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THE DEGREE OF MONOTONE APPROXIMATION

R. K. BEATSON

Jackson type theorems are obtained for generalized mono-
tone approximation. Let EntΊt{f) be the degree of approximation
of / by nth degree polynomials with fcth derivative nonnegative
on [—1/4,1/4]. Then for each fc^2 there exists an absolute
constant Dk, such that for all fe C[-l/4,1/4] with kth differ-
ence nonnegative on [-1/4,1/4]; J57n,ί(/) ̂  W / , r 1 ) . If in
addition / ' e C[-l/4,1/4] then En$1c(f) ^ Dkn"ιω(ff n'1).

Given a function / with nonnegative kth difference on [ —1/4,1/4]
(equivalently any finite real interval) it is natural to ask whether
Jackson type estimates hold for

En,k{f) ii inf I l / - j > ϊ l ; "
{Π^H)^O,xe 1-114,114,']}

where the norm is the uniform norm, and Πψ is the space of algebraic
polynomials of degree not exceeding n. In the case k = 1, Lorentz
and Zeller [4] and Lorentz [5] have shown that there exists a constant
Dt such that if / is increasing on [ — 1/4, 1/4]

(1) EUf) £ DMf, n-1) , n = 1, 2, . ,

where ω(f, ) denotes the modulus of continuity of /. If, in addition,
/ ' e C[l/4,14] then

( 2 ) EM{f) ^ DjrW, *O , n = 1, 2, .

DeVore [2,3] has given a much simpler proof of the k — 1
results. The results of this paper are obtained with similar arguments.

NOTATION. Throughout Clf C2, ••• denote positive constants de-
pending on k, but not depending on / , x or n ^ k. Whenever it
causes no confusion, || Ĥ  denotes || H^,^ ' and ω(e, ) denotes

A function with nonnegative kth difference on [a, b] cannot, in
general, be extended to a function with nonnegative kth difference
on a larger interval. For example the piecewise linear and convex
function, / e C[0, ΣϊU n~% with slope n on the interval

[ n-l n "I

Σ.i-.Σ.i-],
cannot be extended to the right and remain convex. This motivates
the construction of a preapproximation (see Lemma 1) to /, to ?which
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we will apply appropriate polynomial convolution operators (see Lemma
2).

LEMMA 1. Suppose k ^ 2. Let

( 3 ) Ln(h, x) = (2λ)~* Γ . . V h(x + t, + + tk)dtγ --dtk
J—X J — X,

where h e C[ -1/4,1/4] cmώ

(4 ) λ = l/8w , ^ = k, k + 1, .

Extend the definition of LJJh) from

i. + A,i
4 8»' 4

to [—1/2,1/2] 62/ adjoining, to the right and left the Taylor poly-
nomials of degree k, corresponding to Ln(h) at the points a, —a.
Then there exists constants Ek, Fh, Gh; Ek, Fk, Gk; such that; for all
feCl-ί/Ί, 1/4] with /(-1/4) = /(1/4) = 0 and nonnegative kth. dif-
ference on [—1/4,1/4]; for n = k, k + 1, •;

(5) Ln(f,xyk^0, xeR,

(6 ) |i £„(/)«> Ik/* ίδ ̂ » 'β)(Λ ίi"1) (j = l, - ,k-ί),

( 7 ) I | L . Ϊ

(8) ll/-

and

(9) l|

1/ ίw addition /'eC[-l/4,1/4]

(6') || L.(/)«'> ||1/4 ^ Ek

(7') ||LX/T> | | l r t ^ E

(8') | | / - £«(/)| |1 Λ ^ Fhn-W, n->),

and

(9') || L»(/)<2-" | U ^ ^ * ^ ( / ' , n-1) . (j = 1, 2) .

Proof. For a; 6 [—α, α]

Ir.(/, *) = (2λ)-*\ \ \ f(Ύ)dΎdt2 '- dtk
J-X J-X )x+t2+...+tk-X

implying
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Ln(f,xY = (2λΓ*j^ j^ta/G* + «« + + t* — λ)d£2 dtk

repeating the argument , j t imes, j = 1, •••&,

(10) f , ,,
= (2λ)-Λ J ^ • y4J(χ + t/+i + • • • + * * - i λ ) d ί i + 1 dtk.

(5) follows immediately. (10) and the definition of λ imply

(11) II L . ( / ) ( ' } ||«

(6), (7) follow from (11) on estimating the derivatives of the Taylor
polynomials extending Ln(f) to the larger interval.

To prove (8). The definition of Ln(f, x) clearly implies

(12) \\f~Ln{f)\\a

Also

11/ - Ir.(/)ll[«.i/4] ^ 11/ - /(α)llc..i

so by (4); (12); (6), (7); and the manner in which Ln(f) was extended

A similar result holds on [—1/4, — a]; (8) follows.

To prove (9). Note that (8) implies both

and

£.(/, -1/4) ^

the second since /(—1/4) = 0; (9) follows.
We proceed to prove the results for / ' 6 C[—1/4,1/4]. Arguments

analogous to those leading from (10) to (6), (7); lead from

Ln(f, xy*

= (2λ)-fc Γ . . . Γ 4ϊT(χ + ty + + t* - (i - l)λ)ίty . dt4,
J —A J —Λ

( i = 1, ••-,&) to (60,(7').

Γα sΛow (8') we use the quantitative Korovkin type estimate
(see e.g., DeVore [2, p. 28-32])
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(13) I Ln{f, x) - f(x) I ̂  I f(x) 111 - L.(l, x) | + | f'{χ) \ \ Ln((t - x\ x) I

+ (1 + 1/LM(1, x))an(x)ω(f, an(x))

where

(14) al(x) = LM - *)2, *)

Now | |1 - L.(l)| | = ||L.((t - » ) , x)|| = 0, while

L.((t - a;)2, x) = (2λ)-J: Γ Γ (ί, + έ2 + + ί jd ί , dί»
J —^ J —/

2dί < Cδn~2 .

Substituting into (13), (14) we find

(12') 11 Ln(f) - / ||β ^ C. n" W , Λ-1) .

Since for this particular operator

Ln(f, x)' = Lw(/', a?) , a? 6 [~α, a]

and Ln(f,x)' is continued outside '[—α, α] by adjoining the Taylor
polynomials of degree k — 1, corresponding to /', at either end point;
reasoning, similar to that yielding (8), implies

(15) \\Γ -Ln{f)>\\u^

Writing

| | / - L.(/)||[βil/4] ^ !./(*) - LJJ, a)\ + ["[/'(ί) - Ln(f,t)'\dt

(12'); (4) and (15) imply

Combining the above, the similar result on [ — 1/4, —a], and (12')
proves (8').

To show (90- Note (15) implies

and also

where /'(ί) = 0, --ί < ξ < i
4 4

the existence of such an f following from /(—1/4) =/(1/4) = 0.
Hence
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(9') follows since (8') implies

K' -T)
We now know how well Ln(f) approximates /, and concern our-

selves with how well Ln(f) may be approximated by convolutions with
positive polynomials.

LEMMA 2. Suppose k^2. Then there exist constants Hk, Ik

and a sequence of even positive algebraic polynomials {Xn}n=k satisfying

(16)

and

IIλ#> |lt-i.iM

(j = O,....,k-l

Further if f satisfies the conditions of Lemma 1, g = Ln(f) and

S l/2

g(t)xn(t - X)dt
-1/2

then f//eC[-l/4,1/4]

(19) \\g~L*(g)\\1/

and <// 'eC[-l/4,1/4]

(20) || g - Li(g) ||1/4

Proof Let λfc = λfc+1 ==. . .== % α ^ = 1/2. For n ^ 2fc, let

(21) X4n_ik(t) = cn[P2n(t)/((t2 - *U> (ί2 ~ 4, 2 J)] 2 ,

where Pzn is the Legendre polynomial of degree 2n and ίclτ2Λ, , xn>2n

are its positive zeros in increasing order. cn is a normalizing constant
for (16). Define the remaining λw's with the relation

Observe firstly that a theorem of Bruns (see e.g., DeVore [2, p.
20]) implies

(22) Cn^"1 < a?lf2ll < < a?*,aw ^ C ^ " 1 , w > k .

Using the normalization ||Pw||[_i,i] = 1 and the corresponding Taylor



10 β. K. BEATSON

expansion of Pn (see e.g., Davis [1, p. 365]),

(23) |P2w(0)| = 2~42U] = (1 + o(l))/τ/™Γ,

the last equality being a consequence of Stirlings formula. (21), (22),
and (23) together imply

(24) λ4w_4*(0) ^ Crf.n"-1 , n

Let 7i ^ 2fc. Write

where the Λfc(2% + 1) are the weights of the Gaussian quadrature
formula, exact for polynomials of degree An + 1, with nodes at the
zeros of the Legendre polynomial of degree 2n + 1. Therefore

1 ^ A0(2n -

and since (Szego [6, p. 350]), A0(2n + 1) = τr(l + o(ΐ))/(2n + 1)

\*») \n-ik\v) ^ Cun .

(24) and (25) imply

C < C 7l2~Ak '

which together with the normalization of the Pn, the definition of
the λn, and (22) implies

(17) follows by means of Markov's inequality.
It remains to show the order of approximation results. We

cannot use the standard quantitative Korovkin theorem as

at least not in general. However a related method is applicable.
Again let n ^ 2k. t2kX4n_4k(t) is a polynomial of degree in — 2k.

Therefore for j = 1, , k

Mi = [ ?%^4k(t)dt = 2±x&«Ai(2n)X4n_ik(xi,2n)
J-l i=l

where the Ajtfίn) are the weights of the Gaussian quadrature formula,
exact for polynomials of degree 4n — 1, with nodes at the zeros
of the Legendre polynomial of degree 2n. Since \n-ik has zeros at
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Since also Xin-^ has a local maximum on [—^+1,2w, %+i,2ίJ at zero, and
Szego [6, p. 350]

£-£-(1 + 0(1)) « = 1, . . - , * ) ,

(22), (25) and the definition of the Xn imply

(26) J1 t2jXn(t)dt ^ C17 w~2', i = 1, , k; n ^ k .

(26) and (17) may be used to estimate certain quantities involving
L ί . All the estimates are uniform in \x\ ̂  1/4.

S I fl/2-ss

Xn(t)dt - Xn(t)dt
-1 J-1/2-3

^ 2 P λw(ί
Jl/4

S l/2

({ - ^)
-1/2

S l/2—α?

ί2j

-1/2-a?

^ P t2'\n(t)dt

and applying (26)

(28) Lm - xf\ x) ̂  Cl9 n-v , j = 1, •, k .

i/2D i

where we have used the Schwartz inequality, (16) and (28).
For j odd,

f 1/2-a;

\
J-l/2-a;

2

I f

P tsXn(t)dt
Jl/4

since λΛ is even. Applying (17)

(30) (£,*((* - a)', ») I ̂  CΆ n™ , i = 1, 3, 5,
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If έe [-1/2,1/2] and x e [-1/4,1/4], Taylor's theorem gives

(31) g(t) = Σ y w \ , ; + —hrrr 0(/c W(* - uf^du .U=o ^i J (k — 1)! Js

Since the last term on the right hand side is bounded in modulus by
7*ι \ I / /v l fc II /γ( f c) II
H/',J\U" A/ I | | ( / | | [—l/2, l/2]>

\L£(g, x) - g(x)\ ^ \g(x)\ |.l - Lί(l) | + Σ '^ . ' l-^*((t - *)'"> »)l

Thus

fci

+ Σ

Combining the above, the estimates of all the terms involving g from
Lemma 1 (g = Ln(f), and the estimates (27), (28), (29), (30) of all the
£•(.,.) yields (19), (20).

Given Lemmas 1 and 2 it remains to discuss how close LS(g) is
to a polynomial with nonnegative fcth derivative on [ — 1/4,1/4].

THEOREM. For each k ^ 2 έfeβrβ βαsΐsέs α constant Dkf such that
for all h e G[—1/4,1/4] m£/& Mh difference nonnegative on [ — 1/4, 1/4]

Enik(h) ^

// m addition h' eC[ —1/4,1/4]

J& .tW ^ Dhn"xω^ι/4Λ^{hf

f n~x) , w = fc, fc + 1,

Proof. Fix ά ̂  2. Let f = h — p, where

Clearly ω(f, n~ι) ̂  2ω(h, n"1) and when ¥ exists α>(/', ^ - 1) = ω(h'f n~ι).
Lemmas 1 and 2 apply to /. Writing

Ln(h) = p(x) + U(

Lemmas 1 and 2 imply
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(32) C2Zω(h, n~ι)

\Ln(f) -

h e c\~r -ί] ,
L 4 4 J

L 4 4J

Let g = Ln(f). Then

_ fl/2

Ln(h) = /9(a?) + LJ(flr) = /e>(α) + \ g(t)Xn(t - Λj)dέ ,
J-l/2

Ln(h, x)f = |θ'(ίw) + I ^(ί) —λ»(t — cc)dέ
J-l/2

S l/2

g'(t)K(t - χ)dt.
-1/2

k 2̂  2 alternate differentiations and integrations by parts yield;

+ Γ flr(*}(t)λ.(t -

J-l/2

S l/2

gik\t)Xn(t - x)dt .
-1/2

(5) and the positivity of the kernels imply the second term on the
right hand side is nonnegative. Lemma 1 impliesII 9U) II1/2 ^ Cnn

kω(h,

Hence using (17)

j = 0, , k - 1, λ e C, [--ί, -i] .

Let

pn(x) = Ln(λ, a?)

pίf}(ίc) is nonnegative on [ —1/4, 1/4], and by (32) pΛ provides the first
estimate of the theorem. Similarly, when fc'eCf —1/4, 1/4]

pn(x) = LJ)ιt x) + -^-
k\

provides the second estimate of the theorem.
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