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COMPUTATION OF THE SURGERY OBSTRUCTION
GROUPS Lik(l; ZP)

GERALD A. ANDERSON

The 4&-dimensional simply connected surgery obstruction
group with coefficients ZP (i.e., the group of nonsingular
even quadratic forms over ZP) is computed in terms of the
classical Witt group and a Gauss sum invariant.

l Introduction* Let L4fc(l; ZP) be the simply connected surgery
obstruction group, with coefficient ZP = Z[l/p: peP], in dimension
4ft, of [1], By definition, this is the Witt group of even, non-
singular quadratic forms over the ring ZP. We compute L4&(1; ZP)
in terms of the classical Witt group W(ZP) ([4]).

Let Ύp: W(Qp) —* ̂  denote the "p-primary Gauss sum" character
of [4], Appendix 4, where <%f aCm is the multiplicative group of
roots of unity. Define ΦP: W(ZP) -> Z/SZ by

exp(2πiΦP(q)/8) = exp(2ττίσ(g)/8) Π <X(tf <8> QPT1 ,
peP

where σ is the signature.

THEOREM 1.1. ( i ) / / 2 e P, then L4k(l; ZP) = W(ZP).
(ii) If 2$P, then L4k(l; ZP) = ker(ΦP).

(i) is obvious and the proof of (ii) occupies §2. An explicit description
of ker (ΦP), necessary to obtain the ring structure, is given in § 3.

The author would like to thank the referee for suggesting the
brief statement and proof of Theorem 1.1 found here.

2. The proof of Theorem 1*1* For p an odd prime, let
βP W(!Q)—*W(Fp) be the second residue homomorphism (called dp in
[4]), and β2:W(Q)-+W(F2) the 2-adic value of the determinant. Let
β = θ*βp According to [4], σ 0 β: W(Q) -> Zφ ®PW(FP) is an iso-
morphism.

Recall that W(F2) = Z/2Z, W(FP) ^ Z/AZ iΐp = S mod (4), generated
by <1>, and W(FP) = Z/2Z&Z/2Z if p = 1 mod (4), generated by <1>
and (sp), where sp is some quadratic nonresidue mod(p). Let πlf π2:
W(FP)—* Z/2Z be the projections, p^ lmod(4). The invariants βp

and Ίp are related by the following lemma.

LEMMA 2.1. Let [q] e W(Q). Then:
( i ) ΎJίq ® QP) = (iφίq), where ε = (-l) ( ί ) + 1 ) / 4 , if p Ξ 3.mod(4).
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_l)*i* > if p~ 5 mod (8)
(ii) yJq 0 Qp) = .

*w W <**>/ ( ( i ) ^ ( ) if p = l mod (8) .

Proo/. (i) We have g (g) Qp = w<p> + m<l> in TΓ(β,) and βp(q) -
wmod(4). Therefore 7p(g<8)Qp) = 7p«ρ»>* ( f f ). By [4], 7 p « 4 p » =
exp(ττi(l — p)/4) = is. (ii) is similar.

Let βP = φ^βp/3,,: T F C ^ - ^ φ p e p W ^ ) . Then we have the fol-
lowing well-known result:

LEMMA 2.2. σ φ βP: W(ZP) ^

The proof is immediate from the localization sequence

0 >W(ZP) >W(Q) > &W(FP) > 0

of [4], Corollary IV. 3.3.

Proof of Theorem 1.1.(ii). Using the notation of [3], L4k(l; ZP) —
W(ZP) and we have the following commutative diagram

0 0

i i ,
0 * W(Z) > W(ZP) -^* W(ZPf Z) > 0

1 I
0 >W{Z) >W(ZP)-

UP
I

Here a* is the signature mod (8). The left vertical sequence is
exact by [4], the top horizontal sequence by [3] or [5], and the
middle horizontal sequence by Lemma 2.2. Furthermore, by [3], i*
is an isomorphism.

We claim that W(ZP) = ker (ΦP). Clearly W(ZP) c ker(ΦP) by the
reciprocity formula of [4]. Suppose ΦP(x) = 0. Choose y e βpιi~^βP(x).
By a diagram chase, x — y 6 W(Z) and σ*(x — y) = 0. Since W(Z) =
ker (O> a 6 P

3* The ring structure* The tensor product of even quadratic
forms is again even, so L4k(l; ZP) has the structure of a commutative
ring. Since σ φ βP: L4k(l; Z P ) ^ Z 0 © p ε P W{FP) is injective, and

it sufficies to consider βp(q (g) 9').
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Let ap:W(Q) -+W(FP) be the first residue homomorphism if p Φ 2,
and the signature mod(2) if p — 2. We have:

PROPOSITION 3.1. βp(q <g> q') = ap(q)βp(q') + ap{q')βp{q).

Proof. First assume p Φ 2. Diagonalize q over Q as q0 ® <J>> + tfi>
where #0, ̂  are diagonal forms with entries prime to p. Similarly
write q'~q'»® (p) + q[. Then βp(q) = q0, ap(q) = &, £p(qr') = gj, αp(gf) =
gί, where "~" denotes passing to the residue class field of Qp, and

βP(q ® q') = ft(?o ® ?ί ® <P2> + ô ® ?ί (

The case p = 2 is an easy determinant argument and left to the
reader.

The ring L4k(l; ZP) can now be completely determined by the
values of the first residues of a set of generators, which we now
describe.

Let (n; x^pΐ), , xk(Pk)) denote the element y e W{ZP) with σ{y) =
n, βPi(y) = xi9 i = 1, , k, and /8p(y) = 0 otherwise. By Theorem 1.1
and Lemma 2.1, we have

LEMMA 3.2. Let 2 g P . Then: (n) x^pj, ---, xk(pk))eLik(l; ZP)
if and only if

Σ (-l) ( ί> i"3)/42^ + Σ 47^0*0+ Σ 4τr2(^) = 0 mod (8) .
) 5(8) U8)

Generators of Lik(l; ZP) are given by the following matrices:
(1) p = 4& + 3: (2; (-l)fe+1(^)) is obtained from the weighted

graph

- 2

( 2 ) p = 8ft + 5: (0; s(p)) is obtained

• J

- 2 2(2fc+l)

(4; l(p)) is obtained from

- 2 - 2 - 2 -2(& +

( 3) p = 8fc + 1: (0; l(p)) is obtained from

•
- 2 4&

In general, it is hard to write down an explicit matrix realizing
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(4; s(p)). However, by the proof of Theorem IV. 2.1 of [4], a diago-
nalization can be obtained in a specific case. For example, (4; s(17))
is represented by <51, 3,1,1>.

Finally, we include the following result on signatures of even
forms over ZP. Let aP = g.c.d.{\σ(x)\: xeLik(l; ZP)}

COROLLARY 3.3. aP = 1 (resp.8) if and only if2eP(resp. P = φ).
Otherwise, aP = 2 if some peP is 3 mod(4), and aP = 4 i/

The proof is immediate from Lemma 3.2. This shows that Prop-
osition 2.2. of [6] is incorrect.
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