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A NASH-MOSER-TYPE IMPLICIT FUNCTION THEOREM
AND NON-LINEAR BOUNDARY VALUE PROBLEMS

GARO K. KIREMIDJIAN

The main objective of this paper is to formulate an im-
plicit function theorem for Frechet spaces which is suitable
for nonlinear systems of partial differential equations with
prescribed boundary conditions. The applications are dis-
cussed in connection with deformation theory where such
problems arise naturally and are of fundamental importance.
Furthermore, their linearizations are certain second-order
perturbations of second-order elliptic noncoercive boundary
value problems. The last part of the paper deals with de-
veloping a general theory which covers these cases.

In [12] J. Moser gives a rather general method for the construc-
tion of solutions of nonlinear differential equations whose lineariza-
tions lose derivatives. His result is similar to that first formulated
by J. Nash in [12] in connection with the isometric embedding of
Riemannian manifolds. The recent progress in the theory of pseudo-
complex structures has further emphasized the importance of the
Nash-Moser technique. Various generalizations of this approach have
been successfully used by R. Hamilton for the study of certain non-
linear complexes of partial differential operators (cf. [2]). Hamilton’s
version of a Nash-Moser-type inverse function theorem has enabled
M. Kuranishi to construct a finite-dimensional universal family of
deformations of pseudo-complex structures on a strongly pseudo-
convex pseudo-complex compact manifold (cf. [10]).

One distinctive feature of the nonlinear problems which appear
in the areas mentioned so far is that they are free of boundary
conditions, although, as it has been demonstrated by R. Hamilton,
the construction of inverses of the linearizations is very often
achieved by considering linear boundary value problems. For ex-
ample, the deformation theory developed by M. Kuranishi in [10]
takes place on a compact C~ manifold M, which is the boundary of
a complex manifold M. Hence the relevant nonlinear systems of
partial differential equations naturally have no boundary conditions
imposed on them. On the other hand, it is shown in [2] that if
HY(M, T'") = 0, where T" is the holomorphic tangent bundle, and the
Levi form on M, never has exactly one negative eigenvalue, then
for any complex structure M, on M sufficiently close to the given
structure one can find a C~ diffeomorphism f of M into the ambient
manifold M’ so that f: M,— M’ is complex analytic. Here w is a
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(0, 1) T’-valued C~ form on the closure f. This shows that every
sufficiently small complex structure on M can be obtained by wig-
ging M, into M’'. If, in terms of local coordinates z = (2}, ---, 2") we
write f: M—M' as f(z) = (f'(2), - -+, /"(2)) and set 0f = (0*/02")15a,55n>
0f = (0f%/0%*),<a,s<n, then th corresponding nonlinear problem can be
stated as follows: given an integrable form ® find a diffeomorphism
f such that w = (3f)™*-3f. Except for the fact that f is required
to smooth up to M,, there are no other boundary conditions imposed
on the solution of this nonlinear system.

In [3] the author considered the following question: Is it possible
to extend every small deformation of M, to a complex structure on
M? This means that one has to solve the nonlinear system ow —
[@, ] = 0 where the solution @ must satisfy some prescribed condi-
tions on M, Here 0 is the exterior differentiation operator with
respect to conjugates of holomorphic coordinates and [,] is the
Poisson bracket.

The main result appears in §1. As an application, in §2 we
solve the system [Jw — 0%[w, w]=f— Hf, t(w)= ¢, t@*®) =,
Hw = 0 where f, ¢, 4 are given T’-valued C=(0,1) forms with suf-
ficiently small Sobolev k-norms for some positive integer k, 0* is the
adjoint of & with respect to some hermitian metric on M’, [] = 00* +
0*d, t(w) is the complex tangential part of i*w (i: M,— M’ is the
given embedding and H is the projection on the space of harmoniec
forms satisfying ¢(w) = 0). The first important implication of the
solvability of this system is an alternate method of deriving the
extension problem for CR structures. A new feature of this ap-
proach is the fact that one can extend to a complex structure rep-
resented by a form ® for which Hw = d*®w = 0. That makes the
extension of a small deformation of M, unique and part of the
universal family for the set of all small deformations of a manifold
with boundary (cf. [6]).

The second implication is the solvability of the system @ —
No*[w, ®] = 4, t(®) = t(yr) = 0, where + is given and N is the dual
Neumann operator. In the case of compact manifolds without bound-
ary Kuranishi [10] has already demonstrated the importance of this
system (with N replaced by the classical Green’s operator) in deforma-
tion theory. The fact that one can also solve it for manifolds with
boundary under appropriate assumptions on the eigenvalues of the
Levi form is crucial (as in Kuranishi’s case) to the construction of
universal families of complex structures on M which have M, fixed.
The general theory of such deformations will be treated in a future
publication.

It is worth noting that the theorem in §1 is also applicable to
nonlinear problems which have already been treated by Hamilton and
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Kuranishi (cf. [1] and [10]). As an example, we prove Hamilton’s
theorem in § 2.

The linearization at @ of the operator [Jw — 0*[w, w] is FLu =
[Juw — 20*[w, w]. One has to solve the linear boundary value problem
FLu =g — Hg, t(u) = t(6*u) = 0 with the appropriate estimate on u
(ef., (1.6) of this paper) in order to apply the general theorem of
§1. This problem is very similar to the elliptic noncoercive linear
boundary value problems considered by J. J. Kohn and L. Nirenberg
in [8]. The difference is that & — <&°* is no longer an operator
of order lower than the order of &2 In §3 we show that this type
of system can also be handled by the Kohn-Nirenberg methods.

I would like to thank Professors M. Kuranishi, H. L. Royden,
and M. M. Schiffer for their interest in this work and for the great
number of valuable discussions I had with them.

1. The main result. Let E and F be graded Frechet spaces
with fundamental systems of norms which will be denoted by || ||,
seZ*, for both E and F. Here Z* is the set of positive integers.
For s = » we have || ||, = || ||, We assume that for each real posi-
tive number ¢ there are smoothing operators on E and F denoted
by the same symbol S(¢), i.e., S(t): F — FE is an endomorphism such
that for » < s there exists a constant ¢,, > 0 for which the follow-
ing inequalities hold for all x € E:

(L.1) 1S@zll, = ¢t "Izl
(1.2) lle — 8@z, = e, [zl .

If M is a compact manifold (with or without boundary) and V
is a vector bundle over M with a metric along the fibers, then the
space of C~ sections of V over M is an example of such a Frechet
space where || ||, is the Sobolev s-norm. In this case the smoothing
operators were first introduced by J. Nash in [11]: if »eCy(R™),
then

S =t {utwte — vy

where x(y) is a function whose Fourier transform ¥(¢) is identically
equal to one for |&| < 1/2 and identically equal to zero for |&| > 1.
For s, ¢ Z* we define U(s,, a) ={x c E: ||x]|[,, <a}. Let G: U(s,, a)—
F be a map for which the derivative G'(z): E— F, G'(z)(y) =
lim, ,, ™ {G(x + uwy) — G(x)], exists for all xe U(s, ). We now as-
sume that G(z) has some smoothness properties, i.e., there are in-
tegers m and ¢ and real numbers d and [ with [ > 1, d <! and for
each se€ Z* there are continuous increasing functions a,(7)>0, B,(z)>0
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on the positive real line R* with B,(z) < C,z¢ for some constant
C, > 0 such that the following conditions are satisfied:

(1.3) NG@)l, = (el |lemn + 1)

for all s and k& with 26 > s + ¢

(1.9) G + ) — G@) — @D, = | z]lem) Y ]l5m
for all seZ* and x ¢ U(s, a), ye€ E with x + ye U(s,, a)

(1.5) G @)W, = al@llorm) |9 ]]s4m

for all seZ*, xe U(s, @) and yc E.
(1.6) There is a subspace BC E such that for all ze U(s, a) the
equation G'(x)(¥) + G(x) = 0 has a solution y € B with :

vl = a.(lz )G lain + Bl |srm) [| G []i-n)
for all s and k& with 2k > s + q.

REMARK 1.1. It is easy to see that (1.3)-(1.6) are based on
properties satisfied by nonlinear partial differential operators. In
this case m serves as a bound on the order of G and the number
of derivatives lost by the solutions of the corresponding linearized
differential equation; ¢ is the dimension of the manifold over which
G is defined, I = 2 and % is chosen so large that one can use the
Sobolev inequalities. Condition (1.3) in the general case of Frechet
spaces is the definition of a tame map. This concept has been in-
troduced by R. Hamilton.

THEOREM. If the map G has the properties (1.3)-(1.6) then for
each z¢€U(s,b), b= min{a,ciia}, there exists we Uk, a) with
Gw) =0 and w — z€ B provided ||G(z)||, is sufficiently small and
k is a sufficiently large integer depending only on m, q, d, and I.

Proof. We will construct w as the limit of a sequence x,, «,, * -+,
%, +++ of approximate solutions.

Let t,>1, ¢, ---, t,, -+ be a sequence of real numbers defined
by tpp =12, max{l, 1 —1,d} <8 <l. Let t, be so large that ||z|/z,, < t}
for y=(>1/min{d — 1,0 — d)[((d + 2)m + 9ol < MN=N< kb —m — q.
The choice of A, will be specified later.

Set x, = z. Assume that x,, %, -+, , have been determined in
such a way that the following conditions hold for p < n:

1.7 lopllae = 85 for v <N =N

(1.8) ll2olle < b
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1.9 =z,==x,_, + Y,_, where y,_, € B is the solution of (1.6) with
x = S(t)x,_; .

For p = 0 (1.7) and (1.8) are satisfied by the choice of z, and
t, and (1.9) is vacuous. Let y,<€B be the solution of (1.6) with
2z = S(ty,,)2, and let z,,, =2, + y,. Observe that z, — z,€ B for
all p<n + 1. We proceed to verify (1.7) and (1.8) for p = n + L.
From (1.1), (1.8), (1.6), (1.7), and (1.8) we obtain the inequalities

H2nssllase = 1 %allasr + 1Y llars
= ta + (|l SEas) 0 ) GUS(Es)%0) | 144m)
+ Bl SE i)l kem) | GSEn i) lim)
=t + a(Cr D Qs m(Cr D) (Coiirom 1skremditits + 1)

dipdm
+ €1 i0CaiCorbrmarirmba tata] «

Since v < A, M+ 2m/6 < 0N — 1 and d(\ + m/d) = on — 1. Hence
the above expression is clearly dominated by ¢,, if ¢, is sufficiently
large. This shows that (1.7) holds for p = n + 1.

For any z e Uk, b) and any ¢ we have by (1.4) and (1.5)

1GES@D)l, = 1G@) |,

(1.10) -
+ (|2 llm) |2 — S@2 |1 m( + 2 — SE[:70) -

From (1.1) and (1.2) we also obtain

1GS@)D) [[xsm = [|SEGSE)Z) |l44m
+ [|G(S(t)x) — SEYG(SE)%) [[x+m
= Cepmi—mt™" (| GSE)E) (- m
+ Chrmprmet | GISE2) |[ksmer «

(1.11)

Then for some constant ¢, and for N between v and A, (1.2),
(1.3), (1.6), (1.7), (1.8), (1.10), and (1.11) imply the inequality

”xn+1 - x’n”k = ”yn”k
(L12) < G| G @) o + T+ E2E)
7 =max (2,d).

We observe that in order to apply (1.7) A must satisfy v < +
™m = N

On the other hand, if ¢, stands for various constants depending
on k, we obtain from (1.2), (1.4) (with s =k — m, = S{,) 20—y + Yn_s,
Y= Tpy — St,)%,_), (1.5) (with the same data), (1.7) and (1.8) the
estimate
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” G(.’X»‘,,,) ”k—m = “ G(xm—i + y'n—l) ”Ic—m
(1'13) = HG(S(tn)xn—l + Yn—1 + Lp—y — S(tw)xn—l)nk—m
= (| GSENTu—y + Yn) leom + t2th + E7E) -

Again by (1.4) with s=k — m, z = S¢,)2%,_,, ¥ = ¥,_, and by
(1.9) we have

G(SE)Tas + Y- le—m

1.14
(1.14) < U1 G0 — G(SETa-) o + [ Fus]) -

Another application of (1.4) and (1.5) with s=k—m, 2= =2,_,
and ¥y = %,_, — S(t,)x,_, together with (1.2) and (1.7) implies that one
can estimate the first term of the right-hand side of (1.14) by
toith_, since ¢;Mt, = 107V < ¢,V = ¢,;%2 .. By combining (1.12),
(1.13), and (1.14) we obtain the inequality

(1.15) NZnss — Zalle = GGt + B2 — 2asi i)

We set ¢, = ty||z, — 2,_,||z for p < n + 1 where the number g
will be determined below. Then (1.15) becomes

(1.16) Caps = Gt + T L) .

We first choose g so that zmé + (6 — ) < 0. This can be done
since 0 < l. With the choice of ¢ we can choose N in such a way
that (tm + p)0 — 070 — I)» < — 1. We observe that » and g do
not depend on k. So if &k is sufficiently large we still have A\, <
E—m—q. Let ¢,>max{l,¢} and let o= (1 — )" It is clear
from (1.12) that ||G(2)||,-. is sufficiently small and ¢, sufficiently
large; then ¢, < ¢f = ¢;/. From (1.16) we can conclude by induction

that ¢,,, = ¢, i.e.,

(1.17) [@nr — walle = eitals .
Furthermore, (1.13) and (1.14) imply

(1.18) G(@) [l = cits™

if ) is sufficiently large.
We are now in a position to verify (1.8) for p = n + 1.

n+1 n+1 o
12es = wolle = 35 [0 — ol < o 3367 < it 30t
= = p=

If t, is sufficiently large the series on the right-hand side converges
and ¢ tr” Do, (8,8:)7* < b/2. Since x, = z we also have ||z,.,||; <b.
This completes the induction step. The sequence x, x;, «+-, Z,, * -
satisfies (1.7), (1.8), (1.9), (1.17), and (1.18). In particular, (1.17)
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shows that z,, 2, ++-, %,, -+ is Cauchy in || ||, since
n+p—1 "'n+p-—1 o _
[@nss = Zulle = 2 @ — 2l = o 3 5 < const. 31,

yv=n

Our next task is to show that =z, 2, -+, %, --- is a Cauchy
sequence in every || ||, -norm. In fact, we will prove that for any
se€ Z" there is a constant ¢, such that

(1‘19)3 “x'»+1 - xn”a g cst;ﬁl
(1.20), 1G(@,) |]-m = itz
if n is sufficiently large.
We note that these statements for s =k are given by (1.17) and
(1.18). In the sequel all constants depending on s will be denoted

by e,.
First of all, we show that (1.19), implies

L.21), |aullpr=ctr, Y=m+qg+1l, o=max{l,d}.

By (1.7) we see that (1.21), holds for s = k. Since ||z, — 2|}y =

o | Yi-rllss—r it is enough to estimate y;_, in the || ||;,_,-norm. We

apply (1.6) with s replaced by 2s — 7, k by s and = by S(;)z;_,.

Since we assume (1.19),, the sequence || 2,|l;, ***, || Z.lls *++ is bounded.
Hence we obtain the inequality

(Yi—illes—r = C(IGSEND-1) lls—rsm
+ [|SE)%s-1 s m | GISENT5-1) [lom) -

Next, the term ||G(S(t;)%;_1)|lss—rim 1S estimated by
cs(”S(ti)xi—IHZs—-T+2m + 1) .

(1.22)

For this we use (1.3) with s replaced by 2s — v and k by s. Observe
that 28 >2s — Y + ¢. Another application of (1.3) shows that
|G(S(t)2;_)|ls—m is dominated by ec,(||S(Ets)x;_. ||, + 1). Finally, (1.1)
and (1.19), imply that ||S(¢;)2;_|lz—r4em 1S bounded by et
SE)%;—1 ||f—rim bY cti*" 7™ and ||S(t;)x;_,||, by a constant. If & is
so large that k= ({ — 1) (¢ — m — 1) then for s = k& we have s —
Y4+ 2m=<o0s. Also, ds— v+ m)=d(s —q—1) =< 0os since d <I.
Hence ||9;_|ls—r < ¢,t7.  This proves (1.21),.

We further claim that (1.19), and (1.20), imply (1.19),,,. We again
use (1.3) to estimate #,., — 2, = 9,. This gives (1.22) with 2s — 7
replaced by s+ 1 and 5 by » + 1. An application of (1.11) with
s+ 1 instead of & and ¢,., instead of ¢ shows that ||G(S(t, D)%) |lsimet
can be estimated by

(B | GS@ )T lsom + Eatall GISE i )Ta) s miass) -



112 GARO K. KIREMIDJIAN

The second term can be estimated by c,t,#,t2i** by using (1.1) and
(1.3) with s replaced by s+ m + X+ 1 and & by s povided s >
m+ N+ 1+q for s= k. This can be achieved if % is sufficiently
large. Moreover, if this is the case then )\ can be chosen so that
@—Dx+2m+1=p which shows that ¢;7.t2t < ¢4, From
(1.10) it follows that

1G(SEns)@a) [lsm = (|G ) sl
+ tfill@a @ + 3 [ 2allien) -

We note that in all of the arguments given so far we have also
used (1.19), which implies the existence of a bound for ||z,|,. If
we set M = s — 7 then ||z,]|,.» = ¢ty. Moreover, if k is sufficiently
large then for s = k& we have (0 — 0)s = o + 6*(2m + 1) + 7 since
0 > 0. Thus 't 0% llesr < etili. Hence by (1.20), we obtain
|GSEni)Tu) llexmer = citnt, if g is sufficiently large with respect to
m. Finally, ||S(t,.)%, |3 mm in (1.22) with j replaced by n + 1 and
2s — 7 by s + 1 is estimated by citi"*||x,||?. Since this term is
multiplied by |/G(x,)|l,_. it follows from (1.19), and (1.20), that
NYulless = citnfi. Note that ¢;" < t,% because 6 < I. This finishes
the verification of (1.19),,..

Finally, we will show that (1.19),,, implies (1.20),,,. If we re-
derive (1.13) and (1.14) with % replaced by s + 1 we obtain

1.23)  [|G@w) [los1-m = €E T Tasllaiosnr + %0 — Bacallin) -

Then (1.20),,, follows from (1.19),,, and (1.21),,, for s>k if &k
is sufficiently large.

This completes the induction step and establishes (1.19), and
(1.20), for all s. Since %, %, -+, Z,, -+- is a Cauchy sequence in
every || ||,-norm the limit we U(k, @) exists and (1.20), shows that
G(w) = 0. By construction w — z¢€ B.

REMARK 1.2. As we shall see in the next section it is sometimes
necessary to replace (1.6) by a condition which only gives the ex-
istence of a suitable approximate solution of the linearized problem.

Suppose that in addition to (1.8), (1.4), and (1.5) we also assume
that the following condition holds:

(1.6’) There is a subspace BC E such that for all x € U(s,, @) there
exists G,(x)e F for which the equation G'(x)(y) + G(x) =0 has a
solution with

lyll, = a2l G@)lsem + Billl2|lra) | Go(@) [le-m)
|G\(@) — G@) I, = a2l [|G@) |lsm

for all s and k& with 2k > s + q.



A NASH-MOSER-TYPE IMPLICIT FUNCTION THEOREM 113

Then the conclusion of Theorem 1 is still valid. This can be

easily seen as follows.
First of all, ||G(x,)||s—n = t.** for all n. For n = 0 this is true

if ||G(x)||, is sufficiently small. Assume that the claim holds for =.
From (1.13) and (1.14) we obtain

(1.24) 1G(@0i) [lkom = CIGSEnr)wa) i + [ ¥nlle) -

(Observe that the verification of (1.8) remains the same as before.)
By writing G(S(tn—i—l)xw) - S(t‘n+1)G(xn> as G(S(tn+1)xn) - G(w'n) +
G(x,) —.S(tm)G(ac”) we have the estimate

H G(S(tn+1)xn ||k = ” S(t'n—i—l)G(x'n) ||k + || G,(xnan - S(tn+1)xﬂ) ”k

+ aw(lzalllzn — SEas)®nllism -

From (1.1), 1.2), (1.5), (1.7), and (1.8) it follows that for some
constant (denoted again by ¢,)

NG(SE)Ballk = Citin(a" + telits)

Here we have also used the induction hypothesis. Since we are
free to choose A to be larger than g (more precisely, (6 — I)x = I\)
we get

(1.25) NG(SEi)ma) |l = Citiiita™

for some constant ¢;.
Furthermore, from (1.6) we have

19.1le = const. [[|G(S(Eas)@alls + [|GSEnr)20) [[e4m
+ "1 G(SEri @) llesm + [[GIS(Ear)aa) ()] -

Note that (1.25) can be derived with k& replaced by k& + m and
tr.. by ti,. Hence

(1.26) 9.l < const. 2™t .

Combining (1.24), (1.25), and (1.26) we obtain from some con-
stant ¢,
HG(x%+1)Hk—m =<= Ektiﬁll?t;lz[‘ .

Now the right-hand side can be dominated by ¢;}4 if ¢, is suf-
ficiently large and g is chosen so that I°s¢t — 2ml* — 1 = élp. This
can be done since ¢ < I.

The rest of the proof remains unchanged. We note that in (1.6)’
the power does note have to be I but just any « > max{1,l — 1, d}.
Then all that has to be done is to construct the sequence ¢,¢, -,
ta, +++ with max{1,] — 1, d} < 6 < min {«, [}.
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2. Some nonlinear problems in deformation theory. Let M
be an open relatively compact subset of a complex manifold M’ of
dimension #n = 3. We assume that the boundary M, of M is a C~
manifold of real dimension 2n — 1. Let T be holomorphic tangent
bounle of M’ and C»%(M, T") be the space of all C* T’-valued (p, q)
forms extendible to a neighborhood of M. If & is a real-valued C*
function on M’ defining M,, i.e., M, = {xeM': h(x) = 0} and dh = 0
on M, then, in a neighborhood of M,, every we C?*M, T") can be
uniquely expressed as @-+BAdh where @ c C”*(M, T"), B C** (M, T"),
and 0 is the exterior differentiation operator with respect to the
conjugates of the local holomorphic coordinates. Let i: M,— M’ be
the embedding of M,. Then &(w) = ¢*a@ is the complex tangential
part of w and we set y(w) = i*8.

We now make the following assumption:

(2.1) For g <n and for each x €M, the Levi form either has ¢
positive eigenvalues or n — ¢ + 1 negative eigenvalues.

Let d* be the adjoint of d with respect to an inner product
given by some hermitian metric g on M’. Then the space Z#F ™ =
{weC?Y(M, T"): 0w = 0*® = 0, t(®) = 0} is finite-dimensional and for
each feC?%(M, T') there exists a unique form NfeC»%M, T") such
that HNf = 0, t(Nf) = t(3*Nf) = 0 and []Nf = (00* + 3*0)Nf = f —
Hf. Here H is the orthogonal projection on S#°”? In particular,
dNf is a solution of 0*u = f with &(u) = 0 provided 0*f = Hf = 0.
(Note that for any w t(du) = 0 if t(uw) = 0.)

All of the above statements follow from the dual 0-Neumann
problem (cf., [6] and [8]). We recall that the 9-Neumann problem
asks for the existence of an operator N satisfying the boundary
conditions ¥(w) = ¥(@w) = 0. Duality is obtained by considering
*#:C? (M, T")—C""~9(M, T"*) where T'* is the holomorphic cotangent
bundle, * is the Hodge star-operator, and if (g,;) are the components
of g and (@', ---, w") is the local representation of w as a vector of
(p, q) scalar-valued forms, then the local representation of #we
Cor(M, T'*) is given by (#w), = 2.g.:0". It is easily seen that
t(w) = 0 if and only if v(*#w®) = 0 and 0* = — *#3%*.

We also mention the basic Kohn-Morrey estimate: there exists
a constant C, > 0 such that for all w with &{(w) =0

(2.2 lolf + |, |0PdS + o]t = C.D(, @),
D, 0) = ||o|F + [3o|F + (7o, loli=%%| st

{U,} is a finite cover of M by coordinate neighborhoods, || || is the
L,norm, and ®. are the components of w on U,. Observe that dif-
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ferent coverings of M by coordinate patches give equivalent semi-
norms || ||,.

We now assume that » = 0. Then ¢(w) and y(w) are sections of
the bundles A®T™* Q (T'|M,) and AT*T"*Q(T'|M,), resp., i.e.,
they are C~ forms on M, of type (0, q), and (0, ¢ — 1),, resp., and
with values in T'|M,, We have set °T' = (T'|M,) N CTM, where
CTM, is the complexification of the real tangent bundle of M.
Let [,] denote the Poisson bracket on C*(J, T”). One can then
consider the following nonlinear problem: given feC%(i, T") and
C= forms @ and + of type (0, 1), and (0, 0),, resp., find w € Co'(M, T")
such that

(2.3) Co — 0*[w, o] = f — Hf ,
tw) =@, t@*®w)=+, Ho=0.

The purpose of this section is to establish the existence of such
a solution @ provided f, », and + are sufficiently small in some
Sobolev k-norm.

We will first show that given @ and + there exists & with
H& = 0 for which the boundary conditions are satisfied. Let 6, ¢
C> (M, T") be such that ¢(6,) = . Moreover, 6, can be chosen so
that ||6,||, < const. |p|, where || ||, and | |, are the Sobolev k-norms
over M and M, resp. Next, let 6, be such that 9%9, = —0*0, with
t(@,) = 0. Thus 6, = 6, + 6, has the property *6; = 0 and (6;) = .
Now 0= 3N@, is a form of type (0,2) for which 3*0 = 6, i.e.,
t(0*0) = . Furthermore, the same arguments used for finding 6,
show that there is 7€ C*°(M, T") with 3*} = 0 and ¢(J) = 4. Then
Y = 0N+ is such that a*vy = 4 and ¢(¥) = 0. Now @ = 0*0 -+ N+
has the required properties. Moreover, the construction and the
inequality ||Nu||,,, < const. ||u||, for each real s imply that if p and
o are small in | |,,,-norm, then @ is small in || ||,-norm.

We are now in a position to apply the theorem of the preceding
section. Let E = F = C%(M, T'), B={w e E: Ho = t(®) = t(*w) = 0},
G(®) = [Jw — 3*[w, w] — f (we have assumed Hf = 0). Since G is a
differential operator (1.3), (1.4), and (1.5) are obviously satisfied.

G'(@w)(u) = [Ju — 20*[w, u] .

This follows from the properties of the Poisson bracket. The equa-
tion [Ju — 20*[w, ] = w (and more general type of equations) will
be studied in §3. It follows from Theorem 8.5 that if for some
sufficiently large integer ke Z* ||w||, is sufficiently small, then for
each w with Hw = 0 there exists a unique we€B with |ju]|, <
C(lwll, + [|@|[is.]|w]l) where C, is a polynomial of ||®]||.,,. This
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establishes (1.6). Having in mind the discussion in § 3, it is worth-
while to observe that if Q(u, v) = (Gu, 9v) + (0*u, 3*v) — 2([®, u], ov),
then by (2.2) and the fact that [w, w] contains only the §/oz’-deriva-
tives of w we have for some constants C, > 0, C, > 0

C.D(u, u) < |Q(w, w)| = C,D(u, u) .

Hence there exists w e C*/(M, T') such that G(w) =0 and w —
@eB, i.e., w is a solution of (2.3). The proof of the theorem of
the preceding section also shows that |[@], is small if & is small
in the || |[;-norm. With the aid of this fact we can conclude that
the solution w is also unique. Indeed, if @, and w, are two solutions
of (2.8), then for 0 = @, — w, we have [0 = d*([6, ®.] + [®@,, 0)).
Since t(0) = £(3*0) = 0 integration by parts gives ||06]|? + ||9*0| =
(0, @) +1w,, 0], 36). By (2.2)1|06]* + ||0*0| < const. (||@,||;+||@:l)D(8, 0).
On the other hand, Hf = 0 implies |[|4]|* < const. (|[dd]]* + ||0*0|]*.
Thus D(0, 0) < const. (||w,||, + || ®.||,)D(6, 8) which shows that 6 =0
if ||w;||, is sufficiently small, 7 = 1, 2.

We now give some geometric applications of (2.3). First we
recall some of the basic facts of deformation theory (cf. [10]).

Let M be the underlying differentiable structure of M and let
CTM be the complexified tangent bundle of M. An almost complex
structure on M is given by a subbundle T, c CTM such that CTM =
T.® T/, T.= T'. T/ is of finite distance from the given structure
M if p": TY — T" is a bundle isomorphism where T” = T" and p":
CTM— T" is the projection. The set of all almost complex struc-
tures of finite distance from M is in one-to-one correspondence with
the C» bundle homomorphisms w: 7" — 71", i.e., the set of C~ T'-
valued forms of type (0, 1). This correspondence is given by T =
T! ={X—w(X): XeT"}. The almost complex structure 7', is called
integrable if for any two sections L, L, of T. over an open set
Uc M the Lie bracket [L,, L,] also belongs to T',. A necessary and
sufficient condition for integrability is 2 = 6w — [w, ] =0. We will
refer to integrable T'.’s as deformations of M. The term “small
deformation” will be used if @ has a sufficiently small Sobolev k-
norm for some ke Z".

There are similar facts for pseudo-complex or Cauchy-Riemann
(or, simply, CR) structures on M, (cf. [3] and [9]).

An almost CR structure on M, is given by a C* subbundle E"
CTM, of complex fiber dimension » — 1 such that E’'N E” = {0},
E' = E”. As before, E” is and (integrable) CR structure if the Lie
bracket [L,, L,] of any two sections of E” over an open set V C M,
is also a section of E’”. The given complex structure on M’ induces
a CR structure on M, by the subbundle °T” = (T"|M, N CTM,.
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In this case CTM, = °T' P °T" @ CF where CF is the complexifica-
tion of some one-dimensional real subbundle of TM,. By normaliza-
tion we may assume that CF is generated by a purely imaginary
vector field P=P' —P", P" =P, P' =5, p9/02° and P'(h) = P"(h) =1,
i.e., if h; = 0h/6%’, then >; p’h; = 1. There is also a C* bundle iso-
morphism z: T'|M,— °T' @ CF.

We say that E” is of finite distance from °7" if n": E" — °T"
is an isomorphism where 7":CTM,— °T" is the projection. If ¢,:
°T" — °T" @ CF is the homomorphism defined by ¢, = — (id — z"’)o
(z"”|E'")™, then it is easy to see that E” ={X — p(X): Xe°T"}.
Set p=77toqp;: °T"—T'|M,, Then ¢ is a C~ T'"|M,valued form
of type (0,1), and we can write

(2.4) E" = {X —top(X): X °T"}.

Conversely, if for a given ¢ the above formula defines an almost
CR structure provided at each point e M, the map &,045,: °T) —
°T" (6 = n'orop) does not have eigenvalue 1. This is always true
if @ is sufficiently small in some Sobolev k-norm. We will denote
by °T, the almost CR structure given by (2.4).

Let ¢ = >, 9’/62" an a coordinate neighborhood V — M, and let
0’ = 1*dz’ + ¢, 1 < j <n. Then, for each point z e M, {6, ---, 67}
is a base of (°T,.)" = {ueCTiM,;: w(X)=0 for all Xe°T,,}. Using
the formula 2d6(L,, L,) = L, - 6(L,) — L, - 6([L,, L,]) for any differential
form 6 of degree 1 and for all sections L,, L, of CTM, one finds
that °7T, is integrable if and only if dyp’ = 0(modé#, ---,6"), 1 <
Jj= .

A set of local generators for °7T” is given by Z; = 0/0z7 —
h;P"(h; = hy), i 9 Z; =0. Then a set of local generators for the
dual bundle °T"* is given by Z* = i*dz* — p*i*oh, 1<k < n,
S hzZ* = 0. Thus every form + of type (0, q), can be uniquely ex-
pressed as = 3 c..ci, V5 270 A 2o A Ziq, S P*¥e,.5, = 0. If
3, = 3, (0/0z*)Z* is the tangential Cauchy-Riemann operator, §7/0z' =
802" — h;P" = ©(3/0%%) and ¢* = 3, 7 Z*, then a straightforward com-
pution (cf. [9]) shows that °T, is integrable if and only if the
T'| M-valued form 3, @*/0z* = @ is equal to zero where

O* = 3y — % (0°pi[oz7)p! N\ Z + % ha@' A @i(3,0" — (5°D'/029)p7) .

If a deformation of the fixed complex structure on M is given
by T%, weC>(M, T"), then a deformation of the fixed CR structure

on M, is given by
(2.5) °Ty = (T, M,) N CTM, .

The extension problem discussed in [3] is the converse of the
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above statement for small deformations: if °7 represents a small
deformation of M, find we C%'(M, T") such that 7", is integrable and
(2.5) holds. We will now indicate how (2.3) can be applied to this
problem.

Let & be the set of all C~ (T'|M,)-valued forms ¢ of type
(0, 1), such that 3, ¢’h, = 0. We list the following facts which have
already been established in [3] and [4].

(i) Every CR structure °T), can be extended to a complex
structure T, on a neighborhood .7~ of M, (see also [1]), and there
exists an embedding f: M,— .#" such that for the pull-back (under
) °T; of the CR structure [T |f(M,)] N CT[f(M,)] on f(M, one
has p € &. This means that after “wiggling” M, in a neighborhood
in M’ every CR structure is equivalent to one represented by a
form in the set & (cf. [4]).

(ii) If weC* (M, T") and @ € & are any forms (not necessarily
representing integrable almost complex and CR structures), then
(2.5) holds if and only if #w) = @. Furthermore, if ¢(w) = @, then
t(Q2) = 0 if and only if @ = 0 (cf. [3]).

Hence (i) and (ii) show that the extension problem for small de-
formations of the CR structure on M, reduces to solving the fol-
lowing first-order nonlinear system:

0w = [@, ®] =0
(2.6) tw) = @ (boundary condition)
=0 (compatibility condition).

By setting f=0, v+ =0 in (2.8) we find that if ¢ is sufficiently
small in some Sobolev k-norm for a sufficiently large integer k, then
there is a unique weC*(M, T') such that t(w)= @, t0*w) =0,
Ho =0, and 05*® + 0*(0w — [®, ®]) = 0. This gives §*30*w = 0,
and Stokes’ theorem implies (0*90*w, 6*®w) = ||*®|* = 0. By another
application of Stokes’ theorem we have (30*w, w) = ||0*w|}? = 0. Thus
we have found w ¢ C* (M, T") such that ¢{w) = ¢ and 0*w = 3*2 = 0,
t(2) = 0. The properties of the Poisson bracket imply 42 = =+ 2[w, 2].

If, in addition to (2.1) with ¢ = 2, we also assume that S#Z™* =
H*M, T'"* ® K) = 0 (the section cohomology group with coefficients
in the sheaf of germs of holomorphic sections of the bundle 7"* Y K,
K the canonical bundle of M), then the basic estimate (2.2) and
||2]] < const. (||0Q] + [|0*R|]) for all 2 with #Q) = HQ2 = 0 imply
2 =0 since ||w||, can be estimate by |p|,. Furthermore, for a
sufficiently small ¢ the solution of (2.6) is unique because Hw =
o*w = 0.

Before proceeding with the next application we briefly recall the
basic features of Kuranishi’s method of constructing universal fa-
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milies of deformations of a compact manifold M without boundary
(cf. [10]). Let ¥ = {we C*(M, T"): 0w = 0*w = 0}. A necessary con-
dition for a form @ to belong to the set ¥ is given by Flw) = w —
Go*[w, w] € 57>, where G is the classical Green’s operator. In order
to find a sufficient condition one first observes that by the inverse
function theorem for Banach spaces the map F can be inverted in
a neighborhood % of zero in C"'(M, T'). Let W= % N 5#*! and
let (by abuse of notation) w: W — C*>'(M, T') be the inverse of F,
i.e., F(w(s)) = s for all se W. Then w(s)e? if and only if seS =
{s € W: H[w(s), w(s)] = 0}. The family {w(s): s€ S} is universal since
every deformation of M represented by a form 6 is equivalent to a

structure 7", with 0*w = 0.
For a manifold M with boundary M, and for the deformations

which leave .M, fixed one replaces C*'(M, T") by <Z = {w e C>\(M, T"):
t(w) = 0} and G by the dual Neumann operator N. The map F:
Z — F, F(w) = ® — No*[w, ®] can no longer be inverted by the
inverse function theorem for Banach spaces. However, one can
easily satisfy that for a given 4 in a sufficiently small neighborhood
% C . of zero in the || ||,-norm topology for some fixed integer %,
a solution weZ of F(w) =+ is of the form ® = u + H+y where
CJu — 0*[u, u] — 20*[w, Hy] = []v + *[Hy, Hy] and Hu = t(u) =
t(@*u) = 0. The last problem has a solution because it is essentially
the same as (2.3) since the addition of the linear perturbation
20*[u, Hv] is irrelevant. It turns out that the invertibility of F
plays the same important role in the study of deformations which
leave M, fixed as in the methods developed by Kuranishi in the com-
pact case. The details will appear as part of a general theory in

the work mentioned in §O0.
Another application of the results of the first section is Hamilton’s

theorem mentioned in the Introduction.

Let w e C*(M, T") be such that 9w — [®, @] = 0 and the Sobolev
Ek-norm of w is sufficiently small for some sufficiently large integer
k. Let d,:C*(M, T") — C*** (M, T") be the differential operator de-
fined by 9,0 = 06 — 2[w, 6]. Because of the integrability condition
0,00, =0. Let g, = g + 0(w) be a variation of the given hermitian
metric ¢ on M’. We denote by (,), the L,-inner product with
respect to . Then, for a suitable choice of g,, the Hilbert space
domain of the adjoint 0% of 3, is the set CY«(IM, T") = {0 € C>«(M, T"):
v(0) = 0}, i.e., (0,9, 0)y = (¥, 0%0), for all e C> (M, T") and f¢
C%*(M, T"). This can be seen as follows.

Let U be a coordinate neighborhood and let (%, ---, " be C=
forms of type (0,1) on U such that g({% &%) = 6%, g(¢% T9) = 0, and
I»=0ohif UNM,+# @. Let (, ---,, be the dual basis for vector
fields on U of type (1,0). Then ¢, ---,{,_, forms a basis for °71"
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on UNM,, and £, (k) =1. Any 0 C>%(M, T') can be locally written as
0=3,00' QL

where J = (j,, - -+, J,) with j, <.+ <J, and T’ = TN vee AT .
Since 03 =0, — Sy wil;, 1<k <mn, is a basis for T, on U, 0,
is given locally by

3.0 = 3, (T + TR L

Here the dots stand for terms which contain no derivatives of
the components of 6, K = (k, -+, k1), b, < -+ < kg, and

0 if {kJ) = {K)

skJ —

kJ
sign of permutation ( K) if {kJ}={K}.

Let g, = 9, ;) = 8,; + s(w);; be the components of the metric
g with respect to the frame {,, ---,{,. Observe that d,; = g(C;, {).
Let ¢% = 6% + s(@)" be the components of the inverse matrix of
(gv.;)- Then the formal adjoint % of 3, with respect to g, is locally
expressed as

950 = 3. (e.05C2(07) + - )T ® L
Ly, 9
L,J

L = (lu M) lq—l)’ J= (ju ct jq)‘ _ _

Now by Stokes’ theorem it is easy to see that (0,4, 8), = (v, 0%0).,
for all e C» (M, T") if and only if 3.;,€l079%Cs(h) =0 on M.
Choose s(w)* to be such that on U N M, s(@) = s(@)* =0if k&, 7 <n
or k= j=mn and s(@)" = s(w)™ = 031 — @' if j <n. The metric
9. obtained in this way has the property thrt, in terms of the frame
Chyooey Coy S gCe(h) =0 if j <m and 3, g**Cuh) = 0 (if w is suf-
ficiently small) on U N M,. Hence 6 is in the Hilbert space domain
of 3% if and only if =0 on U N M, whenever necJ, ie., if and
only if 0eCY%(M, T").

From this point on we make the assumption that the Levi form
of M, never has exactly one negative eigenvalue, i.e., at each point
of M, there are either at least two negative eigenvalues or else they
are all positive. The techniques of local integration by parts de-
veloped in [6] ahd [8] can be applied without any substantial changes
to the frame ¢, ---, {¢ and the metric g,. One can then obtain a
uniform Kohn-Morrey basic estimate, i.e., there exists a constant
C, > 0 such that for all @ in a neighborhood of zero in the k-norm
topology and all 8¢ Co'(M, T')
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10] = G101 + 119,011 + [|9%01])

where | | is the L,norm on M, and || || is the L,norm on M. Since
the metrics g and g, are equivalent the above norms can be taken
with respect to either of them.

As before, we let 5% = {#eCY(M, T"):0,0 = 0%0 = 0} and H,
the harmonic projection. Then for each #eC%(M, T’) there exists
a unique N, € C>(l, T') such that

(N0 = (0,0% + 0%3,)N,0 = 6 — H,0
(2.8) {Y(N,0) = v(@,N,0) = 0
HNm0||8 _S_ CsHa”s—l Where Cs iS a p01yn0mial Of Hw]|3+k

(cf. §3).
If queC"’l(]VI, T") with 9,4 = 0 and (¥, @), = 0 for all ae 7Y,
then 6 = §*N,v is the unique solution of

(2.9) 9.0 =4 with |6, = C,llv]. .

We also point out that =)' = H'(M, T'), the first cohomology
group with coefficients in the sheaf of holomorphic tangent vectors
T’. Thus by Lemma 11.1 of [6], p. 143, we have that if H'(M, T")=0,
then 5#% = 0 for all sufficiently small w. In particular, (2.8) is
solvable for all 4 with 9,4 = 0. From now on we also assume that
H(M, I') = 0.

Hamilton’s theorem states that if M, is a complex structure
sufficiently close to M, then there exists a diffeomorphism f of M
into M' such that f: M,— M’ is complex analytic. If z = (2, ---2")
is a set of local coordinates and f = (f'(z), -+, f*(2), ® = 3 widz*®
0/0%* are the representations of f and ® in terms of z, then the
analyticity of f with respect to M, means

@10) =300 1<a gz, or G =o.
ozf =1 oz

The C~ embeddings f: M — M’ which are close to the identity
can be parametrized by elements &€ C*(M, T"). This can be done,
for example, by setting f(p) = exp, (&(p) + E(p)) where p<c M and
exp is the exponential map with respect to a Riemannian metric.
In this case we denote f by e¢(¢) and in terms of local coordinates
we have ¢%(&) = 2° 4 £+ O(|&%), 1= @ < n. Then G(&) = de(&)™-de(¢) — @
is a mapping from a neighborhood of zero in C“(J, T") into
C>Y(M, T"). We observe that C*>*(M, T") is a graded Fréchet space
with respect to the Sobolev norms || ||,, s€Z*. We now compute
the derivative G'(&) = R'(8): C*(M, T") — C*(M, T') where R(&) =
de(&)™" - ().
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The linear transformation ¢'(£): C*°(M, T") — C*°(M, T") is of the
form é'(&) = id + O(|£€]); hence it is invertible for small & In (2.10)
we replace f* by e*(& + wn) and differentiate with respect to u at
w = 0. This gives (if we set o = ¢'(&)y and p = R'(&)1)

00" _ ¢ piep 0% o 5 360
0z ;R(S)ﬂ 0z’ + 0 ozt

Define 7 € C*°(M, T") by 0% = 3, 0e%(£)/(0z*)r*. Hence
Z(@ﬁ‘@_ . ot + wapﬂ) =3 [R(E)g(aea(é) at# + azea(é)'ry>i|

T\ oz* 0z* 02"0%* e oz* 027 0z70z"

r 06%(&)
* ;‘pﬂ oz

A differentiation of 0e%(¢)/0Z% = >, R(&)j(de*(€)/0z") with respect
to z* and a substitution in the above equality yields

0e%(&) for* r 0T* OR(E)F i\ _ < 0€%(E) e
%‘ oz {azﬁ ;‘ R 0z’ + Zr“ 0z Tﬂ} ; oz s -

Since the matrix de(¢) is invertible we get

ot* _ 0t OR(E); ) — e
5% > (R o7 on ) = i

But the terms on the left-hand side give the local expression of
0p7. Hence

(2.11) GO = Fne @) - (D) -

Observe that the linear map a(g) = de(&)™"-¢'(&): C%IM, T') —
C*(M, T") is of the form id + O(|j'¢|) where j'¢ stands for terms
involving the components of & and their first derivatives. Thus a(&)
is also invertible for small & Since R(£) determines an integrable
almost complex structure on M (the pull-back of the complex struc-
ture on M’ by the diffeomorphism e(&)) 0z © 0p = O.

Conditions (1.3), (1.4), and (1.5) of Theorem 1.1 are obviously
satisfied because G is a differential operator. We now proceed to
verify (1.6).

The equation 0,V = 0, G(£) has a solution v = y(&) of the form
0%60reNreyG(€). This follows from (2.8). Moreover, |[v(&)|], <
C, 11926\ NzeyG(€) .. where C, is a polynomial of [|&]|, if 2k > s + 2n.
We claim that for a sufficiently large s, and for each s = s, there
exists a constant d, such that for all « ¢ C*'(M, T")

(2.12) 10z Nz lls = ol 0peyll, -
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Assume that the assertion is false. Then one can find a sequence
Piy ooy Py o0 in CONM, T") such that ||0zeNeo¥all, =1 and
[0z ¥mlls— 0. We may assume that {||v,||,,.} is a bounded sequence
because otherwise we may replace 4, by r,./||vm|lss.. Then there
exists a subsequence, again denoted by 4, ---, ¥, -+, Which con-
verges in C?!, the completion of C°(M, T') in the || ||,-norm. Let
W€ Cr* be the limit of {+,}. Then + is also in the domain of the
operator 9, and 0.y = 0. Since the theory of the 6-Neumann
problem implies the existence of the operator Nz, on the space of
L,-integrable forms, (2.8) holds on C?*, too. The equation [z Nreyvr =1
is satisfied not only in the distributional sense but also in the clas-
sical sense because s, is sufficiently large. Moreover, Y(Nzev) =
V0, Nzeoy) = 0. By the integrability of R(§) we have
0605 0me0Nzev = 0. Then by applying Stokes’ theorem twice and
using the boundary conditions we obtain 0= (0,0%:)Nze)V, 0rerNaev) =
Hg;(e)éR(mNmeW/f‘Hz and 0= (63(5)53(5)1YR(5>¢, Nreyp) = HgR(e)NR(e)"a!"”z' On
the other hand, (2.8) implies that ||0ze) Nz (Vm — ) |ls < Cllvrm — ¥l
Hence lim,, ... 0z Nze¥'m = 0o Nzey in C»'. But this is a contradiec-
tion sinece |0z Nzo¥mll, =1 and 8Ny = 0. Thus (2.12) is
verified and we have

(2.13) 1¥© s = C,l[020G@)lsix = C.l|GE) |3

since by the integrability of R(¢) and ® one obtains 0,,G(&) =
Ore(R(E) — @) = — [G(8), GE&)].

We can now find an approximate solution of G'(&)(n) + G(§) = 0
by setting 7 = a(£) ™05\ Npe(¥(€) — G(£)). Then (2.9) and (2.13) show
that (1.6) is satisfied with B = C“'(M, T"). We can now apply
Theorem 1.1 by taking z =0 and find a solution &eC*(M, T") of
the nonlinear equation G(&) = 0. This finishes the proof of Hamilton’s
theorem.

3. A class of boundary value problems. The nonlinear problem
considered in the previous section has an obvious generalization.
Let .#Zw = f be an elliptic noncoercive system of the type in-
vestigated in [7] of order 2m subject to the boundary conditions
uweB. Let .Z + 27 be a 2mth order nonlinear perturbation of _~;
Then one would like to solve the system (.Z + 2% )u = f with u
in B. The theorem in §1 shows that this can be done for small f
if, for each v in a neighborhood of zero, &L u = (#Z + ZF ' (W)u =g
has a solution # in B.

As in the example of §2 it may happen that & satisfies all of
the requirements imposed in [7] except the condition of essential
self-adjointness, i.e., & — &* is of order at most 2m — 1. We
now proceed to show that even if the order of & — &* turns out
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to be 2m one can still obtain existence and regularity by applying
the Kohn-Nirenberg methods. In particular, this will give us ex-
istence and regularity for [Ju — 20*[w, u] = g — Hg with t(u) =
t(ou) = H(u) = 0.

For the purposes of this section it is enough to consider M as
an open submanifold of an % + 1-dimensional C* manifold M’ with
compact closure M and a smooth boundary dbM. Let 7 be a vector
bundle over M’ of fiber dimension p. We denote by C=(l, 7°) the
space of smooth sections of 7. With respect to a Hermitian inner
product <, ) along the fibers of 7 and a Riemannian metric on M’
the L*-inner product on C=(JM, 7°) is given by

(u, v) = Sy<u, vydM .

Let /* be the covariant differential with respect to a connection
on 7" of order a. The Sobolev s-norm is defined by

lulp= % | o, rewpdsr, jul,=ul.

lal<s

This norm is equivalent to the norm given by

|, Do) e
kg lal=s JU;nM
where {U;} is a finite coordinate covering of M, {o;} is a partition
of unity with respect to {U,;}, D* = D{* --. Di*', D; = — 1/ —10/0x?,
la| =a, + -+ + a,,,, and {u*} is the local component-wise expression
of weC=(M, 7).

Let &2: C=(M, 7°) — C=(M, 7°) be a differential operator of order
2m which arises from a quadratic form

Qu, v) = S S S, a¥DuDfvidM , w,veC=(M,7"),

M %5 lalsm
18l=m

IATIA

ie., (Lu, v) = Qu, v) for all u, veCy(M, 7°), the space of C= sec-
tions with compact support in M.

Let BcC=(M, 7°) be a subspace of certain homogeneous boundary
conditions. More specifically, we require that

(3.1) Co(M,7)c B.

8.2) if U is a boundary coordinate neighborhood and (e C{(U),
{=1lon VNM, VcVcU, then (BcC B.

(8.8) if T represents a translation or differentiation parallel to bM,
then {Tu € B for u < B.
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Set 2Q,(u, v) = Qu, v) + @, u) and 2V —1Q'(u, v) = Qu, v) —
Q(, u). The following conditions will be imposed on Q:

(3.4) Qu(w, u) = [[ullH-, for uweB.

(3.5) If @' contains terms of the form (Lu, Kv) where both L and
K involve covariant derivatives of order m, then for some constant
C >0 ||Lu|? £ CQyu, w), and ||Ku|]* < CQy(u, u) for all uwe B.
3.6) Q' (u, v)| = C(Qu(u, w)Qy(v, v))*, u, v€ B.
(8.7 bM is noncharacteristic with respect to @,, i.e., if x,€bM and
{«', ---, 2"} are local coordinates in Uswx, such that UNbdM =
{z»** = 0}, then for any nonzero vector X = £9/dx""' € T" M’ which is
normal to bM the matrix (a;; = Dljairip=n 55 (2,)5*"#) is positive de-
finite.
(3.8) The norm Q,(u, u)"? is compact with respect to || |[,_, on B,
the completion of B with respect to Q,(u, w)"2

It is shown in [7] that (3.8) is implied by the inequality
) Siaism Fou, Vuyds < CQy(u, w), we B, where ds is the volume
M

element on bM. In the case of complex manifolds M and M’ and
< =[], the complex Laplace operator (in particular, m = 1), this
is the basic Kohn-Morrey estimate.

The Lax-Milgram representation theorem immediately implies
thot if (8.4) and (3.6) are satisfied, then for any fe L, M, 7") (the
space of sections integrable with respect to || ||) there exists a unique
u € B such that Q(u, v) = (f, v) for all ve B. We point out that in
order to prove regularity [7] makes use of a condition which is
slightly weaker than (3.5), namely, Q' contains no products of mth-
order derivatives. In particular, if &u = f is already a solvable
noncoercive boundary value problem, then one can perturb & by
an operator whose order equals the order of & and still get a
solvable problem with the same boundary conditions as long as the
highest order derivatives can be controlled in the manner specified

by (3.5).

A priori estimates and regularity
Let R** = {(x, -+, 2" ¥):y =0}, For ueCy(R*™") the partial
Fourier transform #% is defined by

a6 = | e T, v

RT

where x = (a!, ---, 2", E=(&, +++, &), - & = >; %, de = dat - - - da”.
For real s the operator T, is given by

(TG v) = (L + | a(é, v) -
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If || || is the L,-norm in R™*', then
Nullly = || Towl|

is the tangential s-norm of u. If s is a nonnegative integer, this
norm is equivalent to (Z‘,més(’HD“ul[z)“.

We will adopt the fgﬁowing convention: V,(u) < V,(u) means
that there exists a constant C > 0 such that for all u V,(u) <
CV,(w). In the sequel the constants in inequalities involving < will
depend on %, various integers s, », etc., and some fixed functions
with compact support.

For a nonnegative integer s we let |u|,s denote the supremum
of u and its derivatives up to order s. The following interpolation

inequalities are standard: if 0 < s, < 5, < s, then
(83—82)/(s3—s1) (89—s81) /(s3—s1)
(3.9) Iu’(jszs ]ul<;31 82)/(s3—s1 ]ulcfvzl 81) /(83781

(3.10) Hwlley = [Jollem2 oo o [[igzmoiesme

LeMMA 3.1. Let P(a) be a nonlinear partial differential oper-
ator of degree t in a. Then for all @ with (el < 0 we have the
estimate

(3.11) |P(a)|es < |@fgstr + 1.

(The constant in < depends on 0, too.)

Proof. We have P(a) = ¢(a, +++, D, -++), |&| = ¢, where ¢ is
a smooth function ¢(y, -+, ¥% +--) defined in a neighborhood of some
compact set K = {|y*| < p,} where the p,’s are such that |a|, < o
implies |D%| =< 0,

By the chain rule every derivative of P(a) is a product of a
derivative of ¢ (with respect to the y*’s) and derivatives D’ of the
argument D%. Since every derivative of ¢ is uniformly bounded
on K, we have to estimate only products of derivatives of @ which
occur in the form DFtug.Dft%q ... D**Pkq with |@;| < ¢ and
Sk, |1B;] = s. The supremum of the products is the product of the
suprema. Hence one has to consider |algn+s *+* |@lor+s With
maxY; < ¢t and >,0; = s. If v; 4+ 0; = y, then by (8.9)

(r5+05—m) s

Ialc7’3‘+ﬂj S !a|03‘\"/‘ |a!(8—)’]—~oj+m /8 .

Since |alex = 0 and 3 (7; + 0; — p) = 8, Ilii |@lorjves S |@fgsta + 1.
This gives (3.11).

Let {eCy(R*) and let A; be the tangential self-adjoint operator
(D&, 1<j<n Let D'=D}--- D2 (Ul =1, 4+ -+ + Lo,
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LeMMA 8.2. For all a, uc Cy(R)
(3.12) [[[aD', Ajlu|l < |alel|% ]l
(3.13) I[aD', A;], Aslull < |alel|wll -

Proof. We have
(3.14) [aD', A;lu = o[ DY, {IDilu + alD,;| D', Llu — {Di(a){D'u .

Now (8.12) follows since [D', (] is a differential orerator of order
[{l| — 1. Furthermore, (3.14) shows that [aD’, 4;] is a sum of oper-
ators of the type bD' where the b coefficients depend linearly on «
and the first derivatives of a. By (3.12) [|[[bD}, A;lu|| < |blallull, S
la|g2||ull,. This proves (3.13).

We now take coordinate neighborhoods U and V such that VcU
and UN M is identified with an open set in R**'. Let { be a C=
function which is identically equal to one on V' N M and identically
equal to zero outside U N M. The operators A; are constructed with
the aid of the local coordinates on U. Set |alp = D jas |0 |,
lall, = Diiasllaf]l, and let A stand for any of the operators A;.

PROPOSITION 3.3. For all we B
(3.14) [Re Q(A*u, A*w)| < (|%|lssm—s + |@gsr1]|%]])* + |Re Q(u, A%u)|

where Re stands for the real part and the constant in < also de-
pends on |acz.

Proof. We consider the bilinear form AQ(u, v) = Q(Au, v) —
Q(u, Av). The form AQ is again of degree m in # and v and its coef-
ficients are obtained by differentiating the coefficients of @ by A.
By induction we can define the bilinear forms A*Q which are of
degree m in u and v and their coefficients depend linearly on the
a?’s and their derivatives up to order p. Therefore, we have

(3.15) | A" Q(u, v)| s (|@ler + Dl wllunllv]ln -

We can write Re Q(A*u, A*u) — Re Q(u, A*u) as a sum of terms
A"Q(Au, A°w) with 2= p<s+ 1, v,0<s—1, g +v+0=2s and
terms A*Q'(Au, A’u) with 1< pu=<s, p+v+0o=2s and either
v<8,06=<s—1loryv=<s—1, o0 <s. Recall that @ is the skew-
hermitian part of Q.

We first consider the terms A"Q(A*u, A'w), 2= pn<s+1,v,0=
s — 1. By applying (3.15) we get

(3.16) | A" Q(Au, Au)| S (|@lox + Dl|wlliml| %llorm -
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By (8.9) and (3.10)
[alc,'# s |a[g;—_;_z;)l(s—1) . ]alg;—l—#)!(s—l)
Nl sm S [l Biwd - [lw]lm7000
N llorm < w8l - [Julfmmo0e .
If we treat |a|,: as a constant and use the fact that v + o =
2s — p we have
| ol llyrmllWllim S (@ ]gora|[w|[n) 2770« |0 |[FR00 7
S (|@losnil|w]ln + [[%]]ssms)

The above inequality and (3.16) imply
(3.17) | AQ(Aw, Au)| < (|@los+i]|]lm + [|%|]esms)’ -

Next we turn our attention to the terms A*Q'(4Au, Aw), 1=
p<s. We will assume that y<s and 6 <s—1; thecase y=s—1,
o < s can be treated in exactly the same way.

(i) vyo=s—1:

Again by (8.15)

(3.18) |A*Q (A, Au)| < (|aler + D[ wlliml|®lorm -

Since 1 < ¢ < s, by interpolation we have

Ia!c# S ial(cf;-*l)l(s—l) . ]a|(081—#)/(8—1) S lal(cf;—l)l(s——l) .

We can now proceed as in the derivation of (3.17) and obtain

(|ale < |@lez and |a ¢z is treated as a constant.)

(3.19) | A*Q'(A"u, A"u)| < (|@]os[[w]lm + [[2]]ssm-s)® -

(ii) v=80=s5—2:

We observe that A*Q'(A*u, A°u) = A*7'Q' (A" *'u, Au) — A*Q'(A*'u,
A"'u). Since 2= p+1=<s+1l,0+1=<s—1, p+ s+ o= 2s, the
first term is estimated by (8.17) and the second by (3.18). Hence,
in this case we again have

(3.20) | A" Q' (Au, Aw)| < (|afesrr|®]lm + [[U]lirm-)® -

(iii) v=s80=858—1:

A typical term in the expression of Q'(A*u, A°'w) is of the form
(LA*u, KA*"'u) where L and K are mth- order differential operators
satisfying (3.5). Since v=3s and 0 =s —1, we have £ =1 and a
typical term in the expression of AQ'(A°u, A*'u) is of the form

(LA**'w, KA*"'u) — (LA*u, KA*u)
= ([[L, 4], Al4A*"'u, KA* ') + ([L, A]A*'u, [4, K]A* ')
+ (LA, [A, K]A*'w) + (L, AJA*'u, KA*u) .
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We now observe that since A° is a tangential operator we B
implies A*u € B. Therefore, by (3.5) || LA u||* SQ,(A*u, A*u), || KA u|*S
Q(A*u, A'u). Then (3.12) and (3.13) together with Schwarz’s in-
equality give the estimate

(LA™, KAV ) — (LA, KA W)|

3.21
8-21) < Culalial|nBrns + 6Qu(A'u, A7)

where ¢ is an arbitrary positive real number and C. is a constant
depending only on e.

Since Re Q(A*u, A*u) =Q,(A*u,A*w) and Re Q(A*u, A*u)—Re Q(u, A*u)
is a sum of terms estimated by (8.17), (8.18), (3.19), and (8.20), the
desired inequality (3.15) is obtained by combining these inequalities
and taking a sufficiently small ¢ > 0.

Let {U,} be a finite cover of M by coordinate neighborhoods.
Let V, be an open subset of U, with V,cU, such that V,’s still
cover M. Let A; o= (Dilsy 1< 7 <m, be defined with respect to
the local coordinates on U, where {,=1 on V,N M and outside
U.N M. Then for all w € C=(M, ") we have |||ulll, S Secr Doia || A% Ul S
[ll%]]],

Since Q,(u, w)"/* is compact with respect to || ||,._, on B for any
¢ > 0 there is a constant C, > 0 such that for all we B

(3.22) ||u|[§n—1 = er(u'; u) + Cs Hu’”it—2 .
Set

o=l =% 5 | [D(ear)kde
k,a lll',iffgﬂlti; VoM

where {o,} is a partition of unity with respect to {V,}.
Then (3.4), (3.14), and (3.21) imply

1D ulll = e[3; 35 IRe Q(u, Afau)]

(3.23)
+ ([wllrsmes + [@loral[w][n)] + Coll%[Fim—s

for all ue B, reZ*, ¢ > 0.
We are now in a position to obtain regularity of solutions up
to the boundary.

THEOREM 3.4. Assume that the quadratic form Q(u, v) satisfies
conditions (3.1)-(8.8). Then for each feC=(M, ") there ewists a
unique w € B such that Qu, v) = (f, v) for all ve B, ie., Lu=/f.
Moreover, for each r € Z* there exists a constant C, depending only
on r and |a|sm+1 such that
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(3.24) l%llrim-s = CAIFl + [@lor+n [ F1]) -

Proof. By the elliptic regularization method devised in [7] it is
enough to prove the a prior: estimate (3.23) under the assumption
that a smooth solution u € B already exists.

Since Q(u, v)=(f, v) for all v € B, we have Q(u, A¥ u)=(f, A¥u)=
(45 .1, A% ,u). Thus (3.22) implies

3.25) [[[ D" ulllr s el[fllr + el wllrim—s + [@loresl|%ln)® + Ccllw]Fm-s -

We now turn to the equation #u = f on a coordinate neigh-
borhood V,. Because of (3.7) the matrix of coefficients of Di%u is
positive definite. We can write

(3.26) Ditouw= 3, PJla)Du + P(a)f

lo}=2m
Op41<2m

where P,e) and P(a) are mth-order nonlinear differential operators
in the af’s. (Observe that the coefficients of & depend smoothly
on a and their derivatives up to order m.)

Dty = | é‘gm P(a)Diir Du
o|=
Opt1<2m

(3.27) + o INZ bsD; .. P,(a)D; 7 Du
ols2m 1=|B|sr—m—1
Op41<2m

+ > d; D} Ple)D;ir 7

r<r—m—1
By (3.11) we have
| 1Dsrowrds < (alm + 17 3 | 1D7upda
Ve Ir Ve

|=r+m—1
Op4+1<Tr+m—1

o2 N 1§ﬂ§rz-m_1(la’|”ﬁ+’" + D[ u]ffom-i-s
+ 3 (alorem + 1P lnars -

The above inequality will not change if we extend our summa-
tion over B8 to ». Then it follows from (3.9) and

(3.10) (@m0 G a0

and
0l mros S 1570« [l [l

Thus

ialcﬂ+mllui1r:}-m—l—ﬁ s |a16”'+""'||u”m—l + |]uHr+m—2|a’|Cm+1 .

Similarly
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l@lgrem || fllromeser S |@omts|| fllromez + |@]er— || F] -

Hence
| 103t urds < (alon + 17 5 | | Doupde
(3.29) 7 ST v,

+ l@femea(ll|[foms + |17 + @ orem(l| ][y + [LFIF) -

Next, for any 7 > 0 there is a constant C, > 0 such that

lol=r+m—1

(3.30) wtrerm
+C'S Hz | Doultdz .
Vo lol=r+m—1
Op+1= =m—1

S S |Dulds < 778 | Drmu e
v Va

This can easily be established by extending n» outside V, to be
with compact support and then using Fourier transform (see [7]).
Combining (3.28) and (3.29) we obtain

g | DouPda + S | Drtm=y Pz
Va lol=r+m-—1 Vo
Opg1<rmt

3.31) < [(|aln+ 1)+ 1][77 SV | Drtrutds + C S S | Du mﬂ

V,y lol=r4+m—1
“ « Opp1=m—1

+ laleme(l|%]|tems + [ F1D) + [@feren((|w ][ + L) -
By choosing a sufficiently small 7 and summing over @ we have

N llrim—r S (1 D" lll, + [[#]lrsm—s + I Fl

(3.32) + @ gren(|%]lmey + 1 F1D

where the constant in < depends on |a|gm+1.
We combine (3.24) and (3.31) and choose a sufficiently small ¢ in
(8.24). This gives the inequality

3.33)  [[llrsn—s S 1Flle + [[]lrrms + [@lorem(l[%]lms + LD -

By (3.4) || |[n-1 = Qo(w, w) = Re Q(w, u) = Re (u, f). Thus [[u|fs.=
[, NI = Nlull- |1l S |@llaa| £ o [|%]lm_y = [|f]l. Therefore,

(3.34) Wllrsms S S lle + N llrimes + |@lor+m[[F]]

Finally, the desired estimate (3.23) follows from the fact that
for every ¢ > 0 there is a constant C, (which also depends on 7 and
m) such that |[u|l,im-2 = €l|®]lsims + C.llw]]-

REMARK 3.5. The above theorem is a global regularity result.
For a quadratic form Q(u, v) satisfying (3.4), (8.5), (3.6) the regularity
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result in [7] (cf. Theorem 4, p. 458) also holds.

REMARK 3.6. The careful analysis of the dependence of (3.23)
on the coefficients of & is needed in order to obtain condition (1.6)
in cases of application of the implicit function theorem of §1 to
solving nonlinear systems of partial differential equations. Observe
that by the Sobolev inequalities |a@|or+m S [|@]]n,rim 7 > (1/2)0 + 1,
and the dependence of C, on |a@|+1 in (3.23) is consistent with the
fact that by the methods of §1 one solves such a nonlinear problem
in a neighborhood of zero in some Sobolev norm.

REMARK 38.7. If the basic Kohn-Morry estimate (2.2) hold on
(0, 1) forms, then the operator [],u = [Ju — 20*[w, u] satisfies (3.1)-
(3.3) and (3.5)-(8.7). Furthermore, if Q(u, v) = (Ju, 9v) + (0*u, 9*v), —
(2w, u], dv), then Q. w, w)”? is compact with respect to || ||, on
BU 57" where B = {u, € C*(M; T"): () = 0} and 2" = Ker[]N B.
Hence, (8.4) holds on BN £#*. Since S#* is finite-dimensional, all
norms on S#*' are equivalent, so that (8.21) still holds. Thus, the
argument in Theorem 3.4 now applies to show that if fe C*' (M, TN
S/, there is a unique solution we BN £ of [J,u=f and »
satisfies (3.23) with m = 1.
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