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A NASH-MOSER-TYPE IMPLICIT FUNCTION THEOREM
AND NON-LINEAR BOUNDARY VALUE PROBLEMS

GARO K. KIREMIDJIAN

The main objective of this paper is to formulate an im-
plicit function theorem for Frechet spaces which is suitable
for nonlinear systems of partial differential equations with
prescribed boundary conditions. The applications are dis-
cussed in connection with deformation theory where such
problems arise naturally and are of fundamental importance.
Furthermore, their linearizations are certain second-order
perturbations of second-order elliptic noncoercive boundary
value problems. The last part of the paper deals with de-
veloping a general theory which covers these cases.

In [12] J. Moser gives a rather general method for the construc-
tion of solutions of nonlinear differential equations whose lineariza-
tions lose derivatives. His result is similar to that first formulated
by J. Nash in [12] in connection with the isometric embedding of
Riemannian manifolds. The recent progress in the theory of pseudo-
complex structures has further emphasized the importance of the
Nash-Moser technique. Various generalizations of this approach have
been successfully used by R. Hamilton for the study of certain non-
linear complexes of partial differential operators (cf. [2]). Hamilton's
version of a Nash-Moser-type inverse function theorem has enabled
M. Kuranishi to construct a finite-dimensional universal family of
deformations of pseudo-complex structures on a strongly pseudo-
convex pseudo-complex compact manifold (cf. [10]).

One distinctive feature of the nonlinear problems which appear
in the areas mentioned so far is that they are free of boundary
conditions, although, as it has been demonstrated by R. Hamilton,
the construction of inverses of the linearizations is very often
achieved by considering linear boundary value problems. For ex-
ample, the deformation theory developed by M. Kuranishi in [10]
takes place on a compact C°° manifold MQ which is the boundary of
a complex manifold M. Hence the relevant nonlinear systems of
partial differential equations naturally have no boundary conditions
imposed on them. On the other hand, it is shown in [2] that if
H\M, T') = 0, where T' is the holomorphic tangent bundle, and the
Levi form on Mo never has exactly one negative eigenvalue, then
for any complex structure Mω on M sufficiently close to the given
structure one can find a C°° diffeomorphism / of M into the ambient
manifold Λf' so that /: Mω —• M' is complex analytic. Here ω is a
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(0,1) T'-valued C°° form on the closure M. This shows that every
sufficiently small complex structure on M can be obtained by wig-
ging Mo into M'. If, in terms of local coordinates z = (z\ , z%) we
write /: MyM' as f(z) = (/'(*), , /•(*)) and set df= (3/β/3*/W* ,
df= (dfa/dz^aJ^nf then th corresponding nonlinear problem can be
stated as follows: given an integrable form ω find a diffeomorphism
/ such that ω = (9/)"1 9/. Except for the fact that / is required
to smooth up to MQ, there are no other boundary conditions imposed
on the solution of this nonlinear system.

In [3] the author considered the following question: Is it possible
to extend every small deformation of Mo to a complex structure on
Ml This means that one has to solve the nonlinear system dω —
[ω, ω] = 0 where the solution ω must satisfy some prescribed condi-
tions on Mo. Here 9 is the exterior differentiation operator with
respect to conjugates of holomorphic coordinates and [, ] is the
Poisson bracket.

The main result appears in § 1. As an application, in § 2 we
solve the system •<*> - 3*[α>, α>] = / - Hf, t(ω) = <p, ί(9*ω) = ψ,
Hω = 0 where /, φ, ψ are given T'-valued C°°(0,1) forms with suf-
ficiently small Sobolev A -norms for some positive integer fc, 9* is the
adjoint of 9 with respect to some hermitian metric on M\ Π — 99* +
d*d, t(ω) is the complex tangential part of i*ω (i:M0—*Mf is the
given embedding and H is the projection on the space of harmonic
forms satisfying t(ω) = 0). The first important implication of the
solvability of this system is an alternate method of deriving the
extension problem for CR structures. A new feature of this ap-
proach is the fact that one can extend to a complex structure rep-
resented by a form ω for which Hω = d*ω = 0. That makes the
extension of a small deformation of Mo unique and part of the
universal family for the set of all small deformations of a manifold
with boundary (cf. [6]).

The second implication is the solvability of the system o) —
Nd*[ω, ω] = ψ, ί(α>) = t(φ) = 0, where ψ is given and N is the dual
Neumann operator. In the case of compact manifolds without bound-
ary Kuranishi [10] has already demonstrated the importance of this
system (with N replaced by the classical Green's operator) in deforma-
tion theory. The fact that one can also solve it for manifolds with
boundary under appropriate assumptions on the eigenvalues of the
Levi form is crucial (as in Kuranishi's case) to the construction of
universal families of complex structures on M which have Af0 fixed.
The general theory of such deformations will be treated in a future
publication.

It is worth noting that the theorem in § 1 is also applicable to
nonlinear problems which have already been treated by Hamilton and
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Kuranishi (cf. [1] and [10]). As an example, we prove Hamilton's
theorem in § 2.

The linearization at ω of the operator Qa> — d*[ω, ω] is Jϊfu =
\Z\u — 2d*[<#, u]. One has to solve the linear boundary value problem
<g>u — g — Hg, t(u) — tφ*u) = 0 with the appropriate estimate on u
(cf., (1.6) of this paper) in order to apply the general theorem of
§ 1. This problem is very similar to the elliptic noncoercive linear
boundary value problems considered by J. J. Kohn and L Nirenberg
in [8]. The difference is that £f — £f * is no longer an operator
of order lower than the order of £f. In § 3 we show that this type
of system can also be handled by the Kohn-Nirenberg methods.

I would like to thank Professors M. Kuranishi, H. L. Royden,
and M. M. Schiffer for their interest in this work and for the great
number of valuable discussions I had with them.

1* The main result* Let E and F be graded Frechet spaces
with fundamental systems of norms which will be denoted by || ||5,
s 6 Z+, for both E and F. Here Z+ is the set of positive integers.
For 8 ̂  r we have || ||β Ξ> || | | r. We assume that for each real posi-
tive number t there are smoothing operators on E and F denoted
by the same symbol S(t), i.e., S(t):E—>E is an endomorphism such
that for r <; s there exists a constant cSiT > 0 for which the follow-
ing inequalities hold for all x e E:

(1.1)

(1.2) \\x-S(t)x\\r^cs,rtr~s\\x\\s.

If M is a compact manifold (with or without boundary) and V
is a vector bundle over M with a metric along the fibers, then the
space of C°° sections of V over M is an example of such a Frechet
space where || ||s is the Sobolev s-norm. In this case the smoothing
operators were first introduced by J. Nash in [11]: if veC™(Rm),
then

where χ(y) is a function whose Fourier transform χ(ξ) is identically
equal to one for \ξ\ < 1/2 and identically equal to zero for \ξ\ > 1.

For s, 6 Z+ we define U(s19 a) = {x e E: \\x\\Sl< a}. Let G: U(sly α)—>

F be a map for which the derivative G'(x):E—*F, G\x)(y) =
lim^^ou~\G(x + uy) — G(x)]9 exists for all x e 17(8!, a). We now as-
sume that G(x) has some smoothness properties, i.e., there are in-
tegers m and q and real numbers d and I with I > 1, d < I and for
each seZ+ there are continuous increasing functions <xs(τ)>0, /3s(r)>0
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on the positive real line R+ with βs(τ) ̂  Csτ
d for some constant

Cs > 0 such that the following conditions are satisfied:

(1.8) \\G(x)\\8 ^ as(\\x\\k)(\\x\\s+m + 1)

for all s and k with 2k > s + q

(1.4) ||G(s + ») - G(α) - G\x){y)\\8 £ α.(| |a|l.+ )lllHlί+»

for all s e Z + and a? e Z/fo, a), y eE with a? + y e U(slf a)

(1.5)

for all s e Z + , a? 6 U(slf a) and y 6 E.
(1.6) There is a subspace BaE such that for all α eZ/fo, α) the
equation G'(x)(y) + G{x) = 0 has a solution # e B with

llvll. ^ α.(ll»IU)(l|G(a?)||.+. + βs{\\x\\s+m)\\G{x)\\^m)

for all s and k with 2fc > s + g.

REMARK 1.1. It is easy to see that (1.3)-(1.6) are based on
properties satisfied by nonlinear partial differential operators. In
this case m serves as a bound on the order of G and the number
of derivatives lost by the solutions of the corresponding linearized
differential equation; q is the dimension of the manifold over which
G is defined, 1 = 2 and k is chosen so large that one can use the
Sobolev inequalities. Condition (1.3) in the general case of Frechet
spaces is the definition of a tame map. This concept has been in-
troduced by R. Hamilton.

THEOREM. / / the map G has the properties (1.3)-(1.6) then for
each z e U(s19 b), b = min {a, Ck,\a}, there exists w e U(k, a) with
G{w) = 0 and w — zeB provided \\G(z)\\k is sufficiently small and
k is a sufficiently large integer depending only on m, q, d, and I.

Proof. We will construct w as the limit of a sequence xot xί9 ,
xn9 of approximate solutions.

Let t0 > 1, t19 , tn, be a sequence of real numbers defined
by tn+1 = tj, max {1,1 — 1, d) < δ < I. Let tQ be so large that \\z\\λ+k ^ ti
for v = (1/min {3 - 1, δ - d)[((d + 2)m + δ)/δ] <X^X0<k-m-q.
The choice of λ0 will be specified later.

Set x0 = z. Assume that x09 x19 , xn have been determined in
such a way that the following conditions hold for p ^ n:

(1.7) \\xP\\x+k^tλ

p for v < λ ^ λ 0

(1.8) \\xP\\k<b
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(1.9) xp = xp_γ + yp^ where yp_x e B is the solution of (1.6) with

x = S(tp)xp^ .

For p = 0 (1.7) and (1.8) are satisfied by the choice of #0 and
t0 and (1.9) is vacuous. Let yneB be the solution of (1.6) with
x = S(tn+1)xn and let xw+1 = #w + #„. Observe that xp — xoeB for
all p <̂  w + 1. We proceed to verify (1.7) and (1.8) for p = n + 1.

From (1.1), (1.3), (1.6), (1.7), and (1.8) we obtain the inequalities

^ tϊ + + +

+ A + 4 ( | | S(tn+1)xn \\λ+k+J || G ( S ( U i K II*- J

^ ί i + ^+fc(c f c, f cδ)[αi+ f c +»(c* l f cδ)(^+ f c + 2 W fHfc+2»ίitϊ+i + 1)

Since v < λ, λ + 2m/<? ̂  δλ - 1 and d(λ + m/δ) ^ δX - 1. Hence
the above expression is clearly dominated by i£+1 if to is sufficiently
large. This shows that (1.7) holds for p = n + 1.

For any x e U(k, b) and any t we have by (1.4) and (1.5)

\\G(S(t)x)\\s ^ \\G(x)\\s

+ α ( l | s | | J I | s S ( t ) | | β + m ( l + ||x - S(fi)x\\\?m).

From (1.1) and (1.2) we also obtain

\\G(S(t)x)\\k+m^\\S(t)G(S(t)x)\\k+m

+ \\G(S(t)x) - S(t)G(S(t)x)\\k+m

^ck+m)k_mf-\\G(S(t)x)\\k_m

+ ck+m,k+m+λr>\\G(S(t)x)\\k+m+λ.

Then for some constant ck and for λ between v and λ0 (1.2),
(1.3), (1.6), (1.7), (1.8), (1.10), and (1.11) imply the inequality

IK+i - &nll* = WvΛV

r = max (2, d) .

We observe that in order to apply (1.7) λ must satisfy v < λ +
τm ^ λ0.

On the other hand, if eί stands for various constants depending
on &, we obtain from (1.2), (1.4) (with s = k — m, x = ^(ίjίc^.! + yn_lf

/̂ = x,,.! — S{tn)xn^> (1.5) (with the same data), (1.7) and (1.8) the
estimate
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(1.13)

Again by (1.4) with s = k — m, a? = S(tn)xn_lf y = ̂ /%_i and by
(1.9) we have

Another application of (1.4) and (1.5) with s = k — m, x — xn_t

and y = #%_i — S>(ίn)fc»-i together with (1.2) and (1.7) implies that one
can estimate the first term of the right-hand side of (1.14) by
t-'ti-, since t~utι

nU = t~ι^-m ^ fci'r1" = t'Ψ^. By combining (1.12),
(1.13), and (1.14) we obtain the inequality

(1.15) \\xn+ι - x»\\k ̂  φlUή'tU + C M K - a?-!Ill) .

We set εp = t$\\xp — ^2,_1||fc for p ^ n + 1 where the number μ
will be determined below. Then (1.15) becomes

(1.16) en+1 ^ ΦZtμtΛLi + tT+iμtnlμeϊ) .

We first choose μ so that τmδ + (β — l)μ ̂  0. This can be done
since δ < I. With the choice of μ we can choose λ in such a way
that (τm + μ)<5 - δ~\δ — l)λ ̂  - 1. We observe that λ and μ do
not depend on k. So if k is sufficiently large we still have λ0 <
k — m — q. Let ck > max {1, c'k) and let p = (1 — Z)"1. It is clear
from (1.12) that || (̂ (̂ ί) [U-m is sufficiently small and t0 sufficiently
large; then εt ^ eg = cj.'. From (1.16) we can conclude by induction
that en+1 ̂  c", i.e.,

(1.17) WXn+l-XnWlc^cXt^.

Furthermore, (1.13) and (1.14) imply

(1.18)

if λ is sufficiently large.
We are now in a position to verify (1.8) for p — n + 1.

II&.+1 - a?oll* ̂  Σ ll*p - »p-iIU ^ 4 ' Σ V ̂  tfίo^Σ(t,t0-
1)-/l.

If t0 is sufficiently large the series on the right-hand side converges
and c'k%

μΣ?=o(trtoTμ < b/2. Since xo = z we also have \\xn+ι\\k < b.

This completes the induction step. The sequence xOfxlf --,xn, •••
satisfies (1.7), (1.8), (1.9), (1.17), and (1.18). In particular, (1.17)
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shows that x0, x19 , %n, is Cauchy in | | ||fc since

\\x%+9 - x*\\k ̂ " Ϊ Γ Ί I ^ + I - *JI* ^ tf*ΣV.ίί ^ const. %& .

Our next task is to show that xQf xlf , xn9 is a Cauchy
sequence in every || ||s-norm. In fact, we will prove that for any
s e Z + there is a constant cs such that

(1.19). \\xn+,~xn\\s^e8t-^

(1.20). \\G(xn)\\.-.£ctf"

if w is sufficiently large.
We note that these statements for s = k are given by (1.17) and

(1.18). In the sequel all constants depending on s will be denoted
by c..

First of all, we show that (1.19), implies

(1.21). llaj.llji.-r ^ c.« , 7 = m + « + 1 , <τ = max {1, d}.

By (1.7) we see that (1.21). holds for s = k. Since \\xn — # 0 | | 2 s_ r ^
Σi^illWi-illί -r it ^s enough to estimate y^γ in the || ||2s_r-norm. We
apply (1.6) with s replaced by 2s — 7, k by s and x by S(ίy)a?y-.x.
Since we assume (1.19),, the sequence (|#olis> •> II^JL is bounded.
Hence we obtain the inequality

IIV/-ill..-r ^ o
( " ; +

Next, the term \\G(S(tj)xj^ί)\\28_r+m is estimated by

For this we use (1.3) with s replaced by 2s — 7 and k by s. Observe
that 2s > 2s — 7 + q. Another application of (1.3) shows that
II(5(5(^)0?^)IL— is dominated by cB(\\S(ti)x^ί\\. + l\ Finally, (1.1)
and (1.19), imply that | |S(£ i)%_ 1 | | 2 8_ r + 2 w is bounded by c9Vfr+im

f

WSit^x^Wl-r^ by cβ£f~r+m) and 115(^)^11. by a constant. If fe is
so large that k^{l — l)~\q — m — 1) then for s^k we have s —
7 + 2m <: σs. Also, d(s — 7 + m) = cZ(s — q — 1) ̂  σs since d <l.
Hence H ^ I L - r ^ c8tf. This proves (1.21),.

We further claim that (1.19). and (1.20). imply (1.19).+1. We again
use (1.3) to estimate x%+1 — xn = ̂ /%. This gives (1.22) with 2s — 7
replaced by s + 1 and j by n + 1. An application of (1.11) with
s + 1 instead of k and tn+2 instead of t shows that IIίr(S(ίΛ+1)a?ft)||
can be estimated by

s+m+l
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The second term can be estimated by c,t«+2ti+i^+1 by using (1.1) and
(1.3) with 8 replaced by s + m + λ + 1 and k by s povided s >
m + λ + 1 + q for s ^ k. This can be achieved if k is sufficiently
large. Moreover, if this is the case then λ can be chosen so that
(<? - l)λ + 2m + 1 ^ μ which shows that C ί ^ + t ^ 1 <; t~^. From
(1.10) it follows that

ί)xn)\\s_m^ cs(\\G(xn)s.m\\

We note that in all of the arguments given so far we have also
used (1.19)s which implies the existence of a bound for ||a?J|,. If
we set λ' = s — 7 then | | ^ | | s + ^ ^ cβtl*. Moreover, if k is sufficiently
large then for s ^ k we have (δ - σ)s ^ δμ + δ2(2m + 1) + 7 since
<?>cr. Thus ί i ^ ί ^ l l ^ l l . ^ ^ c8t~^. Hence by (1.20). we obtain
\\G(S(tn+ί)xH)\\s+m+1^catn+i if /̂  i s sufficiently large with respect to
m. Finally, \\S(tn+1)xn\\ί+m+1 in (1.22) with j replaced by n + 1 and
2s — 7 by s + 1 is estimated by cstί^

+1)\\xn\\d

8. Since this term is
multiplied by \\G(xn)\\s_m it follows from (1.19)s and (1.20). that
| | y j | . + 1 ^ cstn+ι Note that tήlμ^tn+i because δ<l. This finishes
the verification of (1.19).+1.

Finally, we will show that (1.19).+1 implies (1.20),+1. If we re-
derive (1.13) and (1.14) with k replaced by s + 1 we obtain

II

Then (1.20).+1 follows from (1.19).+1 and (1.21).+1 for s ^ k if k
is sufficiently large.

This completes the induction step and establishes (1.19)s and
(1.20). for all s. Since xOf xlf •••,#», ••• is a Cauchy sequence in
every || ||s-norm the limit weU(k,a) exists and (1.20), shows that
G(w) = 0. By construction w — zeB.

REMARK 1.2. As we shall see in the next section it is sometimes
necessary to replace (1.6) by a condition which only gives the ex-
istence of a suitable approximate solution of the linearized problem.

Suppose that in addition to (1.3), (1.4), and (1.5) we also assume
that the following condition holds:
(1.6') There is a subspace BaE such that for all xe U(slf a) there
exists G^x) e F for which the equation G'(x)(y) + G^x) = 0 has a
solution with

^ α.(ll*ll*XII<?1(a0||..H. + ftflMU

j )-G(a j) | | .^α.( | | a !

for all s and k with 2k > s + q.
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Then the conclusion of Theorem 1 is still valid. This can be
easily seen as follows.

First of all, \\G(xn)\\k_m £ t~lμ for all n. For n = 0 this is true
if 11 £(&)!!* is sufficiently small. Assume that the claim holds for n.
From (1.13) and (1.14) we obtain

(1.24) \\G(xn+1)\\k_m £ ck(\\G(S(tn+1)xn)\\ϊ + l l v . l l ί )

(Observe that the verification of (1.8) remains the same as before.)
By wri t ing G(S(tn+1)xn) - S(tn+1)G(xn) as G(S(tn+1)xn) - G(xn) +

G(xn) - S(tn+ι)G(xn) we have the es t imate

\\G(S(tn+1)xn\\k £ \\S(tn+1)G(xn)\\k + \\G'(xn)(xn - S(tn+I)xn)\\k

+ ak(\\xn\\k)\\xn - S(tn+ί)xn\\ι

k+m .

From (1.1), (1.2), (1.5), (1.7), and (1.8) it follows that for some
constant (denoted again by ck)

\\G(S(tn+1)xn\\k ^ cjz+folμ + tniiti).

Here we have also used the induction hypothesis. Since we are
free to choose λ to be larger than μ (more precisely, (<5 — l)λ ^ ϊλ)
we get

(1.25) | ( G ( S ( t n + 1 ) x n ) \ \ k ^ cΆ+ιt~n

lμ

for some constant ck.
Furthermore, from (1.6)' we have

IIV.IU ^ const. [\\G(S(tn+1)xn\\k + \\G(S(tn+1)xn)\\ί+m

1)xn)\\k+m + \\G(S(tn+1)xn)\\ί)]

Note that (1.25) can be derived with k replaced by k + m and
tΓ+i by tT+1. Hence

(1.26) \\yn\\k ^ const. tT+\t^ .

Combining (1.24), (1.25), and (1.26) we obtain from some con-
stant ck

Now the right-hand side can be dominated by £~j? if t0 is suf-
ficiently large and μ is chosen so that Pμ — 2ml2 — 1 ^ δlμ. This
can be done since d < I.

The rest of the proof remains unchanged. We note that in (1.6)'
the power does note have to be I but just any K > max {1,1 — 1, d}.
Then all that has to be done is to construct the sequence t0, tlf ,
tnf with max {1, I — 1, d} < δ < min {/r, I}.
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2* Some nonlinear problems in deformation theory* Let M
be an open relatively compact subset of a complex manifold M' of
dimension n ^ 3. We assume that the boundary Mo of M is a C°°
manifold of real dimension 2n — 1. Let T" be holomorphic tangent
bounle of Mf and Cp>q(M, T) be the space of all C°° T-valued (p, q)
forms extendible to a neighborhood of M. If h is a real-valued C°°
function on M' defining MOf i.e., Mo = {# eMΊ h(x) = 0} and dh Φ 0
on AΓ0, then, in a neighborhood of Λf0, every ω 6 Cp'q{M, T') can be
uniquely expressed as α+/3Λ3/& where α 6 Cp>q(M, T'), β e Cp>g-\M, T),
and 3 is the exterior differentiation operator with respect to the
conjugates of the local holomorphic coordinates. Let i: Mo —> M' be
the embedding of Mo. Then t(w) = i*a is the complex tangential
part of ω and we set v(ω) = i*β9

We now make the following assumption:
(2.1) For q < n and for each x e Mo the Levi form either has q
positive eigenvalues or n — q + 1 negative eigenvalues.

Let 3* be the adjoint of 3 with respect to an inner product
given by some hermitian metric g on M\ Then the space £ίfp-q =
{ω e Cp>q(M, T'): dω = 3*α> = 0, t(α>) = 0} is finite-dimensional and for
each feCp'q(M9 T) there exists a unique form NfeCp>q(M, T) such
that HNf= 0, t(Nf) = t(d*Nf) - 0 and QJV/- (33* + 3*S)iSΓ/= / -
£Γ/. Here if is the orthogonal projection on βέfp'q. In particular,
3JV/ is a solution of d*u = f with t(u) = 0 provided 3*/ = Hf = 0.
(Note that for any w t(3%) = 0 if t(u) = 0.)

All of the above statements follow from the dual 3-Neumann
problem (cf., [6] and [8]). We recall that the 3-Neumann problem
asks for the existence of an operator N satisfying the boundary
conditions v(ω) — vφω) = 0. Duality is obtained by considering
*#:C* q(M, T')-+Cn-p>n~q(M, T'*) where T* is the holomorphic cotangent
bundle, * is the Hodge star-operator, and if (ga-β) are the components
of g and (α)1, , O)n) is the local representation of (ΰ as a vector of
(p$ O) scalar-valued forms, then the local representation of #α> 6
Cq'p(M, T'*) is given by (#α>)ff = Σ ^ ̂ ^ It is easily seen that
t(ω) = 0 if and only if v(*#α>) - 0 and 3* = - *#S#*.

We also mention the basic Kohn-Morrey estimate: there exists
a constant Co > 0 such that for all α> with t(α>) = 0

(2.2)

D((ϋ, ω) = \\a)\\2 + \\dω\\2 + \\d*ω\\2 , | | Λ > | | Z = Σ Σ \ __\da)μjdzτ\2dx
σ,τ μ,\> J £7" Γj Jf

{[/,} is a finite cover of M by coordinate neighborhoods, || || is the
I/2-norm, and ωv

μ are the components of ω on Ua. Observe that dif-
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ferent coverings of M by coordinate patches give equivalent semi-
norms || ||,.

We now assume that p = 0. Then t(ω) and v(ω) are sections of
the bundles Λ*°T'* <8> (Γ'|Λf0) and A9~ι°T'* (g)(T\M0), resp., i.e.,
they are C°° forms on MQ of type (0, q)b and (0, q — 1)6, resp., and
with values in T'\M0. We have set °T' = (T'\MQ) nCTM0 where
CTMQ is the complexification of the real tangent bundle of Mo.
Let [, ] denote the Poisson bracket on C2Λ(M, Tr). One can then
consider the following nonlinear problem: given /eC M (M, T') and
C°° forms φ and f of type (0,1)6 and (0, 0)δ, resp., find ωeC^\Mf T)
such that

(2.3) [ > - 3*[ω, ω]=f-Hf,

t{ω) = φ , ί(3*α>) = ψ , ίίω = 0 .

The purpose of this section is to establish the existence of such
a solution ω provided /, φ, and ψ are sufficiently small in some
Sobolev /c-norm.

We will first show that given φ and ψ there exists ώ with
Hώ = 0 for which the boundary conditions are satisfied. Let θί e
C0Λ(M, T) be such that t(βύ = φ. Moreover, θx can be chosen so
that l|0i|| fc^ const. \φ\h where || ||fc and | |fc are the Sobolev Λ-norms
over M and M09 resp. Next, let θ2 be such that d*θ2 = —3*^ with
t(ί2) = 0. Thus #3 = 0X + 02 has the property 3*03 = 0 and £(08) = φ.
Now 0 = dNΘ5 is a form of type (0,2) for which d*θ = 03, i.e.,
t(3*0) = <p. Furthermore, the same arguments used for finding θ3

show that there is ψ e C°>°(M, T) with 3*^ = 0 and t(φ) = ^. Then
7 = 3iVf is such that 3*7 = ψ and ί(τ) = 0. Now ώ = 3*0 + 3iSΓψ
has the required properties. Moreover, the construction and the
inequality \\Nu\\s+1 <; const. | | ^ | | s for each real s imply that if φ and
ψ are small in | l̂ +i-norm, then ώ is small in || ||fc-norm.

We are now in a position to apply the theorem of the preceding
section. Let E = F - C0>1(M, Γ'), ί = {fi)e£7: H ω - t(α>) = t(5*ω) - 0},
G((ύ) = Qα) — 3*[ft), α>] — / (we have assumed Hf — 0). Since G is a
differential operator (1.3), (1.4), and (1.5) are obviously satisfied.

G'(ω)(u) = O - 23*[ω, w] .

This follows from the properties of the Poisson bracket. The equa-
tion Π^ ~ 23*[α), u] — w (and more general type of equations) will
be studied in § 3. It follows from Theorem 3.5 that if for some
sufficiently large integer keZ+ \\ω\\k is sufficiently small, then for
each w with Hw = 0 there exists a unique ueB with | | i * | | β ^
Cs(\\w\\s +\\ω\\k+s\\w\\0) where Cs is a polynomial of ||'α).||*+β. This
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establishes (1.6). Having in mind the discussion in § 3, it is worth-
while to observe that if Q(u, v) — (du, dv) + (3*u, 3*̂ ) — 2([ω, u]9 dv),
then by (2.2) and the fact that [ω, u] contains only the 3/32'-deriva-
tives of u we have for some constants Cx > 0, C2 > 0

CJ)(u, u) ^ I Q(u, u) I ̂  C2D(u, u) .

Hence there exists ω e C°'q(M, Tr) such that G(ω) = 0 and ω —
ώeB, i.e., ω is a solution of (2.3). The proof of the theorem of
the preceding section also shows that \\(θ\\k is small if ώ is small
in the || |(fc-norm. With the aid of this fact we can conclude that
the solution ω is also unique. Indeed, if ωλ and ω2 are two solutions
of (2.3), then for θ = ωι - ω2 we have •# == d*([θ, ωj + [ω2, θ]).
Since t(β) = t(β*θ) = 0 integration by parts gives ||30||2 + | |3*^ | | 2 =
([^ωj + [ωa,β],3ί). By (2.2) ||3^||2 + | |3^| |2^const. (\mk + \\a)2\\k)D(e, θ).
On the other hand, Hθ = 0 implies | |^| |2 ^ const. (||30||2 + ||3*^||2).
Thus D(θ, θ) ̂  const. CIÎ >iIU + ||α)2||fc)D(ί, θ) which shows that θ = 0
if \\(ύs\\k is sufficiently small, j = 1, 2.

We now give some geometric applications of (2.3). First we
recall some of the basic facts of deformation theory (cf. [10]).

Let M be the underlying differentiate structure of M and let
CTM be the complexified tangent bundle of M. An almost complex
structure on M is given by a subbundle Tϊ c CTM such that CTM =
T[ φ T['f T[ = f Γ ΓΓ is of finite distance from the given structure
M if p": Tϊ -> Γ" is a bundle isomorphism where T" = T and /)":
CTM—> T" is the projection. The set of all almost complex struc-
tures of finite distance from M is in one-to-one correspondence with
the C°° bundle homomorphisms ω\T"~>T, i.e., the set of C°° T'-
valued forms of type (0, 1). This correspondence is given by T[' =
Γ'J = {X- ω(X): l e Γ"}. The almost complex structure T'l is called
integrable if for any two sections Llf L2 of T'J over an open set
UcM the Lie bracket [L19 L2] also belongs to T". A necessary and
sufficient condition for integrability is Ω = dω — [ω, ω] = 0. We will
refer to integrable Γ'j's as deformations of M. The term "small
deformation" will be used if ω has a sufficiently small Sobolev k-
norm for some keZ+.

There are similar facts for pseudo-complex or Cauchy-Riemann
(or, simply, CR) structures on Mo (cf. [3] and [9]).

An almost CR structure on Mo is given by a C00 subbundle E"a
CTM0 of complex fiber dimension n — 1 such that E' Π E" = {0},
Ef = E". As before, E" is and (integrable) CR structure if the Lie
bracket [Llf L2] of any two sections of E" over an open set V c Mo

is also a section of E". The given complex structure on Mr induces
a CR structure on MQ by the subbundle ° Γ = (T"\M0) Π CTM,.
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In this case CTM0 = °T'@°T"@CF where CF is the complexifica-
tion of some one-dimensional real subbundle of TM0. By normaliza-
tion we may assume that CF is generated by a purely imaginary
vector field P = P'~ P", P" = P', P' = Σ/ Pjd/dzj and P\h) = P"(h) = 1,
i.e., if hj = dh/dz*, then Σ i P*Km = l There is also a C°° bundle iso-
morphism τ: TI Mo — ° Tf 0 CF.

We say that E" is of finite distance from ° Γ if π":E"-+°T"
is an isomorphism where π":CTMQ~>°T" is the projection. If ^ :
° Γ ^ ° f φ C F is the homomorphism defined by ψγ = - (id - π")°
(π" | •#")"*, then it is easy to see that E" = {X-φlX)\Xs°T"\.
Set 9> = r- 1o 9> 1:oΓ"^Γ' |ΛΓ 0. Then ^ is a C°° Γ'|-Mo-valued form
of type (0, ΐ)b and we can write

(2.4) E" = {X - r o ^(X): X 6 ° T"} .

Conversely, if for a given <p the above formula defines an almost
CR structure provided at each point xβM0 the map σxodx: °T"—>
°T" (σ = π' o r o φ) does not have eigenvalue 1. This is always true
if φ is sufficiently small in some Sobolev ft-norm. We will denote
by °Tφ the almost CR structure given by (2.4).

Let φ = Σ <P*/dzs an a coordinate neighborhood VaM0 and let
θs = i W + g ,̂ 1 ̂  i ^ n. Then, for each point x e Λf0, {̂ , , θn

x)
is a base of {°Tf;,xY - {̂  e CTJikΓ0: u(X) - 0 for all Xe °T;%}. Using
the formula 2dθ(L19 L2) = Li ί(L2) - L2 ^([Lx, L2]) for any differential
form θ of degree 1 and for all sections Lίf L2 of CTM0 one finds
that °T" is integrable if and only if dφj = 0 (mod θ\ « , r ) , 1 ^
j ^ %.

A set of local generators for ° T" is given by Zά = 9/3 '̂ —
h-]P"(h-j = Λy), Σy F ^ ϊ = ° T J a e n a s e t o f l o c a l generators for the
dual bundle ° Γ * is given by Zk = i*dzk - pH*dh, 1 ̂  k ̂  n,
Σfc f̂ĉ & = 0. Thus every form ψ of type (0, g)6 can be uniquely ex-
pressed as J r = Σih< ~<Jq flv"lβh Λ Λ Z'q, Σ^ P*^2...j f f = 0. If
db = Σ (d/dzk)Zk is the tangential Cauchy-Riemann operator, dVd z5" Ξ
9/9 '̂ - fcyP'' = τ(d/dzj) and φ* = Σ ^r^S then a straightforward com-
pution (cf. [9]) shows that °T" is integrable if and only if the
T" I Λf0-valued form Σ Φk/dzk = Φ is equal to zero where

- Σ
j l

If a deformation of the fixed complex structure on M is given
by T", ω 6 C 0 ' 1 ^, Γ0> then a deformation of the fixed CR structure
on Mo is given by

(2.5) °Tf

φ' = (T:\M0) ΠCTM0.

The extension problem discussed in [3] is the converse of the
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above statement for small deformations: if °T" represents a small
deformation of Mo find ω e C°'\M, T) such that T'L is integrable and
(2.5) holds. We will now indicate how (2.3) can be applied to this
problem.

Let 9f be the set of all C°° (T'\Λfo)-valued forms φ of type
(0, 1)6 such that Σ t 9>% — 0 We list the following facts which have
already been established in [3] and [4].

(i) Every CR structure °*T" can be extended to a complex
structure T'J on a neighborhood ^V of Mo (see also [1]), and there
exists an embedding /: Mo —* ^4^ such that for the pull-back (under
/) °r; of the CR structure [T'θ'\f(M0)]nCT[f(M0)] on f(MQ) one
has φβ^. This means that after "wiggling" Mo in a neighborhood
in M' every CR structure is equivalent to one represented by a
form in the set ^ (cf. [4]).

(ii) If ω e C0'\Mt T) and φ e <if are any forms (not necessarily
representing integrable almost complex and CR structures), then
(2.5) holds if and only if t(ω) — φ. Furthermore, if t(ω) = <p, then
t(Ω) = 0 if and only if Φ = 0 (cf. [3]).

Hence (i) and (ii) show that the extension problem for small de-
formations of the CR structure on Mo reduces to solving the fol-
lowing first-order nonlinear system:

dω = [ω, ω] = 0

(2.6) t(ω) — φ (boundary condition)

Φ = 0 (compatibility condition).

By setting / = 0, ψ — 0 in (2.3) we find that if φ is sufficiently
small in some Sobolev Λ-norm for a sufficiently large integer k, then
there is a unique ω e C0>1(M, I") such that t(ω) = φ, £(9*<#) = 0,
Hω = 0, and dd*ω + d*φω •- [ω, ω])_= 0. This gives 3*33*^ = 0,
and Stokes' theorem implies (3*33*0), 3*α>) = ||3*α>||2 = 0. By another
application of Stokes' theorem we have (33*ω, ώ) = | | 3*^ | | 2 = 0. Thus
we have found ω e C°'\M, T) such that t(ω) = φ and 3*ω = 3*i2 = 0,
t(Ω) = 0. The properties of the Poisson bracket imply dΩ = ± 2[ω, Ω].

If, in addition to (2.1) with q = 2, we also assume that J^70'2 =
H\M, Γ'* (x) K) = 0 (the section cohomology group with coefficients
in the sheaf of germs of holomorphic sections of the bundle T"* ®K,
K the canonical bundle of M), then the basic estimate (2.2) and
||fl|| ^ const. (||3β||2 + ||3*β||2) for all Ω with t(Ω) = HΩ = 0 imply
Ω = 0 since \\a>\\k can be estimate by \φ\k. Furthermore, for a
sufficiently small φ the solution of (2.6) is unique because Hω =
3*ί£) = 0.

Before proceeding with the next application we briefly recall the
basic features of Kuranishi's method of constructing universal fa-
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milies of deformations of a compact manifold M without boundary
(cf. [10]). Let ¥ = {ωe C°>ι(M, T): dω = 3*ω = 0}. A necessary con-
dition for a form ω to belong to the set Ψ is given by F(ω) — ω —
G3*[<£), ω] e §ίf*Λ, where G is the classical Green's operator. In order
to find a sufficient condition one first observes that by the inverse
function theorem for Banach spaces the map F can be inverted in
a neighborhood ^ of zero in C°>\M, T). Let W = ̂  n ^ M and
let (by abuse of notation) ω: W-*C0Λ(M9 T) be the inverse of F,
i.e., F(ω(s)) = s for all seW. Then ω(s)eΨ if and only if seS =
{se W:H[ω(s), ω(s)] = 0}. The family {ω(s): seS} is universal since
every deformation of M represented by a form θ is equivalent to a
structure T"ω with 3*α> = 0.

For a manifold M with boundary Mo and for the deformations
which leave Mo fixed one replaces C0'\Mf T) by & = {ω e C°>\M9 T):
t(ω) = 0} and G by the dual Neumann operator N. The map F:
& -+&, F(ω) = ω — iV3*[α), ω] can no longer be inverted by the
inverse function theorem for Banach spaces. However, one can
easily satisfy that for a given ψ in a sufficiently small neighborhood
^ <z.& of zero in the || l^-norm topology for some fixed integer k,
a solution ω e ̂  of F(ω) = ψ is of the form α) = u + ίZ"^ where
Π_w-3*K^1 -29*[u, JEF̂ ] = Π t + 3*[iϊ^, flψ] and Hu = t(u) =
t(d*u) = 0. The last problem has a solution because it is essentially
the same as (2.3) since the addition of the linear perturbation
2d*[u, Hf] is irrelevant. It turns out that the invertibility of F
plays the same important role in the study of deformations which
leave Mo fixed as in the methods developed by Kuranishi in the com-
pact case. The details will appear as part of a general theory in
the work mentioned in § 0.

Another application of the results of the first section is Hamilton's
theorem mentioned in the Introduction.

Let ω e C°>\M, T) be such that dω - [ω, ω] = 0 and the Sobolev
&-norm of ω is sufficiently small for some sufficiently large integer
k. Let 3.: C°>q(M, T) — C°>q+\M, T) be the differential operator de-
fined by dωθ = dθ — 2[ω, θ]. Because of the integrability condition
dω°dω = 0. Let gω = g + 0(ω) be a variation of the given hermitian
metric g on M'. We denote by (, )ω the L2-inner product with
respect to ω. Then, for a suitable choice of gω, the Hubert space
domain of the adjoint 5; of 3ω_is the set Cϊ'?(M, T) = {θeC°>q(M, T):
v(θ)=.O}, i.e., (0ωψ, θ)ω = (φ, dlθ)m for all ψeC°>q-\M, T) and θe
Gϊq(M, T). This can be seen as follows.

Let U be a coordinate neighborhood and let ζ1, , ζn be C°°
forms of type (0, 1) on U such that g(ζ\ ζj) = δij, g(ζ% ζj) = 0, and
ζn = dh iί UΠ Mo Φ 0 . Let ζίf •••, ζΛ be the dual basis for vector
fields on U of type (1, 0). Then ζlf ••-, ζn_, forms a basis for ° f
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on UΓ)M0, and ζn(h) = 1. Any Θ e C°>q(M, T) can be locally written as

e = Σ hV <g> ζ,
i,J

where J ==Jii, , jq) with j \ < < j q and ζJ = ζh Λ Λ ζ^.
Since ζf = ζfc — Σ* <*&, 1 έa fc ^ w, is a basis for T" on 17, dω

is given locally by

Here the dots stand for terms which contain no derivatives of
the components of θ, K— (kl9 , kq+1), &!<•••< kq+ι, and

(0 if

sign of permutation I "~ ) if {kj} =

Let gωΛ-ά = flf(Co ζy) = δ̂ j + 8(0))^ be the components of the metric
g with respect to the frame ζlf •••, ζn . Observe that <^ = g(ζif ζy).
Let c/lJ — δ ί jΓ + s(ω)iΓ be the components of the inverse matrix of
(0<MΪ) Then the formal adjoint 3* of dω with respect to gω is locally
expressed as

- • • • ) C x ( x ) C i

Now by Stokes' theorem it is easy to see that (dωf, θ)ω = (ψ, 3^) ω

for all ψeC°>q-χM, T) if and only if Σ * , J , J ^L079kXk(h) = 0 on Λί.

Choose s(ω) ί f to be such that on [7 Π Mo s(^) f c J = s(ω)& = Oifk,j<n

o r k= j = n and s(ω)nl = s(ω)^ = ω|( l - α^)"1 if i < n. The metric
r̂ω obtained in this way has the property thrt, in terms of the frame

Ci, , C , Σ . 9kXt(h) = 0 iί j <n and Σ f c ffΛCS(λ) ^ 0 (if ω is suf-
ficiently small) on U Π Mo. Hence θ is in the Hubert space domain
of 3* if and only if θj = Q on U f] MQ whenever neJ, i.e., if and
only if θ e d>%M, T).

From this point on we make the assumption that the Levi form
of Mo never has exactly one negative eigenvalue, i.e., at each point
of Mo there are either at least two negative eigenvalues or else they
are all positive. The techniques of local integration by parts de-
veloped in [6] ahd [8] can be applied without any substantial changes
to the frame ζΓ, •••, ζ% and the metric gω. One can then obtain a
uniform Kohn-Morrey basic estimate, i.e., there exists a constant
Co > 0 such that for all ω in a neighborhood of zero in the jfc-norm
topology and all θ e Cϊ\M, T')
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| 0 | ^ C O ( | | 0 | | + 113.011 + \\dtθ\\)

where | | is the L2-norm on Mo and 11 11 is the L2-norm on M. Since
the metrics g and gω are equivalent the above norms can be taken
with respect to either of them.

As before, we let 3tf*£ = {θeCy(M, T'):dωθ = d*J = 0} and Hω

the harmonic projection. Then for each θ e COtl(M, T) there exists
a unique NJ e C°>\M, T) such that

(2.8)

IJfJ = (dωdt + didω)Nj = β - Hωθ

v(Nωθ) - vφωNωθ) = 0

\\Nωθ\\s <£ CJI^II.-i where Cs is a polynomial of ||α>| |f+fc

(cf. §3).
If f e C 0 ' 1 ^ , T) with 3 ω ^ = 0 and (ψ, a)ω = 0 for all α e

then θ = dZNωψ is the unique solution of

(2.9) dωθ = ψ with

We also point out that 3ί?Y = H\M, T), the first cohomology
group with coefficients in the sheaf of holomorphic tangent vectors
T'. Thus by Lemma 11.1 of [6], p. 143, we have that if H\M, Γ') = 0,
then Jg^'1 = 0 for all sufficiently small ω. In particular, (2.8) is
solvable for all ψ with dωψ = 0. From now on we also assume that
H\M, T) = 0.

Hamilton's theorem states that if Mω is a complex structure
sufficiently close to M, then there exists a diffeomorphism / of M
into M' such that /: Mω —> M' is complex analytic. If z = (»', sw)
is a set of local coordinates and / = (f'(z), , /%(^)), α> = Σ ^^"(g)
3/3̂ ;̂  are the representations of / and ω in terms of z, then the
analyticity of / with respect to Mω means

(2.10) ^ = Σ ® ί ? ^ » l^a,β^n, or (3/)"1 3 / = α>.
3̂ ;̂  r=i 3^ r

The C°° embeddings f:M—*Mr which are close to the identity
can be parametrized by elements ξ e C0>0(M, Tf). This can be done,
for example, by setting f(p) = expp (ξ(p) + ξ(p)) where p e M and
exp is the exponential map with respect to a Riemannian metric.
In this case we denote / by e(ξ) and in terms of local coordinates
we have ea(ξ) = za + ξa + O(|ξ|2), l^a^n. Then G(f) = 3β(fΓ' Sβίf)-α)
is a mapping from a neighborhood of zero in C0>\M, T) into
CM(M, T'). We observe that C°>q(M, T) is a graded Frechet space
with respect to the Sobolev norms || ||8, seZ+. We now compute
the derivative G'(ξ) = i?'(f): C°>\M, T) — C°'\M, T) where R{ξ) -
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The linear transformation β'(£): CM(M, T) ~> CM(M, T) is of the
form e\ξ) = id + O(\ζ |); hence it is invertible for small f. In (2.10)
we replace fa by ea(ξ + ^ ) and differentiate with respect to u at
u = 0. This gives (if we set σ = β'(£)^ and ^ = R'(ξ)τ])

Define τ e C0>°(M, T) by σa = Σ ^ dea(ξ)l(dzμ)τμ. Hence

X i I * I tΓ I / i JΛ/\^(ζJβ I ————— I

μ \ dzμ ozβ dzμozβ / r,μ L \ 3 ^ ozrdz" dzr dzrdz"

A differentiation of dea(ξ)/dzβ = Σ r R(ξ)ι

β(dea(ξ)/dzr) with respect
to £̂  and a substitution in the above equality yields

J " r dz* pβ"y

Since the matrix 3β(f) is invertible we get

But the terms on the left-hand side give the local expression of
dBi$)τ. Hence

(2.11) G'(ξ)(v) = dm)(de(ξΓ e\ξ)(η)) .

Observe that the linear map a(ξ) = de(ξ)-1 β'(f): C0>\M, T) ->
C°'°(M, Γ') is of the form id + O(\j^\) where i ^ stands for terms
involving the components of ξ and their first derivatives. Thus a(ξ)
is also invertible for small ξ. Since R(ξ) determines an integrable
almost complex structure on M (the pull-back of the complex struc-
ture on Mr by the diffeomorphism e(ξj) dB{ξ)odmς) — 0.

Conditions (1.3), (1.4), and (1.5) of Theorem 1.1 are obviously
satisfied because G is a differential operator. We now proceed to
verify (1.6)'.

The equation dB{ξ)v — dB{ς)G{ζ) has a solution v — v(ξ) of the form
d%{ξ)dB{ξ)Nm)G(ξ). This follows from (2.8). Moreover, ||v(f)||. ^
0,11328(5,̂ (^(^)11,+! where Cs is a polynomial of ||f||fc if 2k > s + 2n.
We claim that for a sufficiently large s0 and for each s ^ s0 there
exists a constant ds such that for all ψeC0Λ(M, T)

(2.12) \\dm)NB[ξ)ψ\\s^ds\\dm)f\\s.
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Assume that the assertion is false. Then one can find a sequence
...,f., ••• in σ-\M,T) such that \\dm)Nmξ)ψm\\s = 1 and

I.—>0. We may assume that {||ψv||8+1} is a bounded sequence
because otherwise we may replace ψm by ψj\\ψm\\8+ί. Then there
exists a subsequence, again denoted by ψlf , ψm, , which con-
verges in Cl'1, the completion of C°'XM, Tr) in the || ||s-norm. Let
ψ 6 Cs'1 be the limit of {ψm}. Then ψ is also in the domain of the
operator 9Λ(f) and dm)ψ = 0. Since the theory of the d-Neumann
problem implies the existence of the operator NB{ξ) on the space of
L2-integrable forms, (2.8) holds on CS

M, too. The equation Π j κ f Λ « ) f = f
is satisfied not only in the distributional sense but also in the clas-
sical sense because s0 is sufficiently large. Moreover, v(NB{ξ)ψ) =
VΦRWNRMΨ) = 0. By the integrability of R(ζ) we have
dR(ξ)dR'{ξ)'dB{ς)NB(ξ)ψ = 0. Then by applying Stokes' theorem twice and
using the boundary conditions we obtain 0 = (dB{ξ)d^{ξ)NB(ξ)ψfdB{ζ)NB(ζ)ψ) =
\\d%{ξ)dm)NB{$)f\\2 and 0 = (β%[ξ)dB{8)NR{8)ψ, NR(ξ)ψ) = \\dB{ξ)NB{ξ)f\\2. On

the other hand_, (2.8) implies_that \\dBiξ)NB{ξ)(ψm - ψ)\\s ^ Cs\\^rm - f | | s.
Hence limm_oo dB{ζ)NB{ξ)ψm = dBiξ)Nmξ)ψ in C°s'\ But this is a contradic-
tion since \\dB{ξ)NB{ξ)fm\\s = 1 and dmζ)NB{ξ)f = 0. Thus (2.12) is
verified and we have

(2.13) | |u(£)||. ^ C.| |5Λ { e )G(e)||.+ 1 ̂  C s | |G(f)| | s

2

+ 2

since by the integrability of R(ξ) and ω one obtains dR{ζ)G(ζ) —
dPΛξ){R{ξ) - ω) - - [(?(£), G(ί)].

We can now find an approximate solution of G\ξ)(j]) + G(ζ) = 0
by setting 77 - α(ί)"13S(f)iVJΪ(f)(v(ί) - G(ξ))_. Then (2.9) and (2.13) show
that (1.6)' is satisfied with B = C0>\M, T). We can now apply
Theorem 1.1 by taking 3 = 0 and find a solution ξeC°>°(M, T) of
the nonlinear equation G(ξ) — 0. This finishes the proof of Hamilton's
theorem.

3* A class of boundary value problems* The nonlinear problem
considered in the previous section has an obvious generalization.
Let <y£u = / be an elliptic noncoercive system of the type in-
vestigated in [7] of order 2m subject to the boundary conditions
u 6 B. Let ^'£ + 3tΓ be a 2mth order nonlinear perturbation of ̂ C
Then one would like to solve the system (^C + SΓ)u = f with u
in B. The theorem in § 1 shows that this can be done for small /
if, for each v in a neighborhood of zero, £fu = {^£ + 3ίΓ\v))u = g
has a solution u in B.

As in the example of § 2 it may happen that £f satisfies all of
the requirements imposed in [7] except the condition of essential
self-adjointness, i.e., £? — £f * is of order at most 2m — 1. We
now proceed to show that even if the order of £? — jίf* turns out
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to be 2m one can still obtain existence and regularity by applying
the Kohn-Nirenberg methods. In particular, this will give us ex-
istence and regularity for \Z\n — 29*[α>, u\ = g — Hg with t(u) —
tφu) = H(u) = 0.

For the purposes of this section it is enough to consider M as
an open submanifold of an n + 1-dimensional C°° manifold M' with
compact closure M and a smooth boundary bM. Let T be a vector
bundle over Mf of fiber dimension p. We denote by C°°(M, 3O the
space of smooth sections of ψl With respect to a Hermitian inner
product < , > along the fibers of Y* and a Riemannian metric on M'
the IΛinner product on C°°(M, SO is given by

(u, v) — \ (u, v)dM .
JM

Let Fa be the covariant differential with respect to a connection
on T of order a. The Sobolev s-norm is defined by

This norm is equivalent to the norm given by

Σ ΣΣ Σ ί J
UjΠM

where {Uό} is a finite coordinate covering of M, {pd} is a partition
of unity with respect to {C7», Da = DΓ1 £>SΛ A = - V^dldx5,
a I = aγ + + αn+1, and {̂ fc} is the local component-wise expression

of u e C°°(M, T).
Let Sf: C°°(M, T) -> C°°(M, T) be a differential operator of order

2m which arises from a quadratic form

, v)=\ Σ Σ a$DauiDβvidM , u, v e C"(M, T) ,
JM i,j | α | ^ m

i.e., (.Sfw, v) = Q(u, v) for all u, veC™(M, Y*), the space of C°° sec-
tions with compact support in M.

Let BcC^M, SO be a subspace of certain homogeneous boundary
conditions. More specifically, we require that

(3.1) C 0

M ( I , f ) c B .

(3.2) if U is a boundary coordinate neighborhood and ζeC*(l7),
ζ = 1 on 7 Π Ϊ , F c F c Z 7 , then ζJ5c5.
(3.3) if T represents a translation or differentiation parallel to bM,
then ζTueB for WGJB.
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Set 2Q0(u, v) = Q{u, v) + Q(v, u) and ZV^Q'iu, v) = Q(u, v) -
Q(v, u). The following conditions will be imposed on Q:

(3.4) QQ(u, u) ^ 11 u I |2m-i for ueB.

(3.5) If Qf contains terms of the form (Lu, Kv) where both L and
K involve covariant derivatives of order m, then for some constant
C > 0 HZ^II2 ^ CQ0(u, u), and \\Ku\\2 ^ CQ0(u, u) for all ueB.
(3.6) \Q'(u, v)\ ^ C(Q0(u, u)Q0(v, vψ2, u,veB.
(3.7) bM is noncharacteristic with respect to Qo, i.e., if xQebM and
{x\ , xn+ί} are local coordinates in U B X0 such that U Π bM =
{̂ %+1 = 0}, then for any nonzero vector X = ξd/dxn+1 e T\Mf which is
normal to &Λf the matrix (αtί = Σiαi+ι̂ ι=m^?/(̂ o)5α+ )̂ is positive de-
finite.
(3.8) The norm QQ(u, u)1/2 is compact with respect to || ||m_1 on 5,
the completion of B with respect to Q0(u, u)1/2.

It is shown in [7] that (3.8) is implied by the inequality

I Σι«i£m-i (yau, Fau)ds ^ CQ0(u, U), ueB, where ds is the volume
JbM

element on bM. In the case of complex manifolds M and Mf and
£f = Π> the complex Laplace operator (in particular, m = 1), this
is the basic Kohn-Morrey estimate.

The Lax-Milgram representation theorem immediately implies
thot if (3.4) and (3.6) are satisfied, then for any feL2(M,T) (the
space of sections integrable with respect to || ||) there exists a unique
ueB such that Q(u, v) = (/, v) for all veB. We point out that in
order to prove regularity [7] makes use of a condition which is
slightly weaker than (3.5), namely, Q' contains no products of mth-
order derivatives. In particular, if J?fu = f is already a solvable
noncoercive boundary value problem, then one can perturb £f by
an operator whose order equals the order of Sf and still get a
solvable problem with the same boundary conditions as long as the
highest order derivatives can be controlled in the manner specified
by (3.5).

A priori estimates and regularity
Let R«L+1 = {{x\ , x*, y): y ^ 0}. For u e C"(Rl+1) the partial

Fourier transform u is defined by

ζy y) = \ e~v lx'ζu(x, y)dx

where x = {x\ , xn), ζ = (ζί9 , ζn), x ξ = Σy ^5ί^ dx =
For real s the operator Ts is given by
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If || || is the Z/2-norm in Rl+1, then

is the tangential s-norm of u. If s is a nonnegative integer, this
norm is equivalent to (Σι«is;. \\Dau\\2yn.

We will adopt the following convention: V^u) < V2(u) means
that there exists a constant C > 0 such that for all u V^n) <;
CV2(u). In the sequel the constants in inequalities involving < will
depend on n, various integers s, r, etc., and some fixed functions
with compact support.

For a nonnegative integer s we let \u\Cs denote the supremum
of u and its derivatives up to order s. The following interpolation
inequalities are standard: if 0 ^ sί ^ s2 ^ s3, then

( 3 . 1 0 ) | | i 6 | | , 2 < | |u| |^- s2)/(«3-«i)| |^| |(j2-«i)/(«3-«i) .

LEMMA 3.1. Let P(a) be a nonlinear partial differential oper-
ator of degree μ in a. Then for all a with \a\cμ <L p we have the
estimate

(3.11) \P(a)\Cs< \a\Cs+μ + 1 .

(The constant in < depends on p, too.)

Proof We have P(a) = φ(a, , Daa, •)> | α | ^ /ί, where 9 is
a smooth function φ(y, , ya, ) defined in a neighborhood of some
compact set K = {|?/α| ^ ^α} where the <oα's are such that \a\cμ ^ ^
implies \Daa\ ^ |0α.

By the chain rule every derivative of P(a) is a product of a
derivative of ^ (with respect to the ya's) and derivatives Dβ of the
argument Daa. Since every derivative of φ is uniformly bounded
on K, we have to estimate only products of derivatives of a which
occur in the form Dβί+aia-Dβ*+a*a Dak+βka with \aj\ ^ μ and
Σί=i \&i\ = s ^ ^ e supremum of the products is the product of the
suprema. Hence one has to consider \a\cn+51 \a\Cϊk+^k with
m a x η ^ μ and Σ §ό ^ s I f ^i + ^ ^ i"» then by (3.9)

Since \a\cμ <* p and Σ (̂ y + ŷ ~~ £θ ^ s> ΠίU l̂ lcry+'y ^ |α|σ«+« + l
This gives (3.11).

Let ζ e CjΓ(/2ϋ.+1) and let A, be the tangential self-adjoint operator

ζDjζ, IS 3 ^n. L e t Dι = D[ι •-- DlVΛ i 11 = ίi + + h+i
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LEMMA 3.2. For all a,ue

(3.12) \\[aDι, Aj]u\\

(3.13) \\[[aDι, As]f As]u\

Proof. We have

(3.14) [aD\ Aj]u = a[D\ ζ\D&u + aζDά[D\ ζ\n -

Now (3.12) follows since [D\ ζ] is a differential orerator of order
|Z| — 1. Furthermore, (3.14) shows that [aD\ Aj] is a sum of oper-
ators of the type bDι where the b coefficients depend linearly on a
and the first derivatives of a. By (3.12) \\[bDι, Ai\u\\ < I&UIMI, ^

| | u ι . This proves (3.13).

We now take coordinate neighborhoods U and V such that F c U
and U Π M is identified with an open set in Rl+1. Let ζ be a C°°
function which is identically equal to one on V f) M and identically
equal to zero outside U Π M. The operators As are constructed with
the aid of the local coordinates on U. Set | α | σ = Σ<,/,α,* l&?/l<7 >
llαll. = Σnj,a,β l|α?/||, and let A stand for any of the operators As.

PROPOSITION 3.3. For all ueB

(3.14) \ReQ(Asu, A'u)\ < (11^11.+^ + i ^ I ^ - M | | ^ 1U)2 + \ReQ(u, A2su)\

where Re stands for the real part and the constant in < also de-
pends on \a\c*

Proof We consider the bilinear form AQ(u, v) = Q(Au, v) —
Q(u, Av). The form AQ is again of degree m in u and v and its coef-
ficients are obtained by differentiating the coefficients of Q by A.
By induction we can define the bilinear forms AμQ which are of
degree m in u and v and their coefficients depend linearly on the
αf/'s and their derivatives up to order μ. Therefore, we have

(3.15) \A*Q(u, v)\ < (\a\cμ + l)\\u\\m\\v\\m .

We can write Re Q(A$u, Asu) — Re Q(u, A2su) as a sum of terms
AμQ(Avu9 Aσu) with 2 ^ μ <. s + 1, v, σ ^ s - 1, /̂  + J> + cr = 2s, and
terms A^Q'(Avi6, Aα%) with 1 ^ μ ^ s, μ + v + σ = 2s, and either
v <> s, σ <^ s — 1 or v <; s — 1, σ ^ s . Recall that Q' is the skew-
hermitian part of Q.

We first consider the terms AμQ(Avu, A°u), 2<> μ<Ls + l, v, σ <,
s — 1. By applying (3.15) we get

(3.16) \A"Q(A"u, A°u)\ < (\a\cμ + l)\\u\l+m\\u\\σ+m .
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By (3.9) and (3.10)

\a\O g \a\$$« -" Mf1-™
||(β-v-l)/(β-l)

ΊI
< Wll ||W( -1)

If we treat \a\cι as a constant and use the fact that v + σ
2s — μ we have

< (lαl^+ilWU + INUm-i)2.

The above inequality and (3.16) imply

(3.17) I A*Q{A»u, A°u)\ < (\a\Cs+1\\u\\m + | N | s + m _ , ) 2 .

Next we turn our attention to the terms AvQ\Avύ, Aσu), 1 ̂
μ <; s. We will assume that v f^ s and σ ^ s — 1; the case v ^ s — 1,
(7 <; s can be treated in exactly the same way.

( i ) v9 o <: s — 1:
Again by (3.15)

(3.18) |

Since 1 ^ μ ^ s, by interpolation we have

I / y I < I n I C A * — D / ( β — i ) . I ̂  | ( β — A * ) / C « — i ) < - ι ̂  | ( ^ - i ) / ( s - i )

(I α lei ^ I α|(72 and j α j ^ is t r e a t e d as a constant.)
We can now proceed as in the derivation of (3.17) and obtain

(3.19) \A"Q'(A»u, A°u)\ < (\a\Cs\\u\\m + I W U ^ ) 2 .

( i i ) v = s, σ <; s — 2:
We observe t h a t i ^ ' ( i s u , Aσ^) = Aμ+1Q'{As-ιu, Aσu) - AvQ'iA'-'u,

Aσ+1u). Since 2^μ + l ^ s + l, σ + 1 ^ s ~ 1, μ + s + σ = 2s, the
first term is estimated by (3.17) and the second by (3.18). Hence,
in this case we again have

(3.20) \A"Q'(A u, A°u)\ < (\a\c8+ί\\u\\m + | | % | | . + w _ 1 ) a .

(iii) v = s, σ = s — 1:
A typical term in the expression of Q'(Asu, As~ιu) is of the form

(LA'u, JKΆ8"1^) where L and K are mth- order differential operators
satisfying (3.5). Since v — s and σ = s — 1, we have μ = 1 and a
typical term in the expression of AQ\A8u, A8~ιu) is of the form

(LA8+1u, KA8~ιn) - (LA'u, KA8u)

= ([[L, A], AjA^u, KA8~ιu) + ([L, A\A8~ιu, [A,

+ (LAX [A, JίlA8-1^) + ([L, A]AS-^,
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We now observe that since A8 is a tangential operator ueB
implies A8u e B. Therefore, by (3.5) \\LAsu\\2 <Q 0 (Aχ A8u), \\KA8u\\2<
Q0(A8u, A8u). Then (3.12) and (3.13) together with Schwarz's in-
equality give the estimate

\(LA*+ίu, KA8+1u) - (LA8u, KA8u)\
( 3 ' 2 1 ) < C ε |α | 2 , 2 | | ^ | |U-i + eQ0(A8u, A8)

where ε is an arbitrary positive real number and Cε is a constant
depending only on ε.

Since Re Q(A8u, A8u) = Qo(Asu, A8u) and Re Q(A8u, A8u) - Re Q(u, A28u)
is a sum of terms estimated by (3.17), (3.18), (3.19), and (3.20), the
desired inequality (3.15) is obtained by combining these inequalities
and taking a sufficiently small ε > 0.

Let {Ua} be a finite cover of M by coordinate neighborhoods.
Let Va be an open subset of Ua with VaaUa such that V«s still
cover M. Let Aj>a = ζαZ>3 ζα, 1 ^ j ^ n, be defined with respect to
the local coordinates on Ua where ζa = 1 on V^ΠM and outside
C7αnM. Then for all u e C°°(M, T) we have !IM||r < Σ β ^ Σ i , α | | ^ ,αu|| <

Since Qoί^ 'M')1/2 is compact with respect to \\ \\m^ on B for any
ε > 0 there is a constant Cε > 0 such that for all ί^efi

(3.22) \\uWl^ £ sQ0(u, u) + Cε\\u\\l_2 .

Set

^|||r = Σ Σ \

where {pa} is a partition of unity with respect to {Va}.
Then (3.4), (3.14), and (3.21) imply

(3.23)

for all ueB, reZ+, ε > 0.
We are now in a position to obtain regularity of solutions up

to the boundary.

THEOREM 3.4. Assume that the quadratic form Q(u, v) satisfies
conditions (3.1)-(3.8). Then for each fe C°°(M, V) there exists a
unique ueB such that Q(u, v) = (/, v) for all veB, i.e., Jzfu = /.
Moreover, for each r e Z+ there exists a constant Cr depending only
on r and \a\Cm+ι such that
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(3.24)
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+ \a\Cr+™\\f\\)

Proof. By the elliptic regularization method devised in [7] it is
enough to prove the a priori estimate (3.23) under the assumption
that a smooth solution ueB already exists.

Since Q(u, v) = (f, v) for all v e B, we have Q(u, Afau) = (f, Afjau) =
(Aj,β/, A8

j>au). Thus (3.22) implies

(3.25) C e | M | 2

r + m _ 2 .

We now turn to the equation Sf u = / o n a coordinate neigh-
borhood Va. Because of (3.7) the matrix of coefficients of Dl^u is
positive definite. We can write

(3.26) = Σ Pσ(a)Dσu + P(a)f
| | ^ 2|σ|^2

σn+1<2m

where Po(a) and P(a) are mth-order nonlinear differential operators
in the αf/'s. (Observe that the coefficients of £f depend smoothly
on α?/ and their derivatives up to order m.)

Dr

ntT
ι

u=

(3.27)
σn+1<2m

+ Σ
σn+1<2m

Σ

\r\=r
\Dσu\2dx

By (3.11) we have

s,
(3.28)

The above inequality will not change if we extend our summa-
tion over β to r. Then it follows from (3.9) and

Σ

and

Thus

iS — l ) / ( τ — 1 ) l | 7 . l | ( r - / S ) / ( r - l )

Similarly
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Hence

[DiXT-'ufdx < Qa\0™ + If Σ ( \D"n\*dx
(3.29) ^

+ |α|s«+i(iι«ιι«+M + ii/ii ) + N ^ α w i i , ^ + ii/H2)

Next, for any η > 0 there is a constant Cη > 0 such that

(3.30)

This can easily be established by extending n outside Va to be
with compact support and then using Fourier transform (see [7]).

Combining (3.28) and (3.29) we obtain

Σ \D°u\%dx+\ \DlXT~'u\2dx
Va ]<7|=r+m-l j F α

α n + 1 < r + m - l

(3.31) <[(\a\cm + l)2 + l]\v\ \D:XT-Iu\2dx + C'Λ Σ

1 ' ^

|σ|=

ll/ll2)

By choosing a sufficiently small η and summing over a we have

N U _ ι ^ llliJ-HtlH, + HitlU.-, + ll/ll,.

+ | α U + . ( | M L - 1 + ll/ll)

where the constant in < depends on |α|0»+i.
We combine (3.24) and (3.31) and choose a sufficiently small s in

(3.24). This gives the inequality

(3.33) I M U . ^ < | | / | | r + | M | r + . _ t + |αU+-( | |« l l .- i + ll/ll)

By (3.4) 11 u \ |i_i ^ ββ(«, ») = Re Q(u, u) = Re (w, / ) . Thus | |M| |Ui ^
\{u,f)\ ^ | | « | | . II/H S S I N U I I / H or | |«!!._, ^ II/H. Therefore,

(3.34) I M U -x < ll/ll, + | | t * | | r + _ , + k U + » H / | | .

Finally, the desired estimate (3.23) follows from the fact that
for every s > 0 there is a constant Cs (which also depends on r and
m) such that | | u | U _ £ e|MU»_i + C.||«||.

REMARK 3.5. The above theorem is a global regularity result.
For a quadratic form Q(u, v) satisfying (3.4), (3.5), (3.6) the regularity



132 GARO K. KIREMIDJIAN

result in [7] (cf. Theorem 4, p. 458) also holds.

REMARK 3.6. The careful analysis of the dependence of (3.23)
on the coefficients of £f is needed in order to obtain condition (1.6)
in cases of application of the implicit function theorem of § 1 to
solving nonlinear systems of partial differential equations. Observe
that by the Sobolev inequalities \a\Cr+m < | |α | | W l + r + m , % > (l/2)n + 1,
and the dependence of Cr on |α|σ»+i in (3.23) is consistent with the
fact that by the methods of § 1 one solves such a nonlinear problem
in a neighborhood of zero in some Sobolev norm.

REMARK 3.7. If the basic Kohn-Morry estimate (2.2) hold on
(0,1) forms, then the operator •„% = D ^ — 2§*[α>, u] satisfies (3.1)-
(3.3) and (3.5)-(3.7). Furthermore, if Q(u, v) = (βu, dv) + (d*uf d*v)L -
(2[ω, u], dv), then Q0(u, u)1/2 is compact with respect to || ||0 on
B U &?1 where B = {uL e C0Λ(M; T'): τ{u) = 0} and ̂ T 1 = Ker D Π &
Hence, (3.4) holds on βfl Sίf1. Since 2ίfx is finite-dimensional, all
norms on Sίf1 are equivalent, so that (3.21) still holds. Thus, the
argument in Theorem 3.4 now applies to show that if feC0>1(M, Tf)f]
3ίf1L, there is a unique solution u e B f] £έfιL of •«% = / and v,
satisfies (3.23) with m = 1.
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