-
over, So = 5ί + S0

2. Also A £ 1 + So.
(b) Suppose that the action of A is cyclic, that is, there is a
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vector veV such that A(v) spans V. Then
(iv) The map eυ: S —> V given by eυ(s) = s(v) is surjective. The

kernel of ev is the left ideal Kv = {ke S: k(v) = 0}. Thus V is iso-
morphic (via eυ) to S/Kυ as an S-module.

(v) The isotropy group of v in A has Lie algebra Sϊ Π Kυ.
(vi) Kv contains no two-sided ideals in So.
(c) If A is abelian, so is S. If A acts cyclically with cyclic

vector v, then Kv = {0} so that V = S as S-module. In particular,
the isotropy group of v in A is trivial. Furthermore, S is a
maximal abelian nilpotent subalgebra of End (V). There is thus
a 1-1 correspondence between conjugacy classes of maximal abelian
unipotent cyclic subgroups of GLn(R) and isomorphism classes of
nilpotent commutative algebras of dimension n — 1.

If N is a nilpotent Lie group, and M a subgroup, then we will
refer to the pair (N, M) simply as an w-pair. We will modify this
term with adjectives modifying M. For example, if M is normal,
we have a normal w-pair; if M is also abelian, then we have a
normal abelian w-pair; and so on. We may substitute Lie algebras
for groups in these definitions.

Suppose (N, M) is a maximal normal abelian w-pair. Then it is
not hard to see that M is its own centralizer in N. Therefore iSΓ/ikf
acts faithfully on M via Ad. Therefore 9Ϊ fits in an exact sequence

o —> m — > m — > si — > l

were Sί £ End (2ft) is a Lie subalgebra of nilpotent endomorphisms.
Let a = α(9ϊ) be the cohomology class in £Γ2(Sί; Sft) defining 31. Let
So = JSQ(SI) be the associative algebra generated by Sί. We call the
data (9ft, So, % a) the associative correlative of the maximal normal
abelian w-pair (N, M).

PROPOSITION 2.2. Attaching the associative correlative (3ft, So, Sί, a)
to the maximal normal abelian n-pair (N, M) establishes a bijection
between such n-pairs and ^-tuples (3ft, So, % a) such that

( i ) 3ft is a real vector space.
(ii) So is a subalgebra of End (3ft), consisting of nilpotent endo-

morphisms.
(iii) Sί is a Lie subalgebra of So, such that SQ — Si + SJ.
(iv) a is an element of ίZ"2(Sί; 3ft).

Given these data, 31 is defined by the sequence

0 >3ft >9ί >Sί >0

defined by the class a and 3ft is the ideal in the maximal normal
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abelian n-pair (9ΐ, 271).

If (N, M, ψ) is a polarizing triple for some representation p of
N, then we may attach any adjectives applying to the w-pair (JV, M)
to the triple also. Additionally, if p is locally faithful, we will call
the triple faithful.

PROPOSITION 2.3. (a) Suppose (N, M, ψ) is a faithful normal
polarization. Then (N, M) is a maximal normal abelian pair. Let
(9W, So, Sί, a) be the associative correlative of (N, M). Let A — expSΪ.
Let λeSJΪ* correspond to ψ. Then A, acting contragrediently on
3JI*, acts cyclically with cyclic vector λ. Moreover, the isotropy
group of λ in A is trivial. Thus if Kλ = {se So, s*(λ) = 0} where
s* is the contragredient of s, we have 2ft ^ Kχ £ £*, and S ί Π ^ = {0}.

(b) Suppose p = inάZψ is square-integrable modulo %*(N).
Then dim N = 2 dim Λf — 1, and So = SI 0 iΓ;. 7w particular, if
N/M is abelian, Sί = So.

(c) // JV is metabelian, then any locally faithful representa-
tion of N {these exist if and only if dim % — 1) allows a faithful
normal polarization (N, M, ψ) with the additional property that
N/M is abelian.

Thus 2.3 shows that a normal polarizing triple (JV, M, ψ) is built
in a certain way from a nilpotent associative algebra So. The next
propositions investigate the extent to which So depends on N alone,
and how it varies with M. A companion question is of course how
M may vary, or somewhat more generally, what are all the possible
polarizing triples for the p defined by (N, M, ψ).

PROPOSITION 2.4. (a) Let (91, SK, λ) be a faithful normal po-
larizing triple. Let (S)ϊ, So, Sί, a) be the associative correlative of
(9i, W). According to our discussion in the definition of polarizing
triples, we consider that λ e ϊϊ*. Let Sβ be any other polarization
of λ. We may identify 5β/(Sβ Π 2K) to a subspace S3 of 9ί. The fol-
lowing facts hold.

( i ) Under the isomorphism Hft ~ K£ £ S*, the intersection $βf!
SK is identified to Kj- Π 331 = CKj φ S3)1, (iίere λ signifies λIΛ.)

(ii) 35 is α- Lie subalgebra of Sί, αtirf έ/̂ e associative algebra
generated by 33 is contained in Kλ 0 33.

(iii) 7/ 5β is abelian, then 33 is αw abelian Lie subalgebra of
δί, α^d 33S £ Kλ 0 33.

(iv) If φ is an ideaZ in 9Ϊ, ίfeβn 33 is an ideal in Sί, anώ
0 33) £ if; and Kλ 0 33 is a Zβ/ί ideai m S. Since from 2.3

is aZso abelian, we have also S33S £ JEi φ S3.
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(b) If yijΈl, hence S, is abelian, these facts sharpen and simplify
as follows.

( i ) Since Kλ = {0}, Tt s S* and 5β n SPΪ = S31.
(ii) 58 is an associative subalgebra of S.
(iii) If 5β is abelian, then 33 is ατ& iώβαZ m £0> αwcϋ is abelian

as associative algebra.
(iv) 1/ 3̂ is an ideal in % then 232 = 0.
(v) If ?β is an ideal and 9ϊ/5β is also abelian, then 33SO = 0.

The facts recited above indicate that the existence of groups
other than M from which to induce p requires compatibility Uft with
the associative structure of S. This is clearest in the extreme case.

PROPOSITION 2.5. With the notations of 2.4, suppose 33 = 8ϊ, or
in other words Sfϊ = Sβ + SPΐ. Tfcew

(i ) 81 is α complement to Kλ in So, i.e., So = Sί0iΓ>
(ii) φ Π SK = ^(9Ϊ) (which is one-dimensional).
(iii) 9ΐ is isomorphic to the semidirect product 8ί Xsiίj-. (When

%l/ϊΰl is abelian, this is SOXSS*.)
(iv) T%e representation p = ind^ ̂  corresponding to the triple

(% SDΪ, λ) is square-integrable.

As we will see later on, it is when transversal polarizations exist
for p that the Fourier transform has a nice interpretation.

Finally we have in case N/M is abelian a fairly definitive state-
ment concerning how much of So is determined by N alone.

PROPOSITION 2.6. (a) If N is nilpotent metabelian, then x e N
belongs to a normal abelian subgroup with abelian quotient if and
only if x centralizes Nm. The centralizer C(N{2)) of N{2) is a two-
step nilpotent group containing N{2). A subgroup MQC(N{2)) is
maximal normal abelian in N with abelian quotient if and only
if M is maximal abelian in C(N{2)).

(b) Suppose (N, M, ψ) is a faithful normal polarizing triple
with abelian quotient. Let (HR, So, % a) be the associative correlative
of (N, M). Then the image of C($lw)lfΰt in 31 is contained in the
null-ideal η(S0). Thus the image of So in Horn (9ΐ(2)), which is the
algebra generated by AdΛΓIR<2) and which is canonically attached to
N (i.e., does not depend on M) is isomorphic to SJI where I is a
subspace of η(SQ).

(c) Suppose the representation attached to (N, M, ψ) is square-
integrable modulo &(N). Let Y £ Sβ be any linear complement to
C(5ft(2)). Put % = Γ05ft(2). Then N, is normal in N, and
(Nlf N{2), ψ\Nw) is a faithful normal polarizing triple yielding a
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square-integrable representation of JVL. Choose λe9ΐf, such that
λ)8l(2) corresponds to ψ\Nω. Let H be the ίsotropy group of λ in
Ad* JV acting on ίfl*. Then H is an Heisenberg group, and we
have the relations N=H-Nlf and Hf]JVt = JT(JV) = MT(N±) =

We now specialize to a particular class of groups which seem
particularly relevant to the harmonic analysis we wish to do. We
will call a nilpotent group JV an HAT group if

(i) JV is metabelian.
(ii) JV has a locally faithful representation which is square-

integrable modulo 3ί.
Let JV be an HAT group, and fix a representation p of JV satis-

fying (ii) above. Let (JV, M, ψ) be a polarizing triple corresponding
to p. According to Proposition 2.3(c), we may assume M 2 JV(2),
so (JV, M) is a normal w-pair with abelian quotient. Let (2ft, SOf % a)
be the associative correlative to (JV, M). Then from Proposition
2.3(b), and 2.4(b) we see that Sί = So and Wl ~ S* so that 9Ϊ fits into
an exact sequence 0 —* S* —* HI —> So —• 0, such that the action of So

on S* is the contragredient of left multiplication on S. Moreover,
if λ is the linear functional on 3K corresponding to ψ, then the
identification of Wl with S* may be accomplished (i.e., normalized)
in such a way that λ is identified to l e S .

Continuing, we see from Proposition 2.6(b) and (c) that although
So is not uniquely determined by JV, a certain quotient SJI, with
I £ i](S0), is determined by JV. Let JVL £ JV be a normal subgroup
constructed as in 2.6(c). Then Nx is also an HAT group, possessing
the normal faithful polarizing triple (JVΊ, JV(2), ^i^(«). The associative
correlative of the w-pair (JVlf JV(2)) is (9l(2), So//, So/I, a') where a' is
whatever it must be.

Again with an eye towards harmonic analysis, we are interested
in computing the automorphisms of the HAT group JV. If N± is as
in the preceding paragraph, then C(JV(2)) £ JV provides, via Ad,
some outer automorphisms of JVX which are trivial on JV(2) and on
NJN{2). We will see below that automorphisms of this sort always
result from embeddings of one HAT group as normal subgroup of
another.

For the automorphism computations, we will offer proofs. From
Proposition 2.6(b) we see that one question of interest for the struc-
ture of HAT groups is to describe for a given commutative nil-
potent associative algebra So the possible nilpotent algebras To such
that S0=T0/J, with JQη(T0). This point is also important for
the description of automorphisms, and is covered by the next prop-
osition.
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PROPOSITION 2.7. (a) For any finite-dimensional nilpotent as-
sociative commutative algebra So, there is another such algebra So

and an exact sequence of algebras

with I £ η(S0) Π SI and possessing the following universal property.
For any exact sequence of algebras

0 > J >TQ - ί U So > 0

(with To finite-dimensional, nilpotent, commutative and associative),
and / £ )?(T0) Π T2, there is a surjective homomorphism a:S0-+T0

such that

So

Λ
commutes. In particular, So in unique up to isomorphism.

(b) // 0 —• J—+ To —»So —> 0 is any exact sequence of commuta-
tive nilpotent algebras, with JζZη(T0), then we can write To =
TOΦX, a direct sum of algebras such that J — X φ / ί l T2, and

i X = Γ0/T0

2, or in other terms, T0

2 = T 0

2.

Proof, (a) Let U be any complement to SI in So. Let S(U) =
£f be the symmetric algebra over U, and let S*<> be the ideal in
S? generated by U. Then inclusion U Q So induces a surjective
homomorphism σ: S^Q —> So. The kernel of σ will be some ideal
^ Q SΌf so that So s ^\^. Put J* = VJ? = S^0J^ and put
§0 = grjjfr Then if J = ^\J^, we have the exact sequence

0 >I >S0-^S0 >0

and IQ η(S0) Π S2

0. The claim is that this So is the So we want.

Let 0 —+ J~+ To —> So —> 0 be an exact sequence of the sort we
are discussing. Choose a space U' £ To such that a: U' -+U is an
isomorphism of vector spaces. Our assumption on / shows that U'
exists. The inverse map α"x:ί7—>U' £ To induces a homomorphism
T: £f0 —» To. Our assumptions imply τ is surjective. Moreover, by
construction the triangle
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commutes. Therefore : ( / ) £ / . Since J<^η(TQ), we have ^ S
ker τ. Thus τ factors to a map a: So —• Γo as desired.

For part (b), consider again the exact sequence

0 >J—>T0 >S0 >Q

in which we now assume only that J £ y(T0), not that J £ T*. Let
X be a complement to JpiTl in J, so that J = (JfΊ ΓS)0-ϊ. Let
Z7 be a complement to !Γo Θ -X" in 3Γ0. Then U 0 X is a complement
to 21 in Γo, so J 7 0 X generates Γo. Thus if TO is the subalgebra
generated by U, then Γo = TO φ X, since X S ^(Γo). This finishes
the proposition.

Now turn to direct consideration of automorphisms of an HAT
group JV. Let (JV, M, ψ) be a normal polarizing triple with abelian
quotient for a locally faithful square-integrable representation p of
JV. Let λeSft* be in the orbit corresponding to p. Then as vector
space, 9Ϊ has the direct sum decomposition 9Ϊ = ^(9Ϊ) 0 ker λ. If
Y is any other complement to ^(9i) in 91, then Y = ker λ' for some
λ 'eλ + %φ)L. But λ + rtSft)1 = Ad* JV(λ) since p is square-in-
tegrable, so Ad N acts simply transitively on linear complements to
-2T(9i) in 9Ϊ. Thus if Aut (N, λ) is the subgroup of Aut N which
preserves ker λ, we have Aut (N) = Aut (iV, λ) X s Ad N. Thus we
will describe Aut (N, λ). We note that Aut (N, λ) is a subgroup of
the "symplectic similitudes" of the form Bλ on kerλ.

Let (S*, JS0, SO, α) be the associative correlative to the w-pair
(N, M). Then as we saw above, N fits in the exact sequence

1 >S* >N >1 + So >1.

Let AutS be the group of algebra automorphisms of S, and let
Aut (N, M, λ) be the subgroup of Aut (JV, λ) also preserving M. Let
r: Aut (JV, M, λ) —* GL(M) be the restriction map.

PROPOSITION 2.8. (a) When M is identified to S*f the group
r(Aut (JV, M, λ)) is identified to a subgroup of Rx x Aut (S)*, where
Rx is the scalars, and Aut (S)* is Aut S acting contragrediently on
S*. Moreover, if r(Aut (JV, M, λ)) contains a scalar operator, then
N is the twisted direct product (1 + SO)XSS*. In this case,
r(Aut (JV, M, λ)) is all of Rx x Aut S. Otherwise, it is isomorphic
to a subgroup of Aut S.

(b) The kernel of r acts trivially on M and on N/M, and is
isomorphic to H\S, S*) (Lie algebra cohomology). In turn, H\S, S*)
is isomorphic to I*, where I = I(SQ) is the ideal of Proposition
2.7(a).

Proof It will be more convenient to work with 9ί than with
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N. We make the obvious alterations in notation. Choose ae
Aut (% 90ΐ, λ). Let ax = r(a) and let a2 be the factorization of a to
Sί/SK. We identify 2K and Sft/SJΪ with S* and So respectively and so
regard the at as transformations on these spaces. As we have
remarked, we may assume Xϊw is identified to leS. Then if a* e
End (S) is the contragredient of alf we will have a*(1) = £ = ί 1
for some £ 6 R, since λ is an eigenvector for Aut (N, M, λ) by defini-
tion. If n e 9Ϊ and m e 2ft, then [w, m] depends only on n modulo
2ft. If n corresponds to seS0 and m to veS*, then [n, m] corre-
sponds to m*(s)(v), where m*(s)(v)(s') = v(—ss') Thus we have

)«i(v). In other words

and this equals

Since v is arbitrary, this implies

-safes') = « ? " ' ( - α ^ s ' ) for seS 0 and s'eS.

Write s' = α*(s"), and transform both sides by at to obtain

(1) a*(88") = α2(8)αf(s") for s e S 0 and s " e S .

In this identity, put s" = 1 to conclude

(2) αf(s) = ta2(s) for s e So.

Putting this back into (1) we find that t~laf is an automorphism of
S, establishing the first statements in each of parts (a) and (b) of
the proposition.

Next, suppose afo) = tv for all veS*. Then a2(s) = s and we
may write ίft — So φ S* where So is the 1-eigenspace of α: and S*
is the ί-eigenspace of a. Since a is an automorphism, £0 is a sub-
algebra of % and therefore we have exhibited 31 as the twisted
direct product of So and S*. Conversely, when %i is split, the com-
putations above read backwards guarantee that r(Aut (N, M, λ)) is
indeed all of Rx x Aut (S)*. This concludes the proof of (a).

To identify kerr 5 , let us recall an interpretation of H1 which
is perhaps less in the public consciousness than some. Let Sί be a
Lie algebra and let X be an Sί-module. Denote the action of Sί on
X by p. The space C^Sί: X) is defined as the set of linear maps
τ: δί —> X satisfying τ([α, 6]) = p{a)τ{b) — ρ{b)τ{a). The subspace
B\% X) of C1 consists of τ of the form τ(a) = p(a)x for some xeX.
The quotient C'/B1 is the cohomology group H\$l; X).

Consider any Lie algebra © which fits into an exact sequence
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> X. > y® > VI > U

such that the action of A induced on X by Ad is just p. We may
write ® = Sϊ 0 X as vector spaces, and the bracket operation in ©,
denoted by [, ]° will be as follows:

[x, y]° = 0 f o r x , y e X;

[a, x]° = p(a)x f o r xeX a n d aeSϊ: a n d

[α, bf = [a, b] + 7(α, b) .

In the last expression, [a, 6] is the usual bracket in Sϊ, and 7 is an
appropriate antisymmetric bilinear map from Sϊ to I .

Suppose that σ is an automorphism of © which is the identity
on X and induces the identity map on ®/X. Then we can write
σ(a) = a + τ(a) for a e SI, where τ is a linear map from SI to X. In
order that σ be an automorphism we must have σ([a, b]°) = [σ(a), σ(b)]°.
Expanding this identity out by means of the formulas above, we
find the equation

[a, b] + 7(α, b) + r([α, b]) = [α, 6] + 7(α, &) + /t)(α)τ(&) - ρφ)τ(jn) .

Cancelling common terms, we find just the requirement that τ belong
to C^Sί; X). This space is thus canonically identified to automor-
phisms of © which are trivial on X and on ®/X. This is so for
any possible ©.

Among the automorphisms of ® associated to Cx(Sί; X), some
will be inner antomorphisms of the form exp ad x, xe X. Indeed,
if x e X, then ad x2 = 0 so exp ad x = 1 + ad x. Thus exp ad x(a) =
α + [x, a] = α — /0(α)ίc. Therefore B̂ SH; X) is identified to the inner
automorphisms attached to Cx(Si; X). So finally, HX%1; X) is just the
group of outer automorphisms which are trivial on X and on ®/X.

In the light of this general discussion, we see that kerr, since
it forms a complement to Adikf = B\SQ; S*) in C\S0, S*), by virtue
of the discussion preceding this proposition, is indeed isomorphic to
H\S0; Sη.

Therefore to complete the proposition, it remains only to com-
pute H\SOf S*). Since So is abelian, the cocycle identity for τ e
C(S0, S*) reduces to m*(x)τ(y) = m*(y)τ(x) for x, yeSo. We define a
bilinear form Fτ on S x So by the rule FT(z, x) = z(x)(z). The cocycle
identity then says

(3 ) Fv(zx, y) = Fτ(zy9 x) .

In other words, the map (x, y) —> Fτ(zx, y) is a symmetric bilinear
form on SQ x SQ for any zeS. Let SQ be the universal null-exten-
sion of So constructed in Proposition 2.7(a). We have the exact
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sequence

0 >/ >S0-^->S0 >0

where IQ 7}(S0). Choose a linear cross-section σ to q. Then σ(x)σ(y) =
σ(xy) + δ(x, y), where δ(x, y) e I. The map δ: SQ x So~+I is evidently
bilinear and symmetric, and in fact, δ(zx, y) is symmetric in x and
y for any z e S . Thus if λ e l * , we see λ°S is a bilinear form
coming from a cocycle in C^SQ, S*). Thus we have a natural map
β: I* —>HXSO, S*). I claim β is an isomorphism. Indeed, if Fτ is
the bilinear form of a cocycle, put 5E0 == So φ L, where L is a line
with basis element Z. Define a multiplication ° on To by the rules

s o s' = ss' + .FΓ(s, s')£ f° r s> s' eS0 , and
ί o i = S o ϊ = 0 .

The properties of Fτ make o into a commutative associative multi-
plication with L £ 7}(T0). Further straightforward computation shows
L g To if and only if τ is a coboundary, in which case Fτ(x, y) =
jM(a?i/) for some μeS*. This completes Proposition 2.8.

As a consequence of our study of automorphisms, we obtain the
following uniqueness result. We say a faithful normal polarizing
triple with abelian quotient (N, M, ψ) is split if in the associative
correlative (Wl, So, So, a) to (N, M), the extension class a is trivial,
that is, 91 is isomorphic to S^X^S* as-Lie algebra. If N allows
such a split triple, then we say N is a split HAT group.

PROPOSITION 2.9. (a) Έhere is a bisection between isomorphism
classes of split HAT groups qnd isomorphism classes of abelian
nilpotent associative finite dimensional algebras. In other words,
if N is a split HAT group with split (normal faithful polarizing)
triple (N, M, ψ) (with abelian 'quotient), and if (271, SQ, SOf 0) is the
associative correlative, then So is determined by N. That is, if
(N, Mr, ψ') is another split triple with associative correlative
(W, SO, SO, 0), then SO is isomorphic to So.

(b) In fact, if η(S0) c S0

2, then 7](S0) Π C(^Γ^) is uniquely de-
termined modulo ^V*™. In particular, if (^€f, S'O,SΌ,O) is another
associative correlative for ^V*, then ^V* = So + ^ ' = SO + ^€f, so
dividing ^K by ^&* defines an algebra isomorphism form So to S'Q,

Proof. Write ΛT = So0S*. It is clear that when Λ" is split
= η(So)L exactly. Consider ^ ( 2 ) ( ^ T ) . Since 5£(Λ*) is one-

dimensional, an element n in Λ~ can be in ^ ( 2 ) ( < ^ ) only if the
image of ad n is one-dimensional. Take seS. Then the kernel of
ads acting on S* is (sS)L. Thus s can belong to JT ( 2 )(^r) only if
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s e η(S0). Conversely, when ^V is split, then ad s(^V) = ad s(S*) = So1

for 0 6 rj(S0). Thus

s0 n -sr ( l )c^n = s0 n

(If ^ ^ is not split, these equalities are inclusions.) A general element
of βfi2)(^Γ) has the form s + λ with s e S 0 and λ e S * . Since

ad(s + \){^T) 2 ad(s + λ)(S*) = ads(S*)

we see already that s e ^ ( 2 ) O^") by our analysis above. Hence

n S*).

For λeS*, we have in adλ = {Xos: seS0}. Evidently λ°s belongs to
%>{tyfr) = So1 for all s if and only if λfoβg) = 0 for all st and s2 in
So. Thus

j r ( 2 ) u r ) n s* - (So2)1.

Consider for a moment a general Lie algebra Λ~ with one-
dimensional center. The bracket on %*{2)(^V*) is then an alternating
JΓC^")-valued form, the radical of which is the center JΓ(2)(cΛ0
If Y is any subspace of %ί{2\^V) complementary to the radical, then

— έ%f will be an ideal in ^ 7 and we can write Λ" —
+ Sίf, with C{^f) the centralizer of £{f in <yK Further

n ^f =

so .xT is the "central product" of 3έf and G{2ίf). Furthermore
%:*\C(§{f)) = %r{%r{2X^Γ)) will be abelian. We will call a Lie algebra
with abelian second center iϊ-reduced, since it is then not possible
to factor off an Heisenberg group as above. Thus any <yK with
one-dimensional center can be factored into the central product of a
Heisenberg Lie algebra and an H-τeduced algebra.

I claim that such a decomposition is unique up to isomorphism,
in the sense that if have two central product decompositions of <yK
into Heisenberg and ίf-reduced pieces, there is an automorphism of
^V taking one decomposition to the other. Indeed, two such de-
compositions result from choosing two different complements Y and
Y' to ;r(,3r(2)C^r). Let the resulting decompositions of of Λ" be
written in the form

x

Here X commutes with Y and X' commutes Y'. We may represent
an element of Y' in the form
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y' = y + A(y)

where A e Horn (Γ,
Similarly, we may represent an element of X' in the

x' = x + B(x) + C{x)

where £eHom(X, Y) and C e H o m ( X , C ( ^ ( 2 ) ( ^ ) ) . We will show
that, given A we can find B and C such that the direct sum of
y~+V'9 x-*κ' and the identity on C(^"(2)C^O) will be an automor-
phism of Λ". We will actually choose CeHom(X, jT(jr ( 2 )^r))).

The condition that X' and Y' commute is

0 = [x', y'\ = [x + B{x) + C(x), y + A(y)]

= [x, A{y)\ + [B(x\ y]

The bracket [#, A{y)\ is, as a function of y, an element of Hom(Γ,
%*(yV)). Since bracket makes Y isomorphic to Hom(Γ, ^ ( ^ " ) ) ,
there is a unique choice of B{x) so that we do have [x, y] = 0. It
remains then to choose C so that the indicated map will be an
automorphism of ^V. Since C is to take values in ^ ( ^ ( 2 ) ( ^ ) ) ,
the only brackets to worry about are those of X' with itself. We
compute

[%Ί, x'z] = [xi + Bfa) + C{x,), x2 + B(x2) + C(x2)]

= [x19 x2] + [Bix,), B(x2)]

+ [x» C(x2)] - [x2, Cfa)]

The bracket [B(Xj), B(x2)] is an alternating ^(^Γ')-valued bilinear
form on X. Since, by construction of X we have

;r(^ ( 2 ) ur))A§rur) ~ Hom(X, %-{^r))

we see that the bracket ]xlf C(x2)] is an arbitrary ^(t^^*)-valued
bilinear form on X, and [xlf C(x2)] — [x2, C(xJ] is its antisymmetri-
zation. Thus C may be chosen so that [x[, x2] = [x19 x2], and our claim
concerning uniqueness of the decomposition

into Heisenberg and H-τeduced factors is proven.
Now return to our split HAT Lie algebra ^V = S o 0 S * .

have computed above that JT ( 2 )(^r) is the sum ^(So)0(So

2)1. On the
other hand, the centralizer of η(S0) in S* is η(So)1. Thus Sr{2\^Γ)
is nonabelian if and only if (So)1 §= ̂ (S0)

J-, that is, if and only if
η(S0) g S2

0. On the other hand, write So = X + S, where X is a
complement to S2

0C)η(S0) in ^(So), and S0

2 = SI 2 ^(So). Then we can
write
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and I φ l * ® ^ ^ ) is Heisenberg, while ^P=S0(BS* is fZ-reduced
by the above remarks and the construction of So. By the essential
uniqueness of such a decomposition, part (a) of the proposition is
reduced to part (b). But by our analysis above, when η(SQ) Q SI,
we have

so that 7](S0) is determined modulo ^Γ{2) by ^K Therefore if ^ ^
S J 0 S ' is another presentation of ^V as HAT Lie algebra, then
V(S0) = η(SΌ) modulo ΛT™ = 7](Soy = 7}(S'0)\ Hence τj(S0) + S'* =
C(^V{2)), and therefore ^T ~ So 0 S'*, as asserted, and so So and
So induce the same algebra of endomorphisms on S'*. This completes
the proposition.

REMARKS, (a) I am grateful to Richard Penny for pointing out
an error in the original formulation and proof of Proposition 2.9.

(b) Bracket in the split HAT Lie algebra ^V = *S0©S* induces
a symplectic ^(^)-va lued from on C(^Γ{2))/^Γ{2\ and we may
choose as complement to η(S0) the inverse image in C(<yK{2)) of any
isotropic complement to η(S0) in C(^V{2))/^4^{2). It is clear that the
automorphism subgroup of ^V leaving So pointwise fixed acts transi-
tively on the set of such complements.

(c) It should be pointed out that a split HAT group can also
be represented as a nonsplit HAT group for a different algebra.
Thus if So is generated by x with xz = 0, we can construct the 5-
dimensional split HAT group , # " = S 0 © S * . This will have basis
{x, x2, f19 /2, /3}, where fίf f2, /3 is the basis of S* dual to {1, x, x2}.
Thus /L spans the center of <yK, and

[x, f2] = [x2, /3] = f, , and [x2, /3] = fγ ,

other brackets being zero. Thus {fί9 f2, x2} span an abelian ideal
and ^4^\^£ is abelian, being spanned by {x, fB). Further, the action
of Λ^\^£ on ^ is by the algebra generated by x and y, with
x2 = xy = y2 = 0, so ^V is an nonsplit HAT group for this algebra.
Of course, the extent to which this phenomenon can occur is limited
by Proposition 2.6 (b).

3* Smooth harmonic analysis* To relate harmonic analysis on
nilpotent groups to classical problems, it seems necessary to go
beyond L2 analysis and consider questions of smoothness. The argu-
ment of this section is that the smooth representation theory of
nilpotent groups is nice and deserving of some development. We
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divide our attention between writing down basic definitions, proving
certain facts, and formulating some problems.

Let V be a real vector space. We recall the definition of the
Schwartz space £f(V). Let &S&(V) be the polynomial coefficient
differential operators on V. Contained in έ^3f{V) are &(V), the
polynomials on V, and £2f{V), the constant coefficient differential
operators, and &£&, as a linear space, is the tensor product of &
and 2$. The definition of S^ is

= {feC~(V):suv{Tf(x):xeRn} < oo, all

Thus S? is defined by means of
By a polynomial diffeorάorphism of V we mean a biregular map,

in the sense of algebraic geometry, from V to V. Concretely,
φ: F —>V is a polynomial diffeomorphism if φ and φ'1 are given in
any linear coordinate system by polynomials. Another alternative
is to regard φ as an automorphism of &.

Let φ be a polynomial diffeomorphism on Rn

9 and let p e &(Rn).
Define φ*(p) = Ad 0(p) = poφ. Similarly, if v = Σ?=i Piid/dxt) is a
vector field, define Ad 0(y) by Ad Φ(v){f) = (v(/° 0"1)) ° ̂  We compute

where {α^ } is the matrix inverse to the Jacobian {dφ/dXi} of 0. We
recall the relation

2 J I -~^— ° Φ l ^ = Ojk .

It follows that det {dφj/dxt} is both a polynomial and the inverse of
a polynomial, hence constant. Therefore the ai3 are polynomial
functions also. Thus Ad φ defines an automorphism of & and of
the polynomial coefficient vector fields. Since &3ί is generated by
these spaces, we see Ad φ (extended in the obvious way) defines an
automorphism of &£&. Consequently, φ*:f—>f°φ defines an auto-
morphism of &*(V) (as a topological vector space). In other words,
S*(V) is a space of functions attached invariantly not to the rigid
linear structure of V but to the structure of V as affine algebraic
variety. (In fact, it is attached to an even looser structure, pre-
served by what one might call the "diffeomorphisms of polynomial
growth," but the affine structure is flexible enough for our present
purposes.)

Let N be a (connected, simply connected) nilpotent Lie group.
The exponential map exp:3ΐ—•ΛΓ is a diffeomorphism with log as
inverse. We define S^(N) to be the pullback to N by log of
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In the coordinates on N induced by exp, left and right translation
are both polynomial diffeomorphisms, so N acts continuously to the
right and to the left on S^(N). Also it is not difficult to check
that S^{N) is closed under convolution, and that it becomes a to-
pological algebra with convolution as multiplication.

Let MQN be a connected subgroup. Choose elements {#J = i£9ΐ
such that if 3ft, is the span of S)ΐ and the xi for i <^ j , then 2ft, is
a Lie subalgebra of 9ί and an ideal in 3fti+1, and such that 3ft, = 9ΐ.
Then define

X = {exp ttxt exp txxx: UGR} .

It is well-known that N = X M, and group multiplication in N takes
X x M diffeomorphically to N. Thus the natural projection N—>
N/M takes X diffeomorphically to N/M. We call such an X a
standard smooth cross-section to M in N. We parametrize X, and
hence N/M by means of the coordinates tt in its definition. We
define £^{N/M) to be the corresponding Schwartz space. It is well-
known that a choice of a sequence other than xt leads to a repara-
metrization of N/M differing from the first by a polynomial diffeo-
morphism of Rι. Thus £^(N/M) is well-defined. We also remark
that if 2ft is an ideal in 91, and U Q 9Ϊ is a linear complement to 3ft,
then exp U also parametrizes N/M and using linear coordinates on
U leads to the same Schwartz space on N/M. In particular, our
definition of S^(N/M) in the case M = {1} is consistent with our
previous definition of £f(N).

Slightly more generally, take a unitary character ψ of M. This
will define a line bundle over N/M. The sections of this line bundle
can be thought of as functions on N such that f(nm) = ψ(m)~1/(^)
for weJV and meM. We define 6^{N/M, ψ) to be those functions
/ which transform as above and whose restriction to X belongs to
S^{X). Here a reparametrization leads to a polynomial diffeomor-
phism composed with multiplication by a function of the form eip{x)

where p is a polynomial. The following easily verified lemma shows
that in this case too the definition of S*(N/M, ψ) is unambiguous.

LEMMA 3.1. Let V be a real vector space, let φ be a function
on V all of whose derivatives have polynomial growth. Then f—>φf9

the operation of multiplication by φ, defines a continuous endomor-
phism of

We may define L\N/M, ψ) similarly to &\N/M, ψ). It is the
space of functions f on N such that f{nm) = ψ{m)f(a) as before,
and such that fx 6 L\X). (As always, one identifies functions which
are equal almost everywhere on X.) Evidently, £^(N/M, ψ) is con-
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tained in U(NjM, ψ) as a dense subspace. Moreover, L2(N/M, ψ) is
the space of the unitary induced representation ind$ ψ, and £^(N/M, ψ)
is an invariant subspace. The unitary decomposition of L2(N/M, ψ)
was more or less described by Kirillov. I would like to draw at-
tention to the following.

Problem. Find a "smooth decomposition" for the "smoothly
induced" representation of N on S^{NjM, ψ).

The extreme cases of this problem are of course the case M = 1,
the regular representations on the one hand, and on the other, the
case when ind^α/r is irreducible. We will treat the irreducible case
more or less completely. We will also give some attention to the
regular representation, but our discussion will be far from complete.
A full treatment would involve putting a smooth structure on the
unitary dual N of N, and on the "operator algebra bundle" over
it, and then proving a version of the "Paley Wiener theorem" de-
scribing the sections of this bundle defined by S^(N).

One fact which is basic for all ind^ψ is this one:

PROPOSITION 3.2. Consider the map PM,ψ = P defined on (

by Pf(ri) = \ Mm)f(nm)dm. Then P defines a continuous open sur-
JM

jection from &*(N) to £*(N/M, ψ).

Proof. This is well-known and easy when N is abelian. By
proper choice of coordinates, we can make this projection look like
the abelian case. Indeed, let X be a standard cross-section to M in
N. The map μ: X x M-+N defined by multiplication in N defines
an isomorphism μ*: S^{N) ~ S^(X x M). On £f(X X M) we may
define P by Pf(x, m) = I fix, mm')Mm')dmf. If we use canonical co-
ordinates in M, then P has precisely the form of the abelian projec-
tion. Since μ*°P — P°μ*, the proposition follows.

Now focus on irreducible representations. One of Kirillov's
original results [8] says that if coordinates from some standard
cross-section to M are used to identify ^{NjM, f) to ^(Rn), then
the action of ^(Sft), the universal enveloping algebra of 9ΐ on
£*(N/M, ψ) transfers to the action of all of ^^(Rn) on S^{Rn).
This fact has been siezed on by the universal enveloping algebraists,
but its analytic consequences have not been emphasized. Let us
state the most obvious one.

PROPOSITION 3.3 (Kirillov). If an irreducible unitary represen-
tation p of N is realized as ind^ ψ, then C°°(p), the space of smooth
vectors for p, is identified to £*(N/M, ψ).
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Consider the operators on L\N/M, ψ). These may be realized
as kernel operators, in general with distributional kernels, belonging
to &**((N x N)/(M x M), ψ x ψ*). If the operator T has a kernel
which is a continuous function K(x, y) with x, y eN and K(xm, ym') =

ίx, y) for m, mf e M, then for φ e S^(N/M, ψ), we have

= ( 1
JN/M

K(x, y)Φ(y)dy .

Note that for a fixed x, the function K(x, y)Φ(y) is right invariant
by M, so the integral is well-defined. Note also that right and left
multiplication of T by p(N) corresponds to translation in the first
and second variables respectively* That is, the kernel of p(n^)Tp(n^)
is K(nz% n2y). Thus in any standard coordinate system on N x
N/M x M, the left and right actions of ^(9fc) together generate all
polynomial coefficient differential operators, by Kirillov's result.

We call an operator on L2(N/M, ψ) smooth if it remains bounded
when preceded and followed by arbitrary elements of ρ(^($ΐ)). We
denote the smooth operators by C^iSfip)). By our remark above
on the action of fϊ<(9£) on kernels, we see that C°°(Jϊf(p)) is precisely
those operators whose kernels belong to S^{{N x N)J(M x M), ψ x ψ*).
It is clear that if fe<9*(N), then ρ(f)eC~(£f(p)).

THEOREM 3.4. The map p: S^{N) —> C°°(£f(p)) is surjective.

REMARK. Since this result is the most delicate of the paper, we
write down most of the proof, although it is of a standard type
and rather clumsy. We proceed quite constructively. Presumably
general methods can be developed to prove results of this nature.
Also the Paley-Wiener theorem suggested above for the regular
representation would imply this theorem very quickly. Reciprocally,
an argument like this one might imply a weak version of Paley-
Wiener, covering representations "in general position."

Proof. We will actually prove a somewhat more precise result,
which we now formulate. By a basis of S^(N)t or other similar
space, we mean a linearly independent sequence {ejΓ=i £ S^(N) such
that:

S^{N) - {Σ a&i Σ I at | i
n < «> all n) .

and the obvious seminorms define the topology on S^(N). It is
known that bases exist. For g*(R), for example, the Her mite
functions give a nice example. Let us note also that if {eJ Li is a
basis for g*(N) and {/,}?=1 is a basis for ^(Af), then fo (x)/;}?:i=1
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may be renumbered to form a basis for S^(Nx M) =
For example, put e< ®/y = flr* where k = (l/2)(i + i — l)(i + j — 2)
then {̂ }Γ=i is a basis for ^{N x AT).

We will show

THEOREM 3.4 a. Tfte map p: S^{N) —> C~(£?(ρ)) is owto. More-
over, ker ^ is complemented in S^(N). Specifically, there is a
sequence {/JΓ=i C S^(N) such that | |/,|| grows at most polynomially
in i for any continuous seminorm on £f(N), and {p(fi)}Tssl is a
basis for C~(£f(p)).

Our argument proceeds by induction as usual. We may as well
assume that p is locally faithful. Then dim %*(N) = 1 and p is
nontrivial on %?(N). Let za, with aeR, denote the elements of
3?(N)f and normalize this parametrization so that ρ(za) = e2πίa. Choose
a one-parameter subgroup X of ^2(N), the second center of JV.
Elements of X will be xb9 belt. Let Nt be the centralizer of X in
iV. Then dim Nx = dim ΛΓ — 1 and iN̂  is normal in iSΓ. Choose a one-
parameter group Y complementary to Nλ in N. Let F be para-
metrized by yc, c 6 R. We suppose the parametrizations are normalized
so that Ad ye(xb) = ycxby^1 = a;^δβ. Together the groups X, Γ, and

form a 3-dimensional Heisenberg group ϋΓ such that JBΓΠ-NΊC

and H-N, = N.
We may realize ^ as ind£ α/r, where M £ iS .̂ Necessarily, £Γ Π

JVΊ £ Λί. Of course, ψ(za) = β2ffί% and we may assume that (̂a?6) = 1
for all 6. If we introduce appropriate standard coordinates on N/M,
then we can consider p as realized on functions on R x Rk, such
that the following formulas hold. Here t e R, and v eRk.

p(V,)f(t, v) = /(t - c, V)

/o(a?6)/(i, v) = e*«itbf(t, v)

ρ{n)f(t, v) = σo(Ad yτ\n))f(t, v) ,

for n 6 iVi, where σQ is the representation ind^ ψ, and σo(^) acts only
on the Rk-variables.

Let U Q 9^ be a complement to φ Π 9ϊi, and let ί7 = exp U. Then
C7 is a cross-section to H Γ) Nj. in iS/̂ . Choose a Lebesgue measure
on Ϊ7 so that du db da is Haar measure on iVi. For
define p(f)e^(U) by

Proposition 3.2 says p is a continuous projection of £^{N^) onto
£f(U). Moreover σo(/) = σo(p(f)du)f where the right hand side means
the natural extension of σ0 to measures.
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Write Ad* yc(σ0) = σc, so that σc(Ad* yc(f)) = σQ(f). If we define
pXf)(u) = ^f(uxbza)e2πi{a~bc)dadb9 then σc(f) = σc(pc(f)du). Let us com-
pute pc(Ad* #„(/)). We may write Ad yc(uxbza) = Ac(u)λc(u)cc^α+6c.
In this formula Ac is the map of U into itself induced by identifying
U = NJ(H f) NJ and taking the quotient of Adyc. The term Xe(u)
is defined by \(u) = Ad yc(u)Ac(u)~ι. The map log o λc o exp: U —*
Q Π 9̂ ! is linear. We compute

= J/(Ad y:\

= ^f(A7\u)X_c(u)xbza)e2πίadadb

= φc(u)A:Po(fXu) ,

where we have set φc(u) — ψ~\X_c(u)). Combining this with previous
formulas, we have

σe(ψcAΐ(Po(f))) = σlf)

In the coordinates on U derived from linear coordinates on U via
exp, the transformation Ae is linear and depends polynomially on c.
Similarly, φc is a unitary character depending polynomially on c.
Therefore we see we may find a cofinal family of seminorms || || on
£f{Ό) such that \\φcAΐ{g)\\ <,q{c)\\g\\ for geS^(U) and some poly-
nomial q in y. Of course, q depends on || ||.

Choose any weS^(R) with 1 wdt = 1. For geS^(U) and ee

\ put

F(g, e)(uxbza) -

A straightforward application of the Fourier inversion formula for
R yields the result

, e)) = e(c)φM{g) .

Hence

σβ(F(flr, β)) = e(c)σo(^r) .

Therefore, finally

)) - e{t)σo{g)(f{t, v)) .
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Moreover, our estimates on φcA*(g) show F(g, e) depends continuously
on g and c.

By induction, we may assume there is a sequence {/,}Γ=i Q <9*(Nd
such that 11/Jl has polynomial growth in i for any seminorm and
{0o(fi)}T=i is a basis for C^(^f(σ0)). In our coordinates then, the
σo(fi) are a basis for the operators on S^(Rk) given by Schwartz
kernels. These may also be regarded as the operators on 6^{R x Rk)
which are independent of the Rk-variable. We may also regard S^{R)
as operating on S^{R x Rk), by multiplication operators depending
only on the /2-variable. Let {eJΓ=i be a basis for £f(R). As we
saw earlier, we may renumber the set et (x) σo(fj) so that it forms
a basis for all smooth kernel operators which leave each subspace
t x /^-invariant, that is, all smooth kernel operators commuting with
p(xh) for all b. We see, however, from our formulas above that

e< ® σj(fs) = p(F(plfi), et))

and it is clear from the estimates above that \\F(po(fj), et)\\ grows
at most polynomially in i and j for any continuous seminorm || ||
on ^(JVO.

Thus we have shown p maps S^(NX) onto the smooth kernel
operators commuting with p(xb). It remains only to throw in the
translations along the X-spectrum (i.e., the invariable). This is
done in straightforward analogy with the above, using the one-
parameter group Y. The details are left to the reader.

COROLLARY 3.4.1. p(S^(N)) acts algebraically irreducibly on
C"(p) for peN.

COROLLARY 3.4.2. Let peN and let a be any unitary represen-
tation of N. Let Sίfp and £έfσ be the spaces of these representations.
Let T: C^β^p) -+ £ίfσ be any intertwining map for the action of

Then T is isometric up to multiples.

Proof. Let v1 and v2 be two orthogonal smooth vectors in
Let P be an orthogonal projection onto the line through vlf so
Pv, = vx and Pv2 = 0. Then P e C°°(^f(ρ)), so P =_/>(/) for some
feSs(N). Then also P = /o(/*/*), where f*(n) = /(^"1), the " in-
dicating complex conjugation, and / * / * means the convolution of
/ and /*. Put f*f* = g. Since T intertwines C°°(J^) and Jg^,
we have Tvγ = T(ρ(g)v,) = σ(g)(Tvύ, while σ(g)(Tv2) = 0. Therefore
TVi and Tv2 are in distinct eigenspaces of the positive operator σ(g)
and so are orthogonal. Thus T preserves orthogonality, so it must
be a multiple of an isometry.
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REMARK. Poulsen [13] has proved a similar result for general
Lie groups. A result of this type greatly shortens arguments such
as given in [7] and elsewhere.

COROLLARY 3.4.3. If peN and p = indίψ, then there is in
C°°(|0)* precisely one eigenvector with eigencharacter ψ for M.

We now pass to the consideration of some aspects of the regular
representation, mainly its central decomposition. Our proofs in this
discussion will be very sketchy. As noted at the beginning of this
section, £*(N) is an algebra under convolution. However, one may
convolve a Schwartz function / with a distribution fley(JV)*.
The result will be a smooth function which may not, however,
belong to S^(N) because it may not die fast at oo. In explicit terms,
one has the formulas

(D*f)(n) = D(LJ) and

where f(n) = fin'1), and LJ(n') = f(n~γn'), and Rn(f)(n') = f(nfn).
These formulas reduce to the more familiar integration formulas if
D is also in S^{N), or more properly, if D = Df, where Df(g) —
I f(n)g(n)dn, where fe^(N).
JN

Suppose h is a smooth function on 9ΐ*, such that all derivatives
of h grow at most polynomially. We may regard (integration against)
h as a tempered distribution on 5ft*. Thus the Fourier transform
h of h exists as a tempered distribution on 9ΐ, and log* (h), the
pushforward of h by log, is a tempered distribution on N.

THEOREM 3.6. (a) If h is a smooth Ad* N-invariant function
on $1, with derivatives of polynomial growth, then convolution with
log* (h) defines a continuous endomorphism J(h) of S^(N) commuting
with both left and right translations.

(b) The map h —> Ί{h) is an homomorphism from the algebra
of such functions (under pointwise multiplication) to the endomor-
phisms £f(N). That is ΊQi^yQi^ = 7(ΛΛι).

(c) If h is bounded, then Ί(h) extends to a bounded operator on
L2(N), with norm equal to the supremum of h. Further, the map
is a *-homomorphism in the sense that Ύ(h) is self-ad joint if and
only if h is real, and Ύ(h) is positive if and only if h is.

(d) The map h—+Ί(h) extends to an isomorphism of the W*
algebra of bounded measurable Ad* N-invariant functions onto the
von Neumann algebra on If(N) commuting with both left and right
translations.
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REMARKS, (a) Again, this is an integrated version of one of
Kirillov's original results [8]. It is also suggested by the theory
for finite groups [6], where it is an immediate consequence of the
character theory.

(b) Since the Ύ(h) act on S^(N), they also act on &**(N), and
commute with the action of N there. The spaces S^(N/M, ψ) can
be viewed as subspaces of S^*(N), specified by certain covariance
conditions. Hence τ(/) will preserve S^(N/M, ψ) and thus will act
on indί ψ. Similarly, if Γ Q N is a discrete cocompact subgroup,
then 7(/) will act on C°°(N/Γ). Thus the Ύ(f) can be used to de-
compose these representations. The analogue of (d) of the theorem
will probably fail here though, since the 7(/) can only separate the
orbits "in general position." This raises the question of how to
extend the 7-calculus, which one might call the "smooth central func-
tional calculus" on N, to cope with the "singular representations"
of N, when these occur.

Proof. The proof proceeds by inducction and is quite analogous
to Schiffman's argument in [15]. One first breaks up everthing into
subspaces transforming under characters of %'{N)9 and then one
observes that a distribution which is conjugation invariant and
transforms according th a given faithful character of 3Γ(N) actually
lives on a proper normal subgroup (unless of course N is abelian).

We will focus on (a) which is the most delicate part of the
theorem.

Suppose h is a smooth function on ^ * such that all derivatives
of h grow at most polynomially. We may regard (integration against)
h as a tempered distribution on <^V*. Thus the Fourier transform
h of h exists as a tempered distribution on ^Y\ and log* (h), the
pushforward of h by log, is a tempered distribution on N. Thus
we can convolve log* (h) with feS^(N). The result φ = log* (h)*f
will clearly be a smooth function. I claim that for any neN, φ(nz)
will be rapidly decreasing as a function of z e JΓ(iV). This may be
seen as follows. Let p be any polynomial on ^Y\ and let Δ be the
Laplacian with respect to some basis of ^ Then (ph)^'1 = (p^^Qi)
is a sum of partial derivatives of h, while / = Δ~ι is a negative
definite quadratic form on ^/V**, so that (1 — Δ)~k(phy~ι will be a
continuous integrable function on .x^* for k large enough. Hence
we may write

Kf) = \ Δk)(f)dn

where g is a continuous function such that gp is bounded. Therefore
for neN and z e %?(N) we have
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log* (h)*f(nz) = log»(Λ)(L.LH(/))

- J)k(L,(Lnf)exp m)dm

- logz))dm .

Since for large &, the function g will decrease faster than a given
polynomial, and for fixed k, the function (LΛ/)(exp (m — log z)) is
rapidly decreasing as a function of log 2, our claim follows.

Now for fe&*(N), or more generally if f(nz) is in
for every neN, we may define, for χ e

= \
J
\
Jar(N)

Then one has

/(w«; χ) = χ(z)f(n; χ)

or in other words fe^(N/3?(N), χ), and

= j
for proper normalization of dχ.

For each λ e ^ ( ^ ) * , let Xλ in «̂ *̂ be the affine subspace of
functionals whose restriction to %ί(^V*) is λ. Choices of Haar
measure on Λf* and on %?(^Ϋ~)* give rise to a canonical Heaar
measure dx on each Xλ. For h a smooth function on Λ"*, let fc^
be the restriction of ft to 1^. We consider hλ a distribution on Xλ

by multiplying it by dx. Standard abelian Fourier analysis shows
that if χ(s) = e2πίλ{lO8Z) for z e %T(N), then

log, (h>f)(n; χ) = (log, {hλ)*f){n)

where ϊ indicates the natural convolution on £f(N/3Γ(N)f χ), (or more
precisely, of £**(N/&(N), χ) with &>(N/3r(N), %)). Since we know
log, (Λ)*/ is rapidly decreasing in the direction of3Γ(N), it will suf-
fice to prove that for h as in the statement of the theorem, that
log, (hχ)*f( X) is in S^(N/^(N); χ), with some sort of uniformity in
χ. Note that the estimate given above for the decrease of log,(ft)*/
in the direction of %*(N) depended only on the rate of growth of
the derivatives of h. Similarly, the estimates given below for
log, (hχ)*f( χ) will be seen to depend only on the derivatives of hλ

and, at the last, on the group law of N, and to grow polynomially
in λ. This will suffice.

Consider convolution in <9*(N/%T(N): χ). If Y £ 3T(N) is the
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identity compoent of the kernel of χ, then functions in ^(N/^(N)f χ)
factor to <9*((N/Y)/(βtr(N)/Y), χ j where χ, denotes the factorization
of χ to 3T(N)/Y. If 3Γ(N/Y) strictly contains 3T(N)/Yf then we
may break S^{Nj^(N), χ) into smaller pieces, transforming according
to the characters of 3Γ(N/Y). In this case we may assume the
desired estimates are true by induction on dimiV. Thus the crucial
case is when %*(N/Y) = %*(N)/Y. In this case we may as well take
Y = {0}, so dim %*(N) is one-dimensional, the well-known situation.
Up to this point, we have not used the assumption that h was
Ad* i\Γ-in variant. Our reasoning applied to any h. But now if h is
Ad* AMnvariant, it must be constant on cosets of C ( ^ ( 2 ) ( ^ O ) \ where
C(^{2)(^4^) is the centralizer of the second center of .xK Therefore
h or hλ is in the image of the inclusion map

By induction, we may assume convolution with hλ is a continuous
endomorphism of £f*(C(%'{i)(N)/%'(N), χ) with estimates depending
only on the derivatives of hλ and the group law of C(%*{2)(N)) and
with polynomial dependence on λ. Then it is clear the analogous
statement is true for hλ and £s*(N/Z(N), χ).

The other statements of the theorem can easily be proven by
the same argument.

Thus "smeared orbital integrals" give rise to the central decom-
position of S^{N) or of L\N). Suppose # is an Ad* JV orbit in
91*. Let d^ be the invariant measure on έ?. We may regard dέ7
as a tempered distribution on ϋft* in the obvious way. Although
convolution with log* (d#) will not be an endomorphism of S^(N),
or bounded on U, it is still of interest to consider it.

Recall that if p is a unitary representation of N on <&?, and if
u, ve Sίf, then the function φu>υ on N given by φu>v(n) = (u, p{n)v) is
called a (left) matrix coefficient of p. Somewhat more generally, if
Te£f(£έf) is a trace class operator, then tr ρ(T)(n) = trace {ρ(n)-ιT)
is a matrix coefficient of p, and tr p: T—>tr p(T) defines a continuous
map from the trace class operators on J%f (with the trace norm) to
continuous bounded functions on N (with the sup norm). Now sup-
pose p is irreducible. Then if T €C°°(£f{ρ)), we have seen that T
is a trace class. We define the image of

tr p: C^Sf^p)) —-> C°°(N)

to be the space of smooth matrix coefficients of N.

THEOREM 3.7. Let peN, and let & £ 9ΐ* be the corresponding
orbit. Then left convolution by log* (d<?) maps S^(N) surjectively
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on the space of smooth matrix coefficients of p.

Proof. It is well-known [8] that if d^ is suitably normalized,
then for feS^(N) we have trace ρ(f) = log* (dέ?)*f(ΐ). The theo-
rem follows quickly from Theorem 3.4 and this fact.

In view of this result and the motivating discussion in § 1, it
becomes of interest to know the behavior of d3*. In the nonabelian
nilpotent case, dέ? is never a function—it is always supported on
some proper normal subgroup. Indeed, following Corwin and Greenleaf
[4], and Penney [12], we define the saturation of 0* to be the set
s(έ?) = {λe $β*: λ + & = £?}. It is not hard to show that s(έ?) is
the orthogonal complement of the ideal in 9ΐ generated by the radicals
of Bλ, λ e Λ Call this ideal &(jO). The next result is clear.

PROPOSITION 3.8. d& is a distribution on Q^p). That is, there

is a distribution iβ>&\ on $Qγ(p) such that dέ?(f) — (d&\(f\^ for

fe^(N).

One can ask for much more. One can ask for the precise sup-

port of dέ? and what sense, if any, the "values" or the "size" of

d& has. In this connection, recent results of Penney [12] should

be helpful.
Even the above crude result helps us to focus on the behavior

of the matrix coefficients. To this end, we define the wave front
set of an irreducible representation p of N. If neN, we will say
n is in WF(p), the wave front set of p, if we can not find a neigh-
borhood U of logn in 91 such that for any smooth matrix coef-
ficient φ o f p , w e h a v e \φ(exiptu)\ ^ c k > φ ( l + \t\)~k f o r a n y u e U a n d
keZ. Clearly Wf(ρ) is a closed set.

PROPOSITION 3.9. (a) For peN, the set WF(ρ) is contained in
H^p). In particular, smooth matrix coefficients of p die rapidly
(faster than any polynomial) in any direction not in H^p).

(b) Suppose peN is locally faithful. Then p is square inte-
grable if and only if WF(p) = %*(N). In that case, the smooth
matrix coefficients are precisely S^(Nj^(N), χ) where χ is the
character of %*(N) corresponding to p.

Proof. Statement (a) follows quickly from 3.7 and 3.8. For (b),
it is clear that if WF{ρ) = 3ί(N)f then matrix coefficients of p
vanish rapidly in any noncentral direction, so are square-integrable
modulo %{N). Conversely, from our discussion of square-integrable
representations, we know Hγ(p) — %*(N), and in fact, dέ? is just χ
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times Haar measure on 3ί(N). This clearly gives the rest of (b)
using 3.7.

Thus we see smooth matrix coefficients vanish rapidly in almost
all directions, but they must decay slowly in certain noncentral
directions unless p is square-integrable. Also note in the situation
of 3.9(b), the space ^(N/%T(N), χ) is a simple topological algebra
under convolution. Moreover, p defines an isometry from L\N/3ί(N),χ)
to the Hilbert-Schmidt operators on the space of p.

4* Return to the consideration of the oscillatory integrals Ep

defined in § 1 (1). It is known that there is an asymptotic expan-
sion [1], [2], [3], [10]

(1) EtP(f)~ Σca,ke-k^

with 0 ^ k ^ n — 1, and aeQ belonging to one of a finite number
of arithmetical progressions. I would like to address here the issue
of why such an expansion ought to exist.

As in § 1, let A denote the translation group on L\R), let S)
be the space of operators of multiplication by g, where q is a linear
combination of p and its partial derivatives of all orders and linear
functions, and let D be the unitary group of multiplication operators
Uq = e'q, with q e ®. Put N = A Xs D.

Let ®! £ D be the subspace generated by linear functions and
all proper partial derivatives of p. Assuming p is not itself linear,
we see that ©x is of codimension one in 3), and © = ©x © Rp. Let
DλQ D be the subgroup of D corresponding to Dlf and let iV̂  =
A χ s A Then Nλ is a normal subgroup of codimension one in N.
Thus eitp = Utp will form a one-parameter group of automorphisms
of N,. We note that N, still acts irreducibly on L\Rn), and that
conjugation by Utp quite obviously leaves the associated point of Nx-
in variant.

Let p be the representation of N defined by its action on L\Rn),
and let ft be the restriction of p to Nlm If ψ is the unitary character
on D such that

then we may write p = ind£ ψ. Thus (N, D, ψ) is a normal pclarizing
triple for p. Similarly, if ψ1 = ψ]Dl, then (N19 Dlf ψO is a normal
polarizing triple for p19

As we remarked in § 1, Haar measure on Rn may be interpreted
as the unique linear functional on S^{Rn) — C°°(p) which is invariant
by p*(A). (Here p* indicates the action on C°°*(p) contragredient to
p.) The appropriate group theoretic formulation of this fact is as
follows.
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LEMMA 4.1. Let Mx and M2 be subgroups of the nilpotent group
M such that M = MλM2. Then for unitary characters ψt of Mi9

there is up to multiples at most one distribution λ on <5^(N/M2; ψ2)
such that λ is an eigendistribution with eigencharacter ψx under
the left action of Mx. A nontrivial such λ exists if and only if
ψ1 and f2 agree on Mγ Γ) M2.

Proof This is obvious.

Going further in our discussion in § 1, we noted that the oscil-
latory integrals Etp, defined by (1) of § 1 are invariant for
p(Aά Utp(A)), and are characterized up to multiples by this property.
Since the Etp are defined only up to multiples, it is appropriate to
regard them as points in PC™*(p), the projectivized dual of C°°(p)
(concretely, the projectivized tempered distributions). Thus we have
a situation where At = Ad Utp(A) is moving inside JVi, (or % is
moving inside 9 )̂ and simultaneously Etp is moving inside PC°°*(p).
As t —> oo, we know % will approach some limiting subalgebra S3 £
9^. If the Etp approach some limiting point in PC°°*(p), then this
distribution will evidently be invariant for p(B). The philosophy
we would like to adopt is that the map At-+Etp is actually the
restriction to some open set (an "affine model") of a continuous, or
even smooth, map from some projective variety X of subalgebras
of 9^ to (projectived) distributions invariant by the corresponding
subgroups. This hyperplane section bundle on PC°°*(ρ) would then
induce a smooth line bundle over X, and the evaluation map would
map C°°(p) into smooth sections of this bundle. From this point of
view, an asymptotic expansion of the form (1) would then simply
be a Taylor's series for these smooth sections with respect to ap-
propriate coordinates.

This philosophy works quite precisely when p is an homogeneous
quadratic polynomial. In that case, JVi is an Heisenberg group, and
the Etp, — co < t < oo together with the Dirac d at the origin form
a projective line inside PC°°*(ρ). The standard proof [5] of the
asymptotic expansion (5) of § 1 may be interpreted in this light, or
an alternative proof, based directly on the group theory, may be
given.

As might be expected, a direct attempt to apply this philosophy
to general polynomials runs into trouble. Computations reveal the
following facts.

LEMMA 4.2. Let notations be as in the above discussion.
( i ) If the partial derivatives dp/dXi are linearly independent,

then S3 is their linear span.
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For (ii) and (iii) assume (i) holds.
(ii) The support of any distribution invariant under B is

contained in the common zeros of dp/dXi (the singular points of (p)).
(iii) // p has an isolated singularity at 0, then the B-invariant

distributions are precisely those combinations of partial derivatives
at 0 which annihilate the ideal in the formal power series generated
by the

From the final fact, we see that B will have an essentially unique
invariant distribution precisely when the dp/dXi generate all formal
power series with zero constant term, that is, when p is a non-
degenerate or Morse singularity, or essentially when p is a quadratic
form, that is, Nt is Heisenberg. Thus we must skirt the issue in
some way. We will retreat to a more abstract generalization of
the Heisenberg group, where our ideal conditions hold. We will
then attempt to relate this situation to the more concrete one which
motivated us.

Let N now denote a nilpotent group with a locally faithful
square-integrable representation p. Let χ be the character of 3f(N)
defined by p. Let λ e 9ΐ be a point on the orbit corresponding to p.
This orbit will then be λ + ^(Sΐ) 1 . Let VQ 9ΐ be the kernel of λ.
Suppose (% 3ft, λ) is a polarizing triple for p. If 3ft0 = 3ft Π V, then
we see 3ft0 = ker Xlm and 3ft = 3ft0 0 ,2f (9ΐ). Also it is not hard to
see that 3ft0 is an isotropic subspace of maximal dimension in V with
respect to Bλ, and that 3ft0 is a subalgebra of 9ΐ. Conversely, if
3ft0 Q V is a subspace enjoying these two properties, then putting
9ft = 3ft0 © 3Γ(lft)9 we see (31, 3ft, λ) is a polarizing triple for p. In
summary, we conclude polarizing triples (91, 3ft, λ) are in bijective
correspondence with maximal JBj-isotropic subspaces of V which are
also subalgebras of 9i. These subspaces form a closed subvariety
of the flag manifold of maximal βλ-isotropic subspaces of V. Call
this subvariety 77. Over 77 there is a natural vector bundle C which
attaches to each point in Π the subspace of V which defines it. If
dim V=2n, then elements of Π have dimension n. Thus Λ*(C)9 the
nth exterior power of G, is a line bundle over 77, called the volume
bundle of 77.

According to Corollary 3.4.3, for each 9ftoe/7, there is on C°°(p)
a unique (up to multiples) linear functional λ(3ft0) which is invariant
under p*(M0). Thus we may define a map

λ: 77 > PC°°*(p)

by λ: 3ft0—»λ(2ft0). Let Λ denote the pullback by λ of the hyperplane
section bundle on PC°°*(p). This A is a complex line bundle over 77.
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THEOREM 4.3. (a) The map X is smooth, in the sense that if
f: [0, 1] —>/7 is a smooth curve, then f*(A) is a smooth vector bundle
over [0,1], and sections of f*(A) obtained by pulling back sections
of the hyperplane section bundle are smooth sections.

(b) // A is the complex conjugate of A, then A® A is the
(complexification of) the volume bundle of Π.

REMARK. When N is the Heisenberg group, this result is due
to Kostant [9].

Proof. Given SDΪ0 e Π, we define on ^(N/^r(N), χ) (where χ is
the complex conjugate of χ) a distribution v(M0) — v by the formula

y(/) — \ f(m)dm ,
J M Q

where dm is Haar measure on Mo. We will abbreviate S^(N/Sί(N)fχ) =
S^. It is easy to see that v: Π —> £f* is smooth, and that the as-
sociated line bundle over Π is just the volume bundle. Moreover,
v(M0) is both right and left invariant. Since L\N/Mf{N), χ) forms
an irreducible N x N module under right and left translation, this
module being isomorphic to p ® p* (outer tensor product), another
application of Corollary 3.4.3 shows v(MQ) is essentially the only left
and right Afo-invariant distribution on S< Moreover, by Proposition
3.2, left or right convolution with v(M0) projects S? onto S^(N/M, χM),
where M = M0^(N) and χM agrees with χ on 3Γ(N) and is trivial
on Mo.

Take a vector veC"(p) and define Φ:C~(p)-+^ by Φ(w)(n) =
(u, p{n)v). The usual theory of square-integrable representations
says Φ is isometric with respect to the appropriate inner products,
and embeds the space of p as a submodule of &* under the left
action of N. Moreover, Φ(v) is an idempotent in £ζ and the image
of Φ is precisely S^*Φ(v). It follows that the unique *̂(ikίo)-in-
variant distribution is precisely v(Λfo)*^*Φ(t;). It is evident that
this depends smoothly on 3K0. This proves (a). For (b), note that
λ(Sft0) (x) λ(SK0) e C~*(ρ) 0 C°°*(ρ) = C-*(£f{p)) = &* will define an MQ

bi-invariant distribution on S^, which must therefore be v(2H0). This
proves (b).

The remaining discussion is primarily speculative.
Return to the situation considered at the beginning of this sec-

tion. In particular, reconsider the groups N = AX8D and Nx =
A χ s A We know that (N^D^ψt), where ψ1 is as defined in §4,
(2), is a normal polarizing triple for a locally faithful representation
px of Nγ. In particular, (Nί9 A) is a maximal normal abelian w-pair.
If (®!, JS0, Sί, a) is the associative correlative of (Nlt DJ, then a = 0
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since JVΊ is a semidirect product. The algebra So is the algebra of
constant coefficient differential operators restricted to ©w and Sί is
the subspace first-order operators. We put of ^ 1 = S0X,S)1. One
easily checks that i\ζ contains JVi as a normal subgroup, and that
(N19 D19 ψ±) is a normal polarizing triple for an irreducible square-
integrable representation of Nλ. It follows that iVj. is the split HAT
group associated to SQ.

We may perform the same construction with 3^ replaced by
91. Let the associative correlative of (% S) be (©, Γo, SI, 0). Note
that So is the quotient of To by the one-dimensional ideal Z in To

which annihilates S)lβ Define ^ = TO X.®. Then N is again an HAT
group, and the inclusion S i £ S can be extended to an embedding
N^ N as normal subgroup. In fact, ®x is the commutator ideal
in ft, and its centralizer is Z + ®. Choosing an embedding JV,. —> N
amounts to choosing a complement to Z in To. Also, it results in
a decomposition of the type described in Proposition 2.6(c). Recall
that our polynomial p defines a complement to ®i_ in ®. Choosing
this complement defines, in the manner of 2.6(c), a complement S'o
to Z in To. We may use So to define a standard embedding Nt~+N
as normal subgroup. Then the line through p in $1 will define outer
derivations of Hl19 which may be exponentiated (actually, their squares
are already zero) to give a one-parameter group of outer automor-
phisms, exp ad tp — at. ^

Let A = 1 + So £ ΛΓlβ Then Ά^(Nj) is a polarizing subgroup
for px. Therefore there is in C°°*(pύ an essentially unique point
fixed by Ά. Let at act on Nlu Put ^(4) = ^ . As t—>oo, the
groups At will approach a limiting position B. According to Theorem
4.3, the distributions corresponding to the Άt must approach in
PC"*(pa the distribution corresponding to B.

How does that look concretely? We may realize p19 analogously
to plf as indSj^i. Further, we may identify the space of pΣ with
L\Ά)9 and then A will act by translations and Dι will act by multi-
plicaton by exponential polynomials in appropriate coordinates. (In
fact, coordinates on Ά may be introduced so that D1 will act by
exponentials of linear polynomials.) In any case, the automorphisms
at will preserve pί9 so that we may extend pι to the group at. In
this realization px{at) will also act as multiplication by an exponential
polynomial. This polynomial on Ά will be closely related to the so-
called "universal unfolding" of p [16]. For this reason, it seems
not too far-fetched to call ρι the universal unfolding of plt

Hopefully the construction of pt affords some sense of why
asymptotic expansions of the type of § 4 (1) should exist. However,
something is certainly lost in the process: our original translation
group A is now only a small subgroup of Ά9 and &*(A) is not a
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subspace of S^(A), but must be regarded only as a subspace of
S^*(Ά). Thus the translation of the asymptotic expansion given by
Theorem 4.3 into an expansion of the type of § 4 (1) presents technical
difficulties. These difficulties are quite possibly no less considerable
than the existing proofs of §4 (1). Thus it is moot at this point
whether Theorem 4.3 can be translated into concrete formulas con-
cerning Etp. The answer will require further work.

Finally, we remark that the question of the Fourier transform
of eitp is connected with the possibility of realizing pί also as being
induced from A ^(NJ, for the intertwining operator between the
two realizations is essentially the Fourier transform.
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