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CONTINUA IN THE PLANE WITH LIMIT DIRECTIONS

DOUGLAS MICHAEL CAMPBELL AND JACK LAMOREAUX

This paper is devoted to the analysis of sets in the plane
which have at least one limit direction at each point. In
the proof of a variational technique used in univalent func-
tion theory Schiffer used the fact that a continuum in the
plane which only has limit directions ± 1 is a horizontal
segment, a result of Haslam-Jones which used measure theory
and some rather unusual topological terminology. The at-
tempt to find an elementary topological proof has led to
several false proofs in the literature. Not only do we estab-
lish Haslam-Jones' result using only elementary topology but
we obtain the conclusion under far weaker conditions allowing
us to obtain a set theoretic counterpart to the real variable
theorem that says if the upper right Dini derivative of a
function is zero on an interval, then the function is con-
stant on that interval. We then extend the result to allow
for the possibility of exceptional points. Our strongest result
gives a complete classification of continua with exceptional
points. The paper closes with an open problem.

THEOREM. Let E be a continuum in the plane and let K be a
subset of E such that each point of E — K has weak right limit
direction 1. Then E is a horizontal segment if and only if the
projection of K on the y-axis has Lebesque measure zero.

It is well known that if f(x) is a continuous function on [a, b]
with f'(x) = 0 on (a, 6), then f(x) is a constant, that is, the graph
of f(x) is a horizontal line segment. There are several strengthened
versions of this fact. If f{x) is absolutely continuous on [α, δ], then
/ ' need only be zero almost everywhere in order that f(x) be con-
stant. If f(x) is only continuous but f'(x) = 0 a.e., and f'(x) exists
finitely at all but a countable number of points, then f(x) is a con-
stant. Finally, if the upper right Dini derivative of f(x), D+f(x),
is equal to zero on [a, 6], then f(x) is a constant [1],

We can ask if these results can be generalized to arbitrary plane
sets. Let E be a point set in the plane and / be a mapping of
[0,1] onto E. Instead of saying that the derivative of the function
/: [0,1] —> E is zero at a point, it would be nice to talk about the
set E itself and consider the set E being "flat" at a point. This
leads to the definition of a limit direction of a set at a point.

DEFINITION. Let E be a set in the complex plane, z be a point of
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E, and a be a complex number of modulus 1. A set E is said to have
a limit direction a at z if and only if there is a sequence of points
zn in E — {z} which converges to z with lim^*, (zn — z)/\zn — z\ — a.

This paper is devoted to the analysis of sets in the plane which
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have at least one limit direction at each point. Let us see how this
reduces to the study of nondegenerate continua.

If E is a set in the plane which has a limit direction at each of
its points, then each point of E is itself a limit point of E and E
can have no isolated points. Since we are primarily interested in
the limiting directions of E let us assume that E is closed, hence
perfect. By writing E as the union of its components we have re-
duced the problem to the study of single points (degenerate continua)
and closed connected sets containing more than one point (nondegen-
erate continua). Thus the classification of sets in the plane which
have a limit direction at every point reduces to a classification of
nondegenerate continua.

Figure 1 shows a perfect set which has a degenerate component
at the origin. The examples of Figure 2 suggest the variety of pos-
sible behavior of limit directions of continua.

If a plane point set E is the graph of some function f(x), then
the simple requirement f'(x) = 0 forces E to be a horizontal line
segment. We wish to find equally simple requirements in terms of
the set E itself which will force E to be a horizontal line. Let us
gain some clues by examining other parts of Figure 2.

Of course if the interior of a continuum E is nonempty, then
there are points of E with every possible limit direction (Figure 2b).
However, a continuum can have every possible limit direction at
some z in E and still have empty interior (Figure 2c, Figure 2e).
Demanding that each point have at most a countable number of
limit directions does not help (Figure 2h) but it does eliminate some
homeomorphic images of [0, 1] (Figure 2d, Figure 2e). One might
hope the stringent restriction that at each point of E there are at
most two limit directions would force the set to be like Figure 2f
or Figure 2h. This is not the case as forms of Figure 2g show.
Finally it does not suffice to demand that E have at most limit direc-
tions ±1 for all points except a set of measure zero since the graph
of the well known Cantor function (Figure 2i) is a nondegenerate
continuum with at most limit directions ± 1 for all points except a
set with projection on the x-axis of measure zero. Nevertheless,
with suitable restrictions we can establish the truth of some of our
intuitive feelings.

THEOREM 1. If E is a continuum in the plane which at each
of its points has at most the two limit directions +1 and — 1 then
E is a horizontal segment.

Schiffer used Theorem 1 in the proof of his variational lemma
which is used in univalent function theory [5]. The proof depended
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on a result of Haslam-Jones [2] which used measure theory and some
rather unusual topological terminology. In 1966 and then in 1969
Huckemann [3], [4], attempted an elementary proof but both his
papers contained fundamental errors.

Before we give the proof of Theorem 1 let us first agree on some
notation and state an obvious lemma. Let D(a, b) denote a disc cen-
tered at (a, 6). Let R(xxx2) be the closed rectangle {(x, y): xι 5̂  x <i x2t

0 ^ y ^ 1}. By a sector of angular opening ε centered at (α, b) we
mean {(a, b)} U {{x, y): |arctan ((y — b)/(x — a)) ^ ε}. We denote this
sector by S£a, b).

LEMMA 1. If {(x, y^}, i = 1, •••, m is a finite set of distinct
points in [0, 1] x (0, 1) and d = min [1 — ym, , y2 — yίy y1 — 0], then
for any ε less than arctan (d/4) the sectors S£x, y^) are separated
inside [0, 1] x [0, 1] by a distance of at least d/2.

Proof of Theorem 1. Without loss of generality we may suppose
that E is contained in the unit square [0, 1] x [0, 1], that E has no
points on the lines y = 0 and y — 1, and that E has at least one
point on each of the lines x — 0 and x = 1.

We now prove that E must be a single horizontal line segment.
Let xλ = 0 and let Ax — {{xl9 y\)} be the finite nonempty set of points
of E on the line x = xι (if A1 were infinite, then E would have ±i
as a limit direction). Let ε > 0 be given. Choose 0 < e1 < ε so that
Lemma 1 is satisfied for the sectors Sεi(x19 y\) and let S1 = U Stι(x19 yϊ).
Since at each point of E the only limit directions are ± 1 , we can
choose disks D(xί9 y\) small enough so that each D(xlf yϊ) Π E is a
subset of jSlβ Since E — \Jt D(xlf y\) is a compact set which does not
intersect x = x19 then there exists an r>x1 such that EΓ\R(Xι, rfcS^

If x2 = LUB {r: E Π R(xlf r) c S,} were 1 for every ε > 0, then
from the connectivity of E there would only be one point in the set
Aγ and E would be a single horizontal segment as claimed.

We therefore suppose that for some ε > 0, xx < x2 < 1. We now
proceed to define a sequence of points in E inductively. We replace
Xι by xt. We let At be the finite nonempty set of points of E on
the line x = xi9 St be the union of sectors on At of size ei9 and
xi+1 = LUB{r: Epi R(xi9 r ) c S J . If at any stage χi were equal to 1,
then E would be disconnected contrary to hypothesis. Hence we
create an infinite monotone increasing sequence {xn} converging to
some point x0 ^ 1.

We say that a point p of A{ is a beginning point if p is not a
limit point of S ^ Π E (all points of Aι are defined to be beginning
points). All other points of At are called descendent points. We say
that q is a descendent of p if p is in some Aif q is in some Ai+k and



CONTINUA IN THE PLANE WITH LIMIT DIRECTIONS 41

there are points p = pif pi+lf , pi+k = q such that ps 6 A3 , i = i, ,
i + k, and py is a limit point of J£ Π S^^p^), j = i + 1, , i + fc.
Our construction of the sets ii< and the connectivity of E guarantee
that

(1) no point in A = US=i ̂  c a n b e the descendent of two dif-
ferent beginning points,

(2) each At contains at least one beginning point,
(3) if p is a beginning point of Aίf then p has a descendent

in A for each i > i.
Thus, each beginning point is associated with an infinite set of

descendents in E which accumulate only at the line x = xQ. Since E
is compact this accumulation point is in E. Consequently, we can
associate with each beginning point a point of E on the line x — x0.
Furthermore, since the descendents of any two beginning points are
separated by a positive distance bounded away from zero, each be-
ginning point is associated with a unique point of E on the line
x = x0. This forces the existence of an infinite number of points of
E on the line x = x0 and violates the hypothesis that E has only ± 1
as a limit direction. This concludes the proof of the theorem.

A careful examination of the proof of Theorem 1 reveals we
never used the fact that there is a two sided control on the limit
direction at each point of E. All that was needed were the facts
that E does not have an infinite number of points on any vertical
line and that if (x, y) is in E, then for any sector S opening to the
right from (x, y) there is a disc D(x, y) such that D(x, y)Γ\EΓϊR[x, 1]
is a subset of S. Thus we are led to the following definition.

DEFINITION. Let z0 belong to a point set E in the plane. The
set E has a right limit direction a at z0 if and only if there is a
sequence of points {zn} in (E — {20}) Π {z: Re z ^ Re z0} which converges
to z0 and for which lim^oo (zn — zQ)/\zn — zQ\ = a.

THEOREM 2. If E is a plane continuum with the property that
for each point z in E either there is no right limit direction or
there is only right limit direction 1, then E is a horizontal line
segment.

Proof. The proof is a simple modification of the proof of theo-
rem 1. Note that the connectivity of E guarantees that at any of
the points of E on the line x = xn there must be a right limit
direction.

Theorem 2 can be viewed as the set theoretic counterpart to the
real variables theorem which says that if D+f(x) — 0 on (0,1), then
f(x) is a constant.
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We now turn to the problem of exceptional points. It may be
that E is defined by a limiting process and consequently there may
be no information available about the limit directions for some sub-
set K of E. One immediately asks how large this set of exceptional
points can be and still have Theorems 1 or 2 hold.

We remind the reader of an elementary result of point set top-
ology.

LEMMA 2 [7, p. 13]. Let N be a nondβgenerate continuum in
the plane. Let G be the annulus {z: a < \z\ < &}. If G is such that
there are points of N both inside and outside of G, then any com-
ponent of G Γϊ N must intersect either \ z | = a or \ z | = b.

THEOREM 3. Let E be a continuum in the plane and p be a
point of E. If there is a deleted neighborhood of p such that all
points of E in this neighborhood have limit direction either ± 1 ,
then p can only have limit directions ± 1 . Furthermore, p must
have at least +1 or —1 as a limit direction.

Proof. Without loss of generality we may assume that p is the
origin and that 0 < | z \ < ε is the deleted neighborhood. If for every
e1 in ε/2 < e1 < 3ε/4 the point iελ or the point — iει were an element
of E, then, contrary to hypothesis, the neighborhood 0 < | z \ < ε
would contain a point of E with limit direction ±i. We can there-
fore find a number eLf 0 < εx < ε, such that the intersection of E
with the circle \z\ — ex does not contain either ±iελ.

We claim that the intersection of E with \z\ = εx is finite.
Otherwise E would contain an accumulation point q Φ ± εγi on
\z\ = εx. But this would mean that q would belong to E, be within
0 < \z\ < ε and have limit direction other than ± 1 , contrary to hy-
pothesis.

We prove that the interection of E and \z\ < ε± consists of a
finite number of horizontal line segments. First pick any point zQ

of E which is not on the α?-axis but is in the disc \z\ < ε:. Consider
the annulus

A = {z: | I m z o | / 2 < \z\ < ε j .

Let 81 denote the closure of the component of A Π E containing z0.
Clearly, Sί is a nontrivial compact connected set and each point of
Sί has limit direction at most ± 1 . Therefore, by Theorem 1 Sί is a
horizontal line segment containing z0. But by Lemma 2, Sί must
intersect either the circle \z\ = |Imso |/2 or the circle \z\ = εx. Since
the segment does contain z0, whose imaginary part is nonzero, the
line segment can not intersect the circle \z\ = |Imso |/2 and must
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therefore intersect the circle \z\ = εlβ But we have already shown
that there are only a finite number of points of E on \z\ = ε^ This
proves that there are only a finite number of components of E Π
{z: \z\ < εj and that each is contained in a horizontal line segment.
Therefore, the only possible limit directions at the origin are ± 1 .
Since E is connected and the origin belongs to E there must be at
least one limit direction at the origin. This concludes the theorem.

In order to motivate the next definition consider the following.
Let E be a continuum in the plane and K a subset of E. If K is
finite and each point ofE—K has only ± 1 as limit directions, then
a finite number of applications of Theorem 3 shows that E is still
a line segment. Furthermore, if K is infinite but only has a finite
number of accumulation points, then we can use Theorem 3 to remove
the nonaccumulation points leaving only a finite set of exceptional
points which, as we have already seen, is then removable. In order
to extend this procedure let us recall the notion of the wth derived
set.

DEFINITION. Let X be a set of points. Define X(0) to be X. If
n is a positive integer, then X{n\ the nVa derived set of S, is the
set of accumulation points of X{n~l).

THEOREM 4. Let E be a continuum in the plane and K be a
subset of E. Suppose that for every point of E — K the only limit
directions are ± 1 . If for each point p in K there is a neighbor-
hood N of p and a natural number n such that the nth derived set
of K Π N is empty, then E is a horizontal line segment.

Proof Because of Theorem 1, E will be a horizontal line seg-
ment if we can prove that any point of K can only have ± 1 as a
limit direction. We proceed by induction on n and show that if p
is in K and N is a neighborhood of p such that the nth derived set
of N C\ K is empty, then p can only have ± 1 as limit directions.

The case n = 1 follows from Theorem 3. Assume that the state-
ment is true for n. Let p be a point of K and N a neighborhood
of p such that the (n + 1) derived set of N f] K is empty. If p is
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in K — K{1), then by restricting the neighborhood N and applying
Theorem 3 we see that p can only have limit direction ± 1 . On the
other hand, if p is in K{1\ then J5Γ(1) is a subset of E and the nth
derived set of N Π K(1) is empty. Therefore, by the induction hy-
pothesis, p can only have the limit directions ± 1 .

We now introduce our last definition preparatory to the conclud-
ing theorems.

DEFINITION. A set E in the plane is said to have a weak right
limit direction 1 at z0 an element of E if and only if E has no limit
direction eiθ, θe[-π/2, 0) U (0, ττ/2], at z0.

Obviously if E has limit directions at most ± 1 at a point z0 of
E, then E has weak right limit direction 1 at z0. The converse in
trivially false as Figure 3a shows. Furthermore, a set can have a
right limit direction 1 at zQ and yet not have weak right limit di-
rection 1 at z0 (Figure 3b).

THEOREM 5. Let E be a continuum in the plane and let K be
a countable subset of E. If every point of E — K has a weak right
limit direction 1, then E is a horizontal line segment.

Proof. We modify the proof of a theorem due to J. A. Hummel
[6, p. 188]. The projection of a set A on the #-axis is denoted by
πA and one dimensional Lebesque measure is denoted by m.

Since E is a continuum its projection πE is an interval. If
suffices to prove m(πE) = 0. Preceeding by contradiction we may
suppose m{πE) > 0.

We first define for any point z0 the butterfly wing set

Sn(z0) = \z: 0 < \z - zo\< -ί, 4 < |arg (z - zo)\ < £ + - } .
I n 4 2 n)

Since each point of E — K has weak right limit direction 1 we see
that we can write E as K U USU Bn where Bn = {z e E: Sn(z) Π E= 0}.

To show each Bn is compact it suffices to show each Bn is closed.
If some Bn were not closed, then it would be possible to find a
sequence zk in Bn, zk—>z0, zQeBn. This would imply the existence
of a point ζ in Sn(z0) Π E. Since Sn(z0) is open there would exist a
p > 0 such that {z: \z — ζ | < p) would be contained in Sn(zQ). But
for any zk satisfying | zk — z0 \ < p we would have ζ in Sn(zk) Π E
which contradicts our choice of zk.

Because K is countable m(π U^U Bn) — m(πE) > 0. Therefore
there is a number N such that m(πBN) > 0. We turn to the problem
of creating a geometrically manegeable subset of BN. Let D(z; p)
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denote the open disc centered at z with radius p. Since BN is com-
pact and the collection {D(z, 1/2N): z e BN) covers BNf there exists a
finite subcollection which covers BN and hence a point z0 in BN such
that m[π(D(zQ; 1/2N) f] (BN - K))] > 0. To simplify notation let L =
D(z0; 1/2N) Π (BN - K).

If z is in BN, then from the definition of BN there are no points
of E within a distance of 1/JV which have the same x coordinate as
z. Thus if z1 and z2 are elements of L, then \z1 — zz\ < 1/JV and
each is an element of BN. Therefore they must have different x
coordinates. That is, L is a graph over its projection on the #-axis.

In order to use the fact that all points of E — K have a weak
right limit direction 1 we choose ε so that

2 1
— tanε = —m[π(L)] .
N 4

We now create a collection of sets whose projections form a
Vitali covering of π(L). Since each element zf of L is an element of
E — K, there exists a number M such that if z is in D(s f 1/ΛΓ) Π E
then £ is not in the sector from ε to ττ/2 nor the sector from — π/2
to — ε. Let 93 denote the collection of all sets of the form

i2ί(Si) = {*"• I arg ta — s) I <; ε and 0 £ x - ^ ^ δ}

where zι = ^ + î /i runs through the elements of L and δ runs
through the numbers 0 < 3 < 1/2M (Af chosen as above for zr).
Clearly TΓSS is a Vitali cover of πL and by the Vitali covering theo-
rem there is a finite number of the sets Rs.(Zj) = RJ9 j — 1, •• ,n
such that the sets πR3 are disjoint and

±m[π(Rj)]>±m[π(L)].
i=i 2

Since each point of L has a different z coordinate and the sets π(Rj)
are disjoint we may index the points z3- so that their x coordinates
are ordered xx < x2 < < xn. We now prove that <̂  <; xi+1 — χt.
The diameter of L is 1/N and therefore | zt — zt+1 \ < 1/N. But if zt

is in JB̂ Γ and | zt — zi+1 \ < 1/N, then the definition of BN forces
\Vt+i - Vt\ < Xi+i - »i which implies | ^ - zw \ < V~2(xi+ι - χt). If
we were to assume by way of contradiction that xi+1 — χt < δif then
I «i — Zi+i I < l/2"(a?<+1 — a?<) would imply «1+1 is in N(zif 2δt) which is
contained in N(zif I/Mi) since 0 < £< < 1/Λf< by construction. By the
choice of Λf4 we must therefore have |arg(« t — «<+ι)| < ε. But
arg (st — «<+1) I < ε and xi+1 — xi < dt would imply πRt and πRi+1 are

not disjoint which is contrary to construction.

Since <?έ <; a?<+1 — χt we have Σ?=i <̂ ̂  diameter of L < 1/iV. We
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now obtain a contradiction to the assumption that m[π(L)] > 0. Using
(l/2)m[ττ(L)] < Σi=i m[π(Rj)] from the Vitali covering, the fact that
m[π(Rj)] = 2dj tan ε by construction, and the fact that Σ*=i £/ < VNf

we see that

±-m[π(L)] < Σ (2 tan ε)^ < A tan ε < ±-m[π(L)] .
2 i=i i\Γ 4

This is impossible. This concludes the proof of the theorem.
A careful examination of the proof shows the following theorem

on exceptional sets is true.

THEOREM 6. Let E be a continuum in the plane and let K be
a subset of E. Suppose that every point of E — K has weak right
limit direction 1. Then E is a horizontal line segment if and only
if the projection of K on the y-axis has measure zero.

We leave as an open problem the question whether Theorem 6
holds if for every point in E — K the only right limit direction is 1.
We also ask if there is a proof for Theorem 5 which uses topological
rather than measure theoretic tools.
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