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UNIQUENESS OF EXTENSIONS OF POSITIVE
LINEAR FUNCTIONS

RICHARD C. METZLER

In this paper necessary and sufficient conditions that
every approximated function has a unique maximal approxi-
mated extension are given. When applied to the Choquet
situation this gives a new approach to known uniqueness
results for representing measures.

Extensions of positive linear functions preserving a certain ap-
proximation property were studied in a previous paper [4]. This
led to a unified approach to integration theory and the Choquet-
Bishop-de Leeuw theorem.

Notation will be that of [4]. In particular V and Y will de-
signate ordered vector spaces; G will be a subspace of V; W will
be a wedge in V such that G c WcG + V+ and a will be a positive
linear function from G to Y.

If fe V and AaV we say that / a-dominates A if, for every
g in A such that g 5j /, the following holds; for every pair y, z in
Y such that y ^ a(f — V+) and z ^ a(g + V+) we have y ^ z. This
is the condition of Theorem 2.1 in [4]. If a(f) = sup{a(h):f^ heG}
and ά(g) = inf {a(h): g ^ heG} both exist in Y, this condition is
equivalent to the requirement a(f) ^ ΰ{g). Now the proof of Theo-
rem 2.1 can be modified easily to yield the following: If fe W and
/ α-dominates (— W) then / is in dmnα if and only if all maximal
W-extensions are defined and give the same value on /. If Y is
assumed Dedekind complete the converse holds; the, equivalence im-
plies that / α-dominates {—W).

We define a "closure", Gl9 of a subspace GaV as G, = {fe V:
3geG+ with ( / - λ# + V+) n (/+ λ ί f - 7 + ) n G ^ 0 for all λ > 0}.
It is easy to see that Gx is a subspace containing G. If (? contains
an order unit u, then Gλ is just the closure of G in the order-unit
normed space (Ru + F+) Π (/to - F+).

If fe V and i , J S c F we say that A separates f and B if, for
each g e B, there exists he A such that f^h^g.

THEOREM 1. Let Y be an Archimedean space. If fe W is such
that Gt separates f and (— W) Π (/— V+) then f a-dominates (— W)
for every a. Consequently if the separation holds for all feW
then every a has a unique maximal TV-extension.

Proof Suppose f^ge(— W). By hypothesis there exists heG,
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such that f^h^g. By definition of Gx there is peG+ such that,
for any 3 > 0, there is qδeG with h — dp ̂  qδ ύ h + dp. Then
qδ + dpe(g + V+) n G so if z <^ a(g + V+) we have z ̂  α(tf5 + δp).
Similarly if y ^ α(/ - F+) we find y ^ α(gδ - <5p). Then z - y ^
2da(p) and the Archimedean property of Y gives y ^ z.

Now we wish to investigate under what conditions the unique
extension property implies the Gx separation of Theorem 1.

LEMMA. Assume G has an order unit u and suppose Y+ Φ {0}
If every a has a unique maximal W-extension then, for every feWf]
(G - V+) and ε > 0, G separates f + εu and ( - W) Π ( / - V+) f]
(G + V+).

Proof. We will suppose that there is fe W f] (G — V+) and ε > 0
such that G does not separate f+εu and ( - TF)Π(/- V+)Π(G + F+).
Then there exists g e ( - TΓ) Π (/ - V+) Π (G + 7+) such that if A =
{heG:h^g + (ε/2)u}, B = {heG:h^f+ εu} and U={heG: -(ε/2)u^
fe <; (e/2)%} then (A + 17) n -B = 0 . Since U is radial at the origin
as a subset of G a standard separation result [3; p. 23] shows that
there exists a linear functional φ on G which strongly separates A
and B. By taking — φ if necessary we can assume that r0 = sup {φ(p):
p 6 B) < inf (9>(gf): qeA}^ sQ. Now let p e G+. Then if /x e B and /2 e A
we have <p(/2 + rp) = φ(/a) + r^(p) ^ ?>(/i) for all r ^ 0. This shows
that φ(p) ̂  0 and we see that φ is a positive linear functional on G.
Then we have <p(f + ε%) = r0 < s0 = ̂ (flr + (e/2)t&). Since gr + (e/2)w e
(—17) + G c ( - TF) we see that f + εu does not ̂ -dominate (—TΓ).
Since U is Dedekind complete Theorem 2.1 of [4] shows that φ does
not have a unique maximal W-extension. Now choose y > 0 in Y
and define a: G—>Γ by α(/) = φ(f)y. Then it is easy to see that a
does not have a unique maximal PF-extension.

THEOREM 2. In addition to the assumptions of the lemma we
assume that V is Dedekind (^-complete and W is closed under finite
infs. Then, if every a has a unique maximal W-extension, G1

separates f and (/ - V+) n ( - W) for all fe W.

Proof. Given any feW and g <; / such that g e — W we wish
to show that G1 separates / and g. Now we can assume, without
loss of generality, that feG— V+ and geG + V+. If this were
not so we could choose gf e G Π (/ — V+) and (using the assumptions
that W is closed under finite infs and WaG + V+)f eGf)(gVg' + V+).
Then we could replace / by / Λ / ' and g by g V g' Clearly any
element which separates / Λ / ' and g V g' will separate / and g.

We adapt a technique of Edwards [2] to find h 6 Gx such that
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/ ;> h^ g. Let gQ = g — v, and f0 — f + u and use the lemma to
choose h0 e G such that go<> hQ ^ /0. Now assume that for m =
1, 2, , n we have / m 6 PΓ, g m 6 — W and hmeG such that # — 2~mu^
gm^hm£fm£f+ 2~mu and - 3 2~m-^ ^ hm - hm^ ^ 3 2~m~lu.

Let

flr +i = (9 - Z-n-ιu) V (ΛΛ - 3 2"*-%) e - 1 7

while

Λ+i = (/ + 2-- ιw) Λ (ΛΛ + 3 - 2-*-2u)

= (/ + 2"%-2^) Λ (K + 2~n~ιu) + 2~n~2u 6 TF.

Now gn+ί + 2~w~2^ ^ / # + ι results from the following inequalities:

g - 2~n~ιu <; / + 2~?ι~% ί/ - 2~n"1u <^ hn + 2"^~1u

ΛΛ - 3 2-*-2^ ^ / + 2"%-2^ and fcΛ - 3 2~%"% ^ hn + 2"*-1% .

Hence we can use the lemma to choose hn+] e G such that g —
2- -1t* ̂  Λ + 1 ^ Λ.+1 ^ Λ+ 1 ^ / + 2" - ^ and - 3 2-^ 2u ^ ^ + 1 - ^ ^
ΛΛ+1 — hn ^ /Λ + 1 — fcw ^ 3 2"w"%. This completes the inductive de-
finition.

Now - 3 2~n~2u ̂  hn+1 - K ^ 3 2~%-2^ implies -3.2rm~ xu ^hp-
hm ^ 3 2~m"^ for all p ^ m.

Now let /& = infw (supfc^% hk) which exists by the inequality for
hp — hm and the fact that V is Dedekind σ-complete. From the in-
equalities g — 2~n~ίu ^ hn+1 ^f+ 2~n~1u we conclude, since a Dedekind
<7-complete space is Archimedean, that g <; h <kf. Since we can re-
place hp by h in the inequality for hp — ftm we see that h e GL as
desired.

Now in the approach to Choquet boundary theory given in [4]
we assume that V is the space of continuous functions on a com-
pact Hausdorff space X, G is a closed subspace and W is a wedge
of bounded continuous functions on X closed under finite infs. Then
G = <?! and, since "PΓ-approximated linear functionals are maximal
measures, we see that uniqueness of representing "Choquet" measures
implies the separation of Theorem 2. This gives the "geometric
simplex" result of Boboc and Cornea [1, Th. 4]. If we let X be a
convex compact subset of a locally convex space, G the continuous
affine functions and W the wedge of finite infs from G then we find
that the separation property reduces in this case to the interpolation
version of the Riesz decomposition property. This gives the "Choquet
simplex" result of Edwards [2].

We now investigate an alternate characterization of the space
<•?!. We define Gγ to be the largest subspace of V such that every
positive linear a:G—*Y has a unique positive linear extension to
Gγ. In the notation of [4] we can write Gγ as Π {dmn aG: a positive
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and linear from G to Y).

THEOREM 3. If Y is Dedekίnd σ-complete

Proof. If feGλ then there exists geG+ and a sequence {hn}cG
such that hn — (l/n)g <; / <̂  hn + (l/n)g for all n. This gives us

(A + JLW κ _ λ . ^ (1 + lλ
*> n TΪI / \ n Ύϊh *

for all n and m. Now let a be any positive linear function from
G to Γ. Then

^ (— + — W )
gives -(l/m)a(g) <* y - a(hm) <: (l/m)a(g) for /̂ = inf»(supAfc» «(&*)).
Then few - (l/n)flr ^f^K + (l/n)g for all w implies ά{f) ^y^ a(f).
From this it is not hard to see that every maximal positive exten-
sion of a assumes the value y. Since a was arbitrary we conclude
that fe Gγ.

THEOREM 4. If G has an order-unit and Y+
 Φ {0} then GyCiG^

Proof. Note first that if feGγ we must have fe(G- V+)Γ\
(G + V+). For if / is not in G — V+ let α be a maximal positive
extension of a positive linear a from G to Y. Choose y > 0 in Y and
define at by ax{g + rf) - a{g) + r(α(/) + y). Then since α is posi-
tive and ft G — V+ it is easy to see that at is positive. Then any
maximal extension of aγ contradicts fe Gγ. A symmetric argument
gives feG + V+.

Now if feGr let TΓ= G + JB/. Then the lemma applies and we
can assume that G separates / + εu and (— W) Π (/ — V+) (Ί (G + F+)
for all ε > 0. Since / e (W) Π ( - TΓ) Π (/ - F+) n (G + F+) we see
there exists hεeG such that f tί hε <^ f + eu for all ε > 0. Hence
feGi as desired.

REFERENCES

1. N. Boboc and A. Cornea, Cones des fonctions continues sur un espace compact,
C. R. Acad. Sc. Paris, t., 261 (October 4, 1965), 2564-2567.
2. D. A. Edwards, Separation des fonctions reeles definies sur un simplexe de Choquet,
C. R. Acad. Sc. Paris, t., 261 (October 1965), 2798-2800.
3. J. Kelley and I. Namioka, Linear Topological Spaces, D. Van Nostrand Co.* Inc.,
Princeton, New Jersey, (1963).
4. R. C. Metzler, Positive linear functions, integration, and Choquet's theorem, Pacific
J. Math., 60 (1975), 277-296.

Received June 24, 1977.

THE UNIVERSITY OP NEW MEXICO

ALBUQUERQUE, NM 87131




