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QUOTIENTS OF COMPLETE INTERSECTIONS
BY C* ACTIONS

RICHARD RANDELL

We consider complete intersections V in Cm which have
an isolated singularity at 0. When V admits a C* action,
one has the orbit space F* = V — {0}/C*. In this paper we
determine when V* is a topological manifold, or in some
cases, the precise dimension of the set Σ along which F* is
not a manifold. For proper actions we consider a natural
complex structure on the space F* and determine some
equivalences among F* for different F. Our methods are
topological; the results are expressed numerically in terms
of weighted degrees of the polynomials defining F.

1* Introduction* Let /(1), , f{k) be complex polynomials in
z = 0*1, •••, O . Let F(/ ( i )) = {zeCm\βj)(z) = 0}, and suppose that
V has an isolated singularity at 0 and is the complete intersection
of the F(/ ( i )); dimc V = m — k. We set n •= m — k. Further sup-
pose that there is an action of C* = C — {0} on Cm of the form

(1.1) σ(t; z19 , O = (**%, , **"*J

leaving F invariant, with (i) fteZ, i = 1, « ,m and (ii) g.c.d.
(0i> '••>?») = l Such an action will be called a diagonal action of
type (&, •••, qm). We assume that F is not contained in any hyper-
plane so that (ii) implies the C* action is effective. Also, qt Φ 0
implies that 0 is the only fixed point, while qi > 0 implies that the
action is proper (i.e., the map ψ: C* x Cm~-*Cm x Cm given by
iK*> ?) — (?> σ ( ^ ?)) i s Proper.) We shall call such actions fixed-point
free and proper, respectively.

Results of Holmann [5] show that for proper actions there is a
unique complex structure on F* = V — {0}/C* such that the orbit
map is holomorphic. Later we will describe this structure in more
detail.

By [10, Proposition (1.1.3)], any algebraic variety V admitting
a C* action given by a morphism of algebraic varieties may be
embedded in some Cm so that the given action is induced by a diag-
onal action on Cm. By the above, the action is proper and without
fixed-points on V — {0} precisely when qi > 0. Actions with qt ^ 0
are also of interest, as they arise when considering C* actions on
versal deformations.

We next note that [10, Proposition (1.1.2)] allows us to assume
that F is defined by weighted (or quasi-) homogeneous polynomials.
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Recall that given an m-tuple w_ = (w1} , wm) of positive rationale
we say that a polynomial is weighted homogeneous with weights w
(or, / is of type w) if ajwt + + ajwm = 1 for every monomial
ctzΐ1 zZr of /. Write w—uJVi, (uif vt) = l and let d=l.c.m. (%„ , u j ,
^ == d/Wi. Then

We call cί the polynomial degree of / and g*, i = 1, , m the co-
ordinate degrees of /. The coordinate degrees are related to the qt

of (1.1).
We may thus restate our situation: V is a complete intersection

of varieties F(/ ( i ) ) , j = 1, •••,&, where / ( i ) is a weighted homoge-
neous polynomial with degree d{j) and coordinate degrees q\s\ i =
1, « , m . Furthermore, there are integers λ ( i ) with g.c.d. (λ(1), •••,
λ<*>) = 1 so that (qlf , gj = V V , , ^(i0, i = 1, , fc.

Since F is a complete intersection we may conclude from work
of Hamm [3] that K = V Π S 2 w" x is a (2n - l)-dimensional manifold
with an effective action of S1aC*. It is easily seen that ϋΓ* =
Z/S 1 is homeomorphic to V*9 and we will often work with K*.

In § 2 we state some results on S1 actions due to Neumann [8]
which we use in § 4, where we determine necessary conditions for
iΓ* to be a topological manifold. The most easily stated result is
(with qi Φ 0).

COROLLARY 4.4. Suppose n > 3 and K* is a manifold. If
the weights w}5) are the same for all j , then the weights are in-
tegers, and V is therefore equivariantly homeomorphic to a variety
defined by Pham-Brieskorn polynomials.

In § 5 we determine number-theoretic conditions sufficient to
ensure that certain K* are manifolds, and in fact we determine
precisely the dimension of the singular set. The final section studies
the complex structure of F* if qi > 0. We show that F* is non-
singular as a complex space precisely when if* is a topological
manifold. We also give a general criterion to determine when dif-
ferent F yield biholomorphically equivalent F*.

Many authors have studied these varieties. J. Milnor [7] was
perhaps the first to notice that weighted homogeneous polynomials
are topologically pleasant to work with. W. Neumann [8] considered
many of the same problems for the Pham-Brieskorn polynomials
ΣzV1', we often use his techniques. G. Edmunds [2] gave an explicit
embedding of F* into protective space. Finally, P. Orlik and P.
Wagreich have contributed extensively to the study of varieties
with C* actions [10, 11, 12, 13]; it is a pleasure to thank them for
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many useful conversations and comments.

2. Slices and S1 actions* It is convenient to work with the
action of S1 on K. In this section we briefly recall some language
of slice diagrams (see Janich [6] for more details) and state some
results of Neumann [8] for quotients of linear actions of S1 and
finite cyclic groups.

Let G be a compact Lie group. At every point x of a G-mani-
fold X there is a slice Wx transverse to the orbit G(x) of G at x.
Wx is a real vector space and the isotropy group Gx = {g e G \ gx = x}
acts effectively on Wx via a representation σ. The slice theorem
[6, 1.3] yields the following easy result.

THEOREM. Suppose G is a compact Lie group acting effectively
on a smooth manifold X. Then X/G is a manifold if and only if
WJGX is a manifold for every xeX.

We will write [Gx, σ] to indicate the action of Gx on Wx via σ,
and we will call [Gx, σ] the slice type at x. If WJGX is a manifold
we say [Gxf σ] has QM.

In our situation we have an effective action of S1 on K. Pos-
sible isotropy groups are {1}, cyclic groups Zq, and S1 (possible only
if some qt — 0). For W = R2 or C, we denote by σp the real or
complex representation of S1 or Zq on W given by

exp (iθ) • exp (iθp).

Every representation of S1 or Zq as an isotropy group of the S1

action on K on the vector space Wx is equivalent to one of the form
0*1 Θ ' Θ σPr Θ 3> where j denotes a i-dimensional trivial repre-
sentation.

Thus the following result of Neumann [8, Theorem 2.2] is crucial.
As usual, we write [Gx, σPl 0 © σPr 0 j] for a slice with Gx = Zq

or S1 and indicated linear action of Gx on Wx.

THEOREM (Neumann's criterion).
(i) Let g.c.d. (plf , pr, q) = 1 and let pt = g.c.d. (px, , pi9

• , Vn ?). ϊ 7 ^ ^ /or r >̂ 1, [Zg, ̂ θ ' 0 ^ 0 i] has QM if and
only if p, pr = q.

(ii) Let g.c.d. (p19 , pr) = 1. Γλen [S1, σPl 0 . . . 0 crPr 0 i]
QM if and only if r <; 2.

Thus, [Z6, σ2 0 σ3] has QΛί, while [Z6, σ2 0 (75] does not.

3* The slice representation• From the preceding section it is
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clear that we must determine the various slice types of the action
(1.1) on S*™-1 and K.

On SZm~~ι the problem is trivial. At a point z with precisely the
first r coordinates nonzero the slice type is [Zq, ( r - l ) © σ ί r + 1 φ 0 0 «J,
where q = g.c.d. (qί9 , qr).

On K the problem is slightly less trivial. Given an r-element
subset Ir of {1, , m}, we will write q(Ir) = g.c.d. {qif ielr} and we
will denote by T(Ir) the slice type of K at a point 2 whose nonzero
coordinates are precisely those with subscripts in Ir. O(Ir) will denote
the orbit bundle of T{Ir), that is, the set of the points of K with
slice type T(Ir). It is easily seen that dim* O(Ir) ^ 2(r - k) — 1.

LEMMA 3.1. If dim* 0{Ir) = 2(r - fc) - 1, tΛβw Γ(Ir) = [Zff(Zr,,

Proof. As in [8], this lemma is a consequence of the following
general fact: Suppose Y is an invariant submanifold of X, and sup-
pose that at some point y eY the codimension of 7 in X is the
same as the codimension of the orbit bundle of y in Y in the orbit
bundle of y in X. Then the slice type of y in Y is the same, up
to trivial factors, as the slice type of x in X.

REMARK 3.2. In general, the slice representation at z in K is
a subrepresentation of the slice representation at z in S2m~K

4* Bounds of the dimension of the singular set* Let Σ be
the subset of K* consisting of points where K* is not locally homeo-
morphic to R2n~2. We will call Σ the singular set of K*. Suppose
q. φ 0 for all i. Recall that we have weights w[j) — u\3)lv\*\
W\ v[j)) = 1, for i = 1, • , m; i = 1, • , fc. Let ί(Ir) = dimc (V Π

THEOREM 4.1. Suppose V is a complete intersection with iso-
lated singularity at the origin, and suppose V is defined by
weighted homogeneous polynomials fU) with weights w}5\ Further
suppose that V is invariant under a fixed-point free diagonal ac-
tion of type (qlf •• ,gr

m). // (i) there are sets I r c { l , •• ,m} and
Js c {1, , k} with r and s elements respectively, so that some
prime p divides v[j) for i e Ir, j e Js and if (ii) n — 2{k — s) > 3, then

(*) dim* Σ ^ 2(£(Ir) - 1) ^ 2(r - (fc - β) - 1) .

Before proving this we state several corollaries and give some
examples. As shown in [12] (and certainly to be expected), one is
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particularly interested in the question of when if * is a manifold.

COROLLARY 4.2. Suppose if* is a manifold and n > 2k + 1.
Then for every je{l, ••-,&} and any k-element set Ik, one has
g.c.d. {vp, i e Ik] = 1.

COROLLARY 4.3. Suppose n > 3. If there is a set Ir so that p
divides v[j) for i e I r, j = 1, , k then dimR 21 ^ 2(r — 1).

COROLLARY 4.4. Suppose n > 3, if* is & manifold, and the
weights w{ί) are the same for all j . Then the weights are integers
and V is equivariantly homeomorphie to a variety defined by a
complete intersection of Brieskorn varieties.

The last statement of 4.4 follows from the straightforward
generalization of [10, Theorem 3.1.4].

These results are essentially the best possible: If n — 2, if* is
always a manifold. If n = 3 we have the following

EXAMPLE 4.5. Let n = 3, k •-= 1, and define V by f(zίf , zA) =
z\ + ^ + z\ + s8sj. Then the weights are (5, 15/2, 3, 15/2), but one
may compute slice types and apply Neumann's criterion to see that
if* is a 4-manifold.

]

EXAMPLE 4.6. The variety V defined by the equations

z\ + zl + zf + zf + zf + z? = 0

z\ + zλz\ + zl5 + zl1 + zf

has n = 4, & = 2, and w{

2

2) = 9/2. The reader may use Neumann's
criterion and 3.1 to verify that if* is a manifold. (This will also
follow from 5.3.) This example should be compared with 4.4.

Proof of A.I. Suppose we have Ir and J8 satisfying (i) so that
the first inequality of (*) fails. Then we will show that (ii) also
fails. In the course of doing this we will show that (i) implies
t(Ir) ^ r — (k — s), giving the second inequality.

For convenience we will assume Ir = {1, , r) and J8 = {1, , s}.
Then for any monomial azl1 zir of fU), j 6 Js, one has

ajw[j) + + ar\wψ = 1 .

But since p divides vψ, i 6 Ir, j e J8, the above equation implies that
p divides Uij), i e Ir, j e J8. Since (u[j), vp) = 1 this is a contradic-
tion, and no such monomial appears in fU), j e Js.
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Therefore the set S — {z e Cm | zi — 0, i > r) is contained in
{/(υ = . . . = /<•> = 0}, so that dimc 7 n S = t(Ir) ^ r - (fc - s).

Now let S* = S Π JΓ/S1. Then dimΛ S* ^ 2(£(Ir) - 1), so that if
we let z 6 S Π K be a point with precisely the first r coordinates
nonzero, and if we assume that (*) fails, then the slice type at z
must have QM.

Let this slice type be [Zg, σ]. Then q = g.c.d. (qιt , qr). Since
p divides vp, i = 1, •• , r, p divides q[ύ) — dU)v\j)u^\ and thus p
divides q. Since σ has QM it follows easily from Neumann's criterion
and 3.2 that p must divide at least n — 1 of the go say p divides
qif i 6 !„_!, where Ir c i ^ . We may assume In — {1, , n — 1}.

We next claim that in fact, p divides v[j), i e In_lf j e J8. By
assumption p divides v[j)

9 ielraln_u jej8. For ieln_19 jeJ89 p
divides qt = Vj)dU)v[3']/u[j). If ί) does not divide v[j), then p divides
XU)d{J). This implies >̂2 divides q which in turn implies that p2

divides XU)dU), etc. Thus p divides v[j\ ieln_u jeJ8.
Now consider the k x m matrix Z) = (daβ), where daβ = dfia)/dzβ.

We have seen that every monomial in / ( i ) , ieJ" s, which contains a
variable #<, i = 1, , n — 1, must also contain some #,, ί > n — 1.
Let Po = K = = *m = 0}, and let P = P o n 7 . Then /(ίΊ(2;) = 0,
for zePQ, j eJ8, so dim cP ^ (n — 1) ~ (fc — s). On P we clearly
have ώαi5 = 0, 1 ^ <% ^ s, 1 ^ Ŝ ̂  ^ - 1.

Of course, F a s a complete intersection is singular wherever D
has rank less than k. Let D8 be the s x m matrix consisting of the
first 8 rows of D, and let D'8 be the s x (m — (n — ϊ)) = s x (k + ί)
matrix consisting of the last k + 1 columns of Ds. If the rank of
Dr

s is less than s at any point z0 of P, then V is singular at z0.
But D8 will have rank less than s if & — s + 2 minors of size

s x s vanish. Thus V will be singular on a set of complex dimen-
sion at least dimc P - (k - s + 2) ^ (w - 1) - (k - s) - (k - s + 2) =
% — 2(fc — s) — 3. Since V has an isolated singularity, n — 2(& — s) —
3 ^ 0 , contradicting (ii) and thus completing the proof.

We conclude this section with two trivial consequences of
Neumann's criterion.

PROPOSITION 4.7. Suppose V is a complete intersection with
isolated singularity and diagonal C* action, and suppose qx — =
qr = 0, qt Φ 0, i > r. // UΓ* ΐs α manifold, n — dimc V Π {zt = 0,
i > r} ^ 2.

Proo/. The S1 action on K fixes iΓ Π fe = 0, i > r}.

The next proposition is a topological analogue of a phenomenon
noticed by G. Edmunds [2, §5].
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PROPOSITION 4.8. The real codimension of Σ in K is at least 4.

Proof. This is a trivial consequence of Neumann's criteria, as
at any point the isotropy is S 1 or Zq9 and ϋΓ* can fail to be a mani-
fold at the point only if the slice representation has at least three
or two nontrivial summands, respectively.

5* Totally complete intersections* In general one needs to
know the form of the polynomials defining V in order to determine
the exact dimension of Σ. There is, however, one class of complete
intersections for which a knowledge of the polynomial and coordinate
degrees will suffice.

DEFINITION 5.1. Vn c Cm is called a totally complete intersec-
tion if the intersection of V with all coordinate subspaces of Cm has
minimal dimension.

An example is an intersection of Brieskorn varieties with suit-
able coefficients (see Hamm [4]). The complete intersection V of
4.6 is another such example.

DEFINITION 5.2. Given a complete intersection Vn with diagonal
C* action of type (qlf , qm), qt Φ 0, we define £< = g.c.d. (qίf ,
Qt, ' •> Qm)> and si = qjt, •••?,•••*«.

Since g.c.d. (qlf , qm) = 1 we easily see that (ti9 tj) = 1, i Φ j ,
steZf and (sif tt) — 1, i = 1, •••, m. Let 7 be the largest integer
such that there exist 7 of the sέ with common divisor greater than
one.

THEOREM 5.3. Suppose Vn czCm is a totally complete intersec-
tion with isolated singularity at 0 admitting a diagonal C* action
of type (ql9 , qm)f with qt Φ 0, i = 1, , m. Then the real
dimension of the singular set Σ of the orbit space V — {0}/C* is
max {-1, 2(n - m - 1 + 7)}.

Proof. We consider the associated S1 action on K. At a point
z of K with precisely the first 7 coordinates nonzero, we have cyclic
isotropy of order q = g.c.d. (qlf •• ,g r ). By 3.1, the slice represen-
tation is σ = σqγ+1 φ 0 σQm φ {n + 7 - m - 1).

We now apply Neumann's criterion: if* will be a manifold if

(5.3.1) Π g.c.d. (qίf '",qΐ9 qr+ί9 ••&+.» •'•»?») = «
8 = 1

(5.3.1) holds, by definition, if £ r+1 tm = g.c.d. (glf , qr). The
latter equation easily is seen to hold if and only if g.c.d. (slf , sr)=l.
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Since the set V Π {z I precisely z19 * , zr are nonzero} has complex
dimension n — (m — 7), the result follows.

In particular, if* is a manifold if and only if no collection of
(k + 1) of the Si has a common divisor.

For various applications (cf. [12, § 4]) one wishes to construct
V with C* action so that K* is a manifold.

PROPOSITION 5.4. Suppose integers ti9 sif i = 1, •••, m and cj9

j = 1, , k are given such that (t{, tj) = 1, i Φ j , and (si9 tt) = 1,
for all i. Define aiό = (c^XLc.m. (s19 , O l M Ϊ7mι α totally
complete intersection V defined by the equations

(5.4.1) Σ «</#"' = 0 , i = 1, , k

has a C* action. The associated K* is a manifold if and only if
no k + 1 of the numbers slt , sm have a common divisor.

Proof. This follows from 5.3 and easy computations which
yield

dij) = ^[l.c.m. (slf , O f t tm

Neumann proved 5.4 for k = 1. We should emphasize that 5.3
does not depend on the polynomials themselves, but only on the
polynomial and coordinate degrees.

6* The complex spaces V** We now change our viewpoint
somewhat and require g* > 0, i = 1, , m, so that the action (1.1)
is proper.

We give F* = V — {0}/C* a complex structure as in Brieskorn
and Van de Ven [1]: Define a holomorphic operation of C on V — {0} by

(6.0.1) t(z19 , O = (exp (*?i)Si, , exp ( t g J O .

Notice that an orbit of the C action on V intersects K in an orbit
of the S1 action on K. In fact the imaginary axis from 0 to 2πi
moves any point of K through its S1 orbit. Thus F-{0}/C= F * = U L * .

Consider ZaC as an additive subgroup and let H = V — {0}/Z.
It is easily seen that H = K x S1. Let Γ be the discrete subgroup
of C generated by 1 and 2πi. The torus T = C/Γ acts on H by
(6.0.1), and by results of Holmann [5], HjT is a complex space
homeomorphic to F* or K*.

THEOREM 6.1 (Neumann [8] for Brieskorn varieties). Suppose
V is a complete intersection with proper diagonal C* action, and



QUOTIENTS OF COMPLETE INTERSECTIONS BY C* ACTIONS 217

suppose V has an isolated singularity at 0. Then K* is a mani-
fold if and only if the complex structure on V* is nonsingular.

Proof. A theorem of Prill [14] asserts that the complex struc-
ture is nonsingular if and only if the isotropy group at every point
p is generated by elements of T with complex codimension one fixed-
point sets passing through p.

Let K denote the intersection of V with the unit sphere and
let z e K, θeS\ Then the T action on H is given by (a, b)(z, θ) =
(b(z), a(θ)), where (a, b) are coordinates of T in the direction of 1
and 2πi. Clearly the isotropy at (z, θ) e H is the same as the isotropy
of the S1 c T, S1 = {(0, 2πiθ)\0 ^ θ < 1} and this in turn is the same
as the isotropy of the S1 action on K at z.

The result then follows by direct comparison of the criterion of
Neumann for iΓ* to be a manifold with the above criterion of Prill.

We now generalize the concept of the cone over V, [10]. We
no longer assume that V is a complete intersection or has an iso-
lated singularity at 0. We do of course continue to assume that V
is invariant under a proper diagonal C* action.

DEFINITION 6.2. Suppose V is defined by polynomials fU) =
ΣazV- zir. The variety Vo defined by g{j) = Σazΐ^ z%rr™ is
cal led t h e weighted cone over V with weights (rlf •••, r m ) e ( Z + ) m .

Note that φ(z19 , z j = («ΓS •> s£m) defines a map φ: Vo-> V,
and that φ has degree τx rm so long as V is contained in no co-
ordinate hyperplane. In [10], the weighted cone with weights
(βi» * ,Qm) was called simply the cone over V. We will call this
special case the minimal homogeneous cone over V. Vo admits a
proper diagonal C* action which commutes with φ, so that one ob-
tains a map ψ: Vt —* V* of complex spaces. Thus if Vo is the mini-
mal homogeneous cone, F* is branch covered by a projective variety.

We next ask for the degree of ψ, and in particular, when is ψ
biholomorphic?

THEOREM 6.3. Let Vo be a variety with proper diagonal C*
action of type (q19 , qm). Define tt = g.c.d. (q19 , qu , qm).
Suppose VQ is the weighted cone over V of type (rίf , rw), and define
#i = g.c.d. (ri9 U). Then the degree of ψ: V* —> V* is rι rje1 βm.

Proof. The finite group G = Zri φ φ Zrm acts on VQ and
Vo/G = V. Similarly, G acts on Vt, and VZjG = V*. However,
the latter action is not effective in general. Setting Gf — {g e G\gz* = z*,
for all z* e F*}, we must show that the order of Gf is eL em.

Let βi generate Zri, so that β{i) = (1, , A, , 1) e G acts on
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VQ by fixing all coordinates except the ith, which is multiplied by
exp (2πi/Ti). Let % = /9?/<J* and 7(ί) = (1, , yi9 , 1). We claim
that G' is generated by the 7(ί).

We show first that Ύ{i)z* — z*. That is, we show that z and
7^(2) are in the same orbit of the C* action on Vo. Let ζ =
exp (2πi/β,). Then ζfo, , zm) = fo, , 3,_w ζ«%, s,+lf , sj» since
ζ«i = exp (2πiqj/ei) = 1 because β, divides t€ and £* divides qif iΦ j .
Further, since g.c.d. (qif et) = 1, some power of ζ maps z to 7(ί)(^).
Thus 7(ί)s* = » .

A similar argument shows that any element of G' must be a
product of 7(i), and the result follows.

COROLLARY 6.4. Let Fo be the minimal homogeneous cone over
V. Then deg φ = deg ψ = î gw.

Proo/ g c.d. (g,, ί4) = 1, i = 1, , m.

COROLLARY 6.5. ψ is biholomorphic if and only if r f divides
tif i = 1, •••, m.

This was proved by Neumann for Brieskorn varieties.

REMARK 6.6. The restriction of ψ to coordinate hyper planes
may not have the expected degree. For instance, if Vo is defined
by z\ + z\ + zl and V is defined by z\ + z\ + zl, deg ψ = 6 but
degψ\Zl=0 = 2, since the restricted C* action is not effective.

Corollary 6.5 shows that one cannot obtain biholomorphic com-
plex spaces by considering weighted cones between V and the mini-
mal homogeneous cone. One can obtain biholomorphic complex spaces
by dividing the exponents of the defining polynomial by tif assuming
that such division yields a polynomial. Our final result shows that
one does get a polynomial.

PROPOSITION 6.7. Suppose V is a hypersurface with an isolated
singularity at 0 and suppose V admits a proper diagonal C* action
of type (qίf •••,•?»)• // V is defined by /, with

Then tt divides α* for every monomial of f.

Proof. Let zl1 z£m be a monomial of /, with polynomial de-
gree d. Then, since wt = dfqt9 we have



QUOTIENTS OF COMPLETE INTERSECTIONS BY C* ACTIONS 219

+ + amqm = d .

Since tt divides qs- for i Φ j , and (tif qt) = 1 we see that tt divides at

if and only if U divides d. Since tt divides qjf tt divides dv$\uh so
if ti does not divide d, tt must divide vi9 i Φ j . Then, as in the
proof of 4.1, we see that / has at most 2 variables, if the singu-
larity is isolated. So we are done for m > 2. For m — 1 the result
is trivial, and for m = 2 it may be checked by direct computation.

EXAMPLE, zΐ1 + zxzp + z2zp, wi th (a± — 1, a2) = 1, (α2α3, axaz —

a, + 1) = 1. The weights, in reduced form, are

wt = a, , w2 =

Thus, gt = α2α3, q2 = a3(aL — 1), q3 = αxα2 — αx + 1. Then

*! = g.c.d. ((«! - 1), (a,a2 - a, + 1)) = 1

£2 = g.c.d. (α2α3, αxα2 — ax + 1) = 1

t 8 = g.c.d. (α2α3, OgCα,. - 1)) = α3 .
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