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ON GENERALIZED POLARS OF THE PRODUCT OF
ABSTRACT HOMOGENEOUS POLYNOMIALS

NEYAMAT ZAHEER

Let E denote a vector space over an algebraically closed
field K of characteristic zero. Our object is to investigate
the location of null-sets of generalized polars of the product
of certain given abstract homogeneous polynomials from E
to K. Some special aspects of this general problem were
studied in the complex plane by Bόcher and Walsh and, later,
in vector spaces by Marden. Our present treatment furnishes
further generalizations of the theorems of Marden, Bόcher,
and Walsh and offers a systemmatic, abstract, and unified
approach to their completely independent methods. One of
our results, in special setting, relates to the polar of a
product and reduces essentially to the author's earlier gene-
ralization [Trans. Amer. Math. Soc, 218 (1976), 115-131] of
Hδrmander's theorem on polars of abstract homogeneous
polynomials. We show also that our theorems cannot be
further generalized in certain natural directions.

l Introduction* Let E be a vector space over a field K of

characteristic zero. A mapping P from E to K is called [4, pp.

760-763], [7, p. 55], [8], [14] an abstract homogeneous polynomial

(a-h-p') of degree n if for every x,yeE,

p(sx + ί») = Σ Ak(x9 y)sHn~k Vs,teK,
fc=0

where the coefficients Ak(x, y)eK and are independent of s and t

for any given x, y in E. We shall denote by Pn the class of all

wth-degree a.h.p.'s from E to K. The nth-polar of P is the mapping

(see [5, Lemma 1] for its existence and uniqueness) P(xlf x2, •••,#„)

from E% to K which is linear in each xk and symmetric in the set

{xk} such that P(x9 x, , x) = P(x) for every x in E. The kth-polar

of P is then defined by

P(xlf , x k , x) = P(xlf •• ,xk,x,- - , x ) .

The null-set ZP(x, y) of P (relative to elements x, y in E) is defined
[9, p. 28], [15] by

ZP(x9 y) = {sx + ty Φθ\s,teK; P(sx + ty) = 0} .

Now we shall assume throughout that K is an algebraically closed

field of characteristic zero. It is known [5] (see also [2, pp. 38-401,
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[11, pp. 248-255]) that K = K0(i), where Ko is a maximal ordered
subfield of K and — i2 is the unit element of K. If z = a + ibeK
(with α, 6 in JSΓ0), we define z = α — iδ, Re (z) = (s + 2)/2 and 131 =
(α2 + δ2)1/2. If AQK, we call A to be K^convex if Σi-iΛ ^ e A for
every α̂  e A and /^ 6 JΓ0+ (the set of all nonnegative elements of Ko)
such that Σ?=i i"y = l Adjoin to K an element ω (called infinity)
and furnish K U {(o) = Kω with the following structure: (1) the
subset K of Kω preserves its initial field structure; and (2) a + ω =
ω + a = ω for every aeK, a ω = ω-a = ω for every aeK — {0},
and or 1 = 0, 0"1 = α>. A subset A of ϋΓω is called [16, pp. 353, 373],
[14, p. 116], [13, pp. 25-26] a generalized circular region (g-c-r )
of Kω if A is either one of the sets 0 , K, Kω, or A satisfies the
following two conditions:
(1) φζ(A) is Zo-convex for every ζeK — A, where φζ(z) = (z — ζ)"1

for every zeKω,
(2) ω6A if A is not i£0-convex.
The empty set 0, K, Kω, and single-point sets (and their compliments
in Kω) are examples of trivial g.c.r.'s. We shall denote by D(Kω)
the class of all g.c.r.'s of Kω. Zervos' characterization [16, pp. 372-
387] of this class, when K is the field C of complex numbers, leads
to the following result [16, p. 352], [14, p. 116], [15], namely: The
nontrivial g.c.r.'s of Cω are the open interior (or exterior) of circles
or the open half-planes, adjoined with a connected subset (possibly
pmpty) of their boundary. The g.c.r.'s of Cωf with all or no boundary
points included, will be called (classical) circular regions of Cω.

REMARK. Through we have defined the g.c.r.'s for an algeb-
raically closed field of characteristic zero, but the definition remains
the same for any maximal ordered field Ko (see [16, pp, 353-373],
[13, p. 26] for the definition of the class D(Kω) when K is an arbi-
trary field).

We now give some concepts which were introduced earlier by
the author [13, pp. 36-40], [14, p. 117-119], [15] to define circular
cones in E and discuss some of their important properties which are
found useful in later sections. Define an equivalence relation " ~ "
among elements of E2 by "(a?, y) — (x', y') if and only if £f[x, y] =
^f[x\ y']" where Jϊf[x, y] denotes the subspace of E generated by
the elements x, y eE. The equivalence class [(x, y)], containing the
element (x, y) e E2, is called nontrivial if x and y are linearly inde-
pendent (it is called trivial, otherwise). The axiom of choice allows
us to choose a unique element from each nontrivial equivalence class.
The set N(Q E2) ef elements thus chosen would be referred to as a
nucleus of E2. Obviously, N Φ 0 if dim E ^ 2. Given a nucleus
N of E2 and a mapping G: N—> D(Kω) (called circular mapping [14]),



ON GENERALIZED POLARS OF THE PRODUCT 537

we define (cf. equations (2.1) and (2.2) in [14]) the circular cone
E0(N, G), relative to N and G, by

(1.1) K(N, G) = U TG(x, y) ,

where

(1.2) TG(x, y) = {sx + ty Φθ\s,teK; s/t e G(x, y)}

and the union in (1.1) ranges over all elements (x, y) e N.

REMARK 1.1. If dim E — 2, then [14, Remark (2.1)] every circular
cone EQ(N, G) is of the form

EQ(N, G) = {sx0 + tyQ Φ 01 s, t e K\ s/t e A}

for some A e D{Kω), where x0, y0 are any two linearly independent
elements of E and where N — {(x0, y0)} and G(x0, y0) = A.

We define [13, p. 42], [14, p. 117], [15] hermitian cones to be
subsets Ex of E of the form E1 = {x e E\x Φ 0; H(x, x) ^ 0} (and the
ones got by replacing in this expression the inequality " ^ " by " > " ,
"<;" or " < " ) , where H(x, y) is a hermitian symmetric form [8, p.
270] from E2 to K. For the first time, Hormander [5] used hermitian
cones in his attempt to generalize to vector spaces a theorem due
to Laguerre [6], [7, Theorem (13, 2)] on polar derivatives and, later,
Marden [8], [9] exploited these cones in generalizing to vector spaces
certain classical results due to Bδcher [1], Grace [3], and to Szegδ
[10]. Recently, the author [13], [14], [15] succeeded in replacing the
said role of hermitian cones by circular cones. The relationship
between the class of hermitian cones and the class of circular cones
is exhibited in the following propositions due to the author [14, pp.
117-119]. In the rest of our work, we assume that dim E ^ 2.

PROPOSITION 1.2. Let Eι be a hermitian cone in E. Given a
nucleus NQE2, there exists a circular mapping G:N—>D(Kω) such
that EQ(N, G) = E, and E, n Sf\x, y] = TG(x, y) for every (x, y) e N,
where TG is as defined by (1.2).

PROPOSITION 1.3. The class of all circular cones in E contains
properly the class of all hermitian cones.

2* A generalization of Bόcher's theorem* Before taking up
our main result of this section, we shall give some definitions and
useful properties. First, we establish the following proposition which
expresses essentially the fact that any two circular cones can always
be expressed relative to a common nucleus.
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PROPOSITION 2.1. Given a circular cone EQ(N, (?) and an arbitrary
nucleus Nf £ E2, there exists a circular mapping Gr: Nf —> D(Kω)
such that E0(N, G) = E0(N', G').

Proof. From the definition of nucleus, we can define a mapping
Ύ]:Nr —>N by assigning to every element (xf, y') e N' a unique element
(x, y)eN such that (x, y) ~ (x\ yf). Then η is a 1 — 1 and onto
mapping. Consequently, every element (x\ yf) e N' determines uniquely
an element (a?, y)eN, a set of scalars a, /S, 7, δ e K, and a homographic
transformation [16, p. 353], [13, pp. 24-25] U of Kω such that

(2.1) η(x', yr) = {x, y),

(2.2) a?' = ax + /%, #' = Ύx + δy, ad - β7 = 4(say) ^ 0 ,

and

(2.3) J7Ge>) = («/o - v V ί - ^ + a)Vp 6 JSΓ. .

Let us now define G'(xr, y1) =U(G(τ](x', y'))) =U(G(x, y)) for every
(x\ yf) 6 JY', where the element (x, y) and the corresponding homographic
transformation U satisfies (2.1)-(2.3). Since G(x, y) e D(Kω) and since a
homographic transformation permutes the class D(Kω)(cί. [16, p. 353],
[13, p. 28]), we immediately infer that G'(x\ y')eD(Kω) and, hence,
Gf is indeed a circular mapping from Nf into D(Kω). First, we claim
that

(2.4) E0(N, G) Q EIN', G') .

If z 6 2?0(N, G), then there exists an element (a?, y)sN and scalars
s, teK such that 2 = s# + ίy and s/£ — /0(say) 6G(a?, y). Since 57 is
1 — 1 and onto, the above element {x, y) of N determines a unique
element (x\ y') e N' and the corresponding homographic transformation
U satisfying the relations (2.1)-(2.3). This implies that x — Δ~\δxr — βyr),
y = Δ~\ay' — 7x'), and hence that

z = J-HXδs - 7 t y + (-/S8 + at)!/'] = Δ-\s'x' + *Y), say .

Since p = s/te G(x, y)9 the relations (2.1)-(2.3) and the definition of
Gf implies that ρf = s'/t' = (δ/o - Ύ)/(-βp + a) = Z7(/o) 6 G'(a?', y f). That
is, ^ e 2V(s', »') £ £Ό(iV', GO and (2.4) holds.

Next, we claim that

(2.5) E0(N', GO Q E0(N, G) .

For, if z'eE0(N', GO, then z' = s'x' + t'y' for some (»', y')eN' and
8f,t'GK such that s'/t' = /of(say) 6 G'{x', yr). Now, ^ determines
uniquely an element {x, y) 6 JSΓ, scalars α, β,Ί,δ e K, and the corre-
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sponding U satisfying (2.1)-(2.3). Therefore,

z' = (s'a + t'Ί)x + (s'β + t'δ)y = sx + ty (say) ,

and since s'/t' — pr e U(G(x9 y))9 it implies that

Obviously, then <o' = J7(|θ) 6 U(G(x, y)) and, hence, p 6 (?(#, 2/). That
is, z' e T^a, y) and (2.5) holds. The containments (2.4) and (2.5) finally
establish the desired result.

In view of the above proposition, we shall assume (without loss
of generality) that all the circular cones, whenever they appear in
a particular theorem, have a common nucleus.

Conventionally speaking, the word "composite (a.h.) polynomial"
has been used [7, pp. 65-106], [9], [15] to designate, in general, any
(a.h.) polynomial which has been derived from given (a.h.) polynomials
via certain kinds of composition. In what follows we define [8, p.
271], [13, pp. 118-119] a special kind of composite a.h.p/s, derived
from certain given a.h.p.'s and their first polars, and study the
location of the null-sets of such polynomials.

DEFINITION 2.2. Given a.h.p.'s PkePnk and scalars mkeK,k =
1, 2, •• , q, let us set

Qk(x) = P^x) P^xyP^lx) Pq(x) ,

and define

(2.6) Φ(x19 x) = Σ mkQk(x)'Pk(xif x)Vx, x, e E .

We shall call Φ(xlf x) as a generalized polar of the product Q(x). If
n = nx + n2 + + nq, let us note that Q e Pn, Qk e Pn-n]e and Pk(xί9 x)
is an a.h.p. of degree nk — 1 in x and of degree 1 in x191 ^ k ^ q.
Therefore, Φ(xlf x) is an a.h.p. of degree n — 1 in x and an a.h.p.
of degree 1 in x l t The following proposition justifies the terminology
for Φ(x19 x) as "a generalized polar of Q(x)".

PROPOSITION 2.3. In the notations of Definition 2.2, if mk = nk

for k = 1, 2, , q, then the generalized polar Φ(xί9 x) of the product
Q(x) is essentially the first polar Q(xlf x) of Q(x)f exept for a nonzero
constant factor. More precisely,

Φ(xlf x) — n Q(xίf x)Vx, xx 6 E ,
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where n = nt + nz + + nq (mk being taken as nk for all k).

Proof. For each fc(l ̂  k ^ q)> we use the properties of the wfcth
polar of Pk and the fact that K is algebraically closed to obtain (for
every x, xι e E)

Pk(sx + txλ) — Pk(sx + txly sx + txί9 , sx + tXj)

m

(2.7)

(2.8)

(2.9)

m=0
(nk, m)-Pk(x,

— V ( ~i\nk~m<2i— 2-x \ — i y θ(
m=0

• >

7 Λ

, ^ ,

A;) s

say

where δifc = δik(x, xj, Ύ3 k = Ύih(x, xt) and where S(m, k) denotes the sum
of all possible products obtained from [dlkδ2k ••• δmk Ύm+lk ••• 7»4J by
permuting the subscripts 1, 2, , nk in all possible ways. The steps
(2.7) and (2.9) imply that

(2.10) Pk(x) = S(nkf k) = Π δifc

(2.11) Pk(x19 x, x, , x) = Ph(xlf x) = -JL.S(nk - 1, k)
nk

for all k = 1, 2, , g. If we let r0 — 0, r* = ̂  + n2 + + nk

(with r g = n) and define

(2.12) I = ψ(i, fc) = n_, + i v i = 1, 2, . . . , nk, 1 ̂  fc ̂  q ,

we easily notice that ψ determines a 1 — 1 correspondence between
the set {1, 2, , n) and the set {(j, k)\l^j^nk;l^k<^q}. We may
then write

(2.13) Q(sx + txx) = Π Π (δjks - ΎJkt) = Π (μis - vtt) , say ,
k=lj=l 1=1

where μ% = δjk and vx = 7ife if and only if Z = α/r(j, jfc). Next, (2.10)
and (2.11) gives, respectively,

(2.14) Q4(a?) - ^ Π ^ (fi hi) = ft

and
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(x» x)= - Σ J Π 8Λ

Consequently, (2.14) and (2.15) imply that

nk-Qk(x)-Pk(Xlf X) = - Σ (j"lA /V^+m-lM/V-ri-m+l " # i" )

Finally, if mfc = w* for all k, we obtain

Φfo, a?) = - Σ Γ Σ (ft " * ft-i »r ft+i Λ)l
Λ=l LZ = r A . _ 1 + l J

= - Σ ( A μi-i vi μi+i -" μn)
1=1

= n-Q(x19 x),

due to the corresponding formula (2.11) for the polynomial Q.

REMARK 2.4. If q = 1, mι = n19 the above proposition tells us
that Φ(x19 x) = Wi-Piία?!, x).

Now we prove the following main result [13, Theorem (18.1)] of
this section which generalizes a theorem due to Marden [8, Theorem
(3.1)], concerning the generalized polar Φ(xί9 x) of the product Q(x)
as defined by (2.6). The complex plane version leads to certain
improvements in Bδcher's theorem [1], [13, Corollary (19.3)] and in
Walsh's theorem [7, Theorem (20.1)]. We prove

THEOREM 2.5. Let E^ = E0(N9 Gt)9 i = 1, 2, be two disjoint
circular cones in E and let Pk e P%k{k = 1, 2, , q) such that

( 2 . 1 6 ) ^ P f c ( ^ , y ) £ x

( Γ f f 2 ( a ; , 2/) , Jfc = p + 1 , •••, q

for all (x9 y) e N. If Φ(x19 x) is the generalized polar of the product
Q(x) (cf Definition 2.2) with mk > 0 for k = 1, 2, , p and mk < 0
for k = p + 1 , ,

(2.17)

?!, x) Φ 0 /or αϊϊ linearly independent elements x, xγ of E
such that xeE- EP U E{

0

2).
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Proof. Let Pk{sx + tex) be as given by the Equation (2.8) in the
proof of Proposition 2.3. Let x, xx be linearly independent elements of
E such that x e E — E^ U E{

Q

2). Then x, xt are nonzero elements such
that x £ E£] U E{

0

2), so that Pk(x) Φ 0 for 1 ^ k ^ # and (due to (2.10))
δifc =£ 0 for 1 <: i ^ n*, 1 ^ & ̂  tf. Let <oifc = y3'klδjk. Now, a? and ^
determine uniquely an element (x0, y0) e N and a set of scalars
a, β, Ύ, d 6 jfiΓ (with aδ — βΊ Φ 0) such that (#„, 2/o) ^ (», a?i) and such
that x = ax0 + βy0, x1 = Ύx0 + δ^/0. Since (for each k = 1, 2, •••,?),

+ 7)^0 + (βpih + δ)y0] = 0 VI

we see (due to (2.16)) that

( T G l ( x 0 , y 0 ) V l ^ j ^ n k , l ^ k ^ p

and, hence, that

/apn + Ύ\

\βpίh + δ I ~ [G2(x0) 3/0) VI ^ j ^

Let us put jOj* = (αjθifc + Ύ)/(βpjk + δ), so that

'g/pft + Λ e ^(ajc, yβ) VI ^ ί ^ Λ» , 1 ^ A; ^

βp* + «) =

for all i , fc, where Ϊ7 is the homographic transformation given by
U(ρ) = (δp - Ύ)/(-βp + a) for p e JΓ.. That is,

where U(Gi(xoy y0)) e jD(ίΓβ) for i = 1, 2, because G^x^ yQ) e D(Kω) and
U preserves the class D(Kω) (cf. [16, p. 353], [13, p. 28]). But
clearly ω $ U(Gi(x09 y0)) for i = 1, 2. For, otherwise, α//S e G âJot l/o) U
G2(a?0> l/o) (since Z7(/θ) = ό) if and only if p = α//3) and, hence, a? = ctα?Γ +
£a/o 6 Γβl(a;0,3/0) U Tβi(x0, y0) £ ^ ^ U E{

0

2), contradicting the choice of x
already made. Now, the definition of g.c.r. implies that the sets
U(Gi(x0, VQ)), i = 1, 2, are EΌ-convex g.c.r. 's of Kω and, hence, (2.18)
implies that

( 2 1 9 ) frnr"- U(G2(x0,y0))

If we let At = m1 + m2Λ 1- mp and A2 = m p + 1 H h mg, we infer
from the hypotheses on the mk that the scalars mk/A1 (resp. mk/A2)
are positive elements of Ko for & = 1, 2, , p (resp. & = p + 1, , q)
with sum as 1. This fact, together with the statements (2.19) and
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the ϋΓ0-convexity of the sets U(Gt(x0, y0)) for i = 1, 2, implies that
μJAi 6 U{GlxOi y0)) for i = 1, 2, where

ft = Σ Σ ^-pjt, ft = Σ • Σ ^ »

Therefore, there exist elements ft e (?,(&<>, 2/o)> i = 1, 2, such that JM</A< =

I7(ft) for i = 1,2, and we have

That is,

[(/ι,/Λ)α + 7]^0 + [(^/Λ)^ + δ]y0 6 TOi(x0, y0)

and, hence, (μJA^x + xte TG.(x0, y0) for i = 1, 2. We claim that
μ1 + μ2 φ 0. For, otherwise, since Ax + u42 = mι + m2 + + mg = 0,
we observe that μίjAι = μ2/A2 and that {μJAx)x + x1 belongs to
TGl(x0, y0) Π TG2(x0, y0). That is, (μJAJx + xλ e E(

o

1] n E£\ contradicting
the hypothesis that E[

o

ι) and E[

Q

2) are disjoint. Hence

(2.20) ft + ft = Σ Σ % ^0.
fc=ii=i nk

Since Pfc(a?) ^ 0 for all k, we obtain (cf. (2.10) and (2.11))

(2.21) Pk(xl9 x) - — ^ ( Σ Λ*) P * ^ f o r X ^ A = q '

Finally, since Qk(x)-Pk(x) = Q(x) Φ 0 for all k (cf. Definition 2.2), we
get (due to (2.20) and (2.21))

(2.22) Φ(xlf x) = - Γ Σ Σ ^ pMή Pu(x)) Φ 0

as was to be proved.
The above theorem deduces as corollary the following result due

to Marden in terms of hermitian cones (a proper subclass of circular
cones).

COROLLARY 2.6 (Marden [8, Theorem (3.1]]). Let

Et = {xeE\x Φ 0; Hix, x) > 0}, i = 1, 2 ,

be two hermitian cones corresponding to the hermitian symmetric
forms Ht(x, y) from E2 to K such that (£r-j&1U{O})n(£r-jEr

2U{O})=0
and let Pk e Pn]c(k = 1,2, •••,?) such that Pk(x) Φ 0 for xeEt when
k = 1, 2, , p and such that Pk(x) Φ 0 for xeE2 when k = p + 1,
p + 2, « ,g. If the scalars mk sotisfy the hypotheses of Theorem
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2.5, then Φ(x19 x) Φ 0 for all linearly independent elements x, xι of
E such that xeE^ E2.

Proof. Starting with the hermitian cones E — Et U {0} = E[ (say),
i = 1, 2, and taking an arbitrary nucleus N of E2, we can always get
(due to Proposition 1.2) two circular mappings Gi:N—>D(Kω) for
i = 1, 2, such that #ί = JEΌCZSΓ, Gt) Ξ Si 0 (say) and such that #; Π
,2f [#, 2/] = TG.(x, y) for every (x, y)eN and i = 1,2. We easily notice
that

yk = p + 1, •••, q

for all (x,y)eN. Since E[1] and E{2) are disjoint circular cones, all
the hypotheses of Theorem 2.5 are satisfied and we conclude that
Φ(xlf x) Φ 0 for all linearly independent elements x, xx of E such
that x $ E[1] U E^\ Since x Φ 0 and since E[i] = E - Et\J {0}, we
see that Φ(xl9 x) Φ 0 for all linearly independent elements xlf x such
that x e Et Π JSi This completes the proof.

Our second application of Theorem 2.5 gives the following
corollary, which is an improved version of a theorem due to Bδcher
[1], [7, Theorem (20.2)], [13, Corollary (19.3)] on the vanishing of the
Jacobian of two binary forms in complex variables. The improvement
is in the sense that we use g.c.r/s, whereas Bδcher used the (classical)
c.r.'s in his theorem. Our result runs as follows:

COROLLARY 2.7. Let Clf C2 be two disjoint g.c.r.'s of Cω and let
Cf = {(s, t) e C2\(s, t) Φ 0; s/t e Ct), i = 1, 2. If

n-k i = 1 2

are two binary forms in the complex variables sf t such that all the
nontrivial zeros of Pi lie in Cf for i = 1,2, then all the nontrivial
zeros of the Jacobian of P1 and P2 lie in Cf U Cf. (Note that the
origin (0, 0) 6 C2 is the trivial zero of every binary form).

Proof. Letting x0 = (1, 0), y0 = (0, 1), N = {(xQ, y0)}, and Gt(x0, y0) =
Ci9 we observe (cf. Remark 1.1) that the sets Cf are precisely the
disjoint circular cones E^ = E0(N, Gt) = TG.(x09 y0) for i = 1, 2, and
that the Pt are basically the a.h.p.'s of degree n (from C2 to C),
given by

Pt(x) Ξ= PlsxQ + ty0) = Σ «« sfeΓ-fcV^ = (5, t) e C2 , i = 1, 2 ,
yk=o

such that ZP.(xoyo) Q TG.(xQ, y0) for i = 1,2. For all element aj = (s, t)
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and x1 = (Si, Q of C2, we know [8, Equation (2.4)] that

and, for α?x = «, it gives

If we take q = 2, p = 1, and m t = — m2 = 1, then Φfo, x) in Theorem
2.5 is given by

Φ(xl9 x) = P ^ , a?) Pa(α) - P^-P^, x)

(2.23) ^ ^ t

= —Asit - sέj. J(s, t) , say ,

where J(s, t) denotes the Jacobian of Pt and P2. Since 0(^, x), the
a.h.p.'s P i5 and the circular cones E[ί] — Cf satisfy the hypotheses of
Theorem 2.5, we conclude that Φ(xif x) Φ 0 whenever x, x1 are linearly
independent and x £ C* U Ct, i.e., given any nonzero element x =
(s, t) ί C* ί7C2*, we can always choose an element BJ. = (su tj e C2 which
is linearly independent to x (so that sj — s^ ^ 0) and for which
Φ(x19 x)ψQ. The equality (2.23) then says that J(s, t)Φθ. Therefore,
all the nontrivial zeros of the Jacobian J(s, t) lie in C?UCt, as was
be to proved.

If Corollary 2.7 is restated in terms of ordinary polynomials
(from C to C), it reduces essentially to an improved version of the
second part of the two-circle theorem due to walsh [12], [7, Theorem
(20,1)] on the derivative of the quotient of two polynomials. The
improvement is in the sense in which Corollary 2.7 improves upon
Bδcher's theorem.

COROLLARY 2.8. If all the zeros of the complex valued polynomial
ft(z) of degree n lie in the g.c.r. Gt of Cω(i = 1, 2) and ifCιΓ[C2 = 0,
then all the finite zeros of the derivative of the quotient f(z) =
f(z)/Mz) He in C, U C2.

Proof. Let us take the sets C* in the manner of Corollary 2.7
and, writing ft(z) = Σ*=o a>uZh for i = 1, 2, let us define

( 2 . 2 4 ) Pt(8, t) = ί n / 4 ( 8 / t ) = Σ a k ί s k t n - h V s , teC , i = 1 , 2 .
fe=0

Then the Jacobian of the binary forms Pι and P2 is given by (cf.
[7, pp. 93-94]).
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(2.25) J(s, t) = nt"*'1* f\s/t)[fz(s/t)Y Vs,teC .

Next, we notice from (2.24) that s/t is a zero of /^ if and only if
(s, £) is a nontrivial zero of P* and, from (2.25), that s/t is a finite
zero of / ' if and only if (s, t) is a nontrivial zero of J(s, £). The
proof is now self-evident in view of Corollary 2.7.

REMARK. Since there do exist [14, pp. 123-125] circular cones
(both hermitian and otherwise) and a.h.p.'s satisfying the hypotheses
of Theorem 2.5, it follows from Proposition 1.3 that our Theorem
2.5 is a strengthened generalization of Marden's theorem expressed
in Corollary 2.6.

The following example shows that Theorem 2.5 cannot be gene-
ralized for vector spaces over nonalgebraically closed fields of charac-
teristic zero.

EXAMPLE 2.9. Let KQ be a maximal ordered field (so that Ko is
a nonalgebraically closed field of characteristic zero [11, pp. 233,
250]) and let Cx = { — 1} and C2 == {1} be two generalized circular
regions of Ko (see Remark in § 1 concerning the definition of g.c.r.'s
in JO. With x0 = (1, 0), y0 = (0, 1) as basis elements of the vector
space E = Kl, if we define N = {(x0, y0)} and Gi(x09 yQ) = Ct for
i — 1, 2, then the corresponding circular cones E{

o

i] = E0(N, G%), for
i = 1, 2, are disjoint. If we take two a.h.p/s Pl9 P 2 e P 3 , defined by

Px(x) Ξ P^sxo + ty0) = s3 + 3s2t + 3st2 + tB = (s + tf

Pt(x) = P2(sx0 + ty0) = s3 + 5s2έ + 4st2

for all x = (β, t) 6 22, then ZPi(a?0,2/0) £ Γβ/^w l/o) f o r i = 1, 2 (since
[(β + 3£)2 + t2] cannot vanish unless s = t = 0 (cf. [1, p. 36])). Also,
we know [8, Equation 2.4] that

— -[«i(3s2 + 6sέ + 3f)
3

pt(xu x) = —-[stfs2 + lOβί + 4ί2) + ίt(5s2 + 8sί - 30ί2)]
s

for all elements α; = (s9 t) and xt = (sί9 ί j in £7. Let us set

, a?) - P ^ , a?) P2(aj) - P X ( ^ ) . P 2 ( ^ , a?) .

Now, $(#!, a?), the polynomials Pi9 and the circular cones E[ί] satisfy
the hypotheses of Theorem 2.5, whereas it can be easily verified
that Φ(xlf x) — 0 for the linearly independent elements xx = (1, 1) and
x == (1 + τ/69, 2) in J57, violating the conclusion in Theorem 2.5.
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Next, we ask ourselves a natural question as to whether or not
the g.c.r.'s Gt(x, y) or Ct (employed in the hypotheses of Theorem 2.5
and Corollaries 2.7 and 2.8) can be replaced, in general, by g.c.r.'s
adjoined with arbitrary subsets of their boundary, without effecting
the conclusion therein. The answer is in the negative in view of
the following

EXAMPLE 2.10. With E = C\ K = C, x0 = (1, 0), y0 = (0, 1), and
]Sf = {(χOf y0)}, let us define the g.c.r.'s of Cω by

G&o, Vo) = {z 6CωIIm(2) > 0} and G2(tf0, y0) = {zeCω\lm(z) < 0}

so that the corresponding circular cones E{

o

i] = E0(N, Gt) = TG.(xQ, y0),
i = 1, 2, are disjoint. If we put A = G^XQ, T/0) U {1, 2}, A2 = G2(α?0, y0) U
{-1, -2}, and

Si = {sx0 + ti/0 ^ 0|s, t e C ; s/ίe AJ , i = 1, 2 ,

then

$ = JSi1} U {sx0 + ti/0 ^ O\s/t = 1, 2} ,

S2 = £7Γ U {s 0̂ + ίy0 Ê= 0|β/t = - 1 , -2} ,

so that Slf S2(resp. Alf A2) are disjoint subsets of ϋ7(resp. Cω) none of
which are circular cones (resp. g.c.r.'s). Next, we define

PJp) = P^sxo + ty0) = s2 - Zst + 2ί2 = (s - t)(s - 2ί) ,

P2(ίc) Ξ P2(sχ0 + ty0) = s2 + Zst + W = (s + t)(β + 2t) ,

for all a? = (s, t) 6 C2. Then Px, P 2 e P 2 such that ZPi(xQ, y0) Q St for
i = 1,2. Now, the generalized polar Φ ^ , a?) of Pi and P2, with
q = 2, p = 1, mL = — m2 = + 1 , is given by (cf. (2.23))

(2.26) Φ(xl9 x) = 3(8^ - s ί j^s 2 - 2t2)

for all elements x = (s, έ) and ^ = (βw tx) of E. But, we see that
Φ(x19x) — 0 for the linearly independent elements x = (τ/2", 1) and
a?! = (1,1), where x^Sj^USz. I.e., Theorem 2.5 wo longer holds when
the g.c.r.'s Gi(x09 y0) are replaced, in general, by the above sets At.

In the language of Corollary 2.7, the above example says the
following: The nontrivial zeros of the binary forms P* (defined above)
lie in Af (cf. definition of Cf in Corollary 2.7) for i = 1, 2, but the
Jacobian J(s, t) = 12(s2 - 2t2) = 0 for the element (τ/2,1) $ At UA}. I.e.,
Corollary 2.7 does not hold, in general, when the sets Ct are replaced
by the above sets Ai. Similarly, as in passing from Corollary 2.7 to
Corollary 2.8, we may express the above result in terms of ordinary
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polynomials and infer that Corollary 2.8 does not hold, in general,
when the sets C* are replaced by the type of sets At chosen above.

3* A generalization of Marden's theorem* In the previous
section, we have studied the generalized polars Φ(xly x) subject to
the condition that the scalar multipliers mk are nonzero elements of
Ko with a vanishing sum. This section primarily deals with a similar
study in the case when all the mk'& are taken as positive. Our main
theorem generalizes a result of Marden [8, Theorem (4.1)] and it
involves essentially the generalization of a theorem each due to the
author [14, Theorem (3.1)] and to Hormander [5, Theorem 1]. We
prove

THEOREM 3.1. Let Eo = E0(N, G) be a circular cone in E and
let Pk e Pn]c(k = 1, 2, •••,?) such that ZPk(x, y) £ Ta(x, y) for all (x, y) e
N and k = 1, 2, •••, q. If Φ(xlf x) is a generalized polar of the
product Q(x) (cf. Definition 2.2) with mk > 0 for k — 1, 2, , q,
then Φ(xίf x) Φ 0 for all nonzero elements x, x1 e E — Eo.

Proof. Take any two nonzero elements x, xx e E — 231,. If x, xλ

are linearly dependent (i.e., if xλ — ax for some nonzero scalar a),
then Pk(xί9 x) — Pk(<x%i #) = <%Pk(%) for all k and hence

(3.1) Φ(xί9 x) = a(± mk) - f[ Pk(x) Φ 0
\A;=0 / k=l

due to the fact that Pk(x) Φ 0 for all k.
Now, we prove the theorem for the case when x, xt are linearly

independent. Let

Pk(sx + txj = Π (Sjks - Ύjk t) , k - 1, 2, , q .
3 = 1

Since Pk{x) = dlk d2k dnjck Φ 0 and Pk(Xι) = ( - l ) * 714 7 r t Ί%kk Φ 0
for all k, we see that δjkf Ύjk Φ 0 for all j and k. Consequently, the
elements Ύ3 k/δjk — pjk (say) Φ 0 for 1 <̂  j ^ nk and 1 ^ k ^ q. Now,
proceeding exactly as in the proof of Theorem 2.5, we easily conclude
(cf. (2.18)) that ρjk e U(G(x0, yQ)) for all j and k, where (x0, yQ) e N such
that x = ax0 + βy0, xx = Ύx0 + δy0, and where U(p) = (δp - 7)/(—pβ + a)
for all ρeKω. As before, U(G(x0, y0)) e D{Kω). Since x, xι $ TG(xQ, y0),
we notice that a/β, 7/δ £ G(x0, y0) and (hence) that 0, ω <£ U(G(x0, y0)).
That is, U(G(x0, y0)) is a iΓ0-convex g.c.r. of Kω which does not contain
the origin. Hence, (2.19) and the succeeding arguments in the proof
of Theorem 2.5 imply that μ/n e U(G(x0, y0)), where n = ^ + n2 +
• + nQ and where
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/< = Σ Σ (mk/nk)'pίk Φ 0 (since 0 <2 U(G(x0, y0))) .

Since Pk(x) Φ 0 for all k, we obtain (cf. (2.22))

Φ(xux) = -μ ίlPk(x)ΦQ
k=l

and the proof is complete.
The above theorem deduces as corollary the following result due

to Marden and may thus be regarded (cf. Remark following Corollary
2.8) as a strengthened generalization of his theorem.

COROLLARY 3.2. (Marden [8, Theorem (4.1)]). Let

Eγ = {x 6 E\ x Φ 0; H(x, x) > 0}

be a hermitian cone in E, when H(x, y) is a hermitian symmetric
form from E2 to K, and let Pk e Pnjc(k = 1, 2, , q) such that Pk(x) Φ 0
for all xeEx and k = 1, 2, , q. If Φ(xlf x) is the generalized polar
of the product Q(x) (cf. Definition 2.2) with mk > 0 for k = 1, 2, , q,
then Φ(x19 x) Φ 0 for all nonzero elements x, xιeE1.

Proof. The proof is exactly similar to that of Corollary 2.6.

The following corollary is an immediate consequence of Theorem
3.1. If # = 1, this corollary reduces essentially to the author's
generalization [14, Theorem 3.1] of Laguerre's theorem, and if, in
addition, EQ is taken as a hermitian cone, it is essentially (due to
Remark 2.4) a result due to Hδrmander [5, Lemma 2]..

COROLLARY 3.3; Let Eo = E0(N, G) be a circular cone in E and
let Pk G P%k(k = 1, 2, , q). such that ZPk(x, y) Q TG(x, y) for all (x, y) 6
N and k = 1, 2, , q. If Q(x) = Px(x)P2(x) - Pq(x) then the first
polar Q(x19 x) Φ 0 for all nonzero elements x, xx e E — Eo.

Proof. The proof is obvious in view of Proposition 2.3 and
Theorem 3.1.

REMARK. In view of the examples given earlier by the author
[14, p. 122], Corollary 3.3 and hence Theorem 3.1 cannot be further
generalized in the two directions already discussed in case of Theorem
2.5.

4* On two-circle theorems of Walsh* In Theorem 2.5, the
circular cones E[ί](i — 1, 2) were assumed to be disjoint and the con-
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stants mk were taken as nonzero elements of Ko such that Σ*=i w^ =
0, whereas Theorem 3.1 uses only positive elements mkeK0 (so that
Σ*=i mk Φ 0) and utilizes only one circular cone. In this section, we
study the same problem for the case When the constants mk are
nonzero elements of KQ such that Σ L i mkΦ 0 and the two cones
EQ1) and E^] are not necessarily disjoint. In fact we establish two
main results in this section. The first one, which is somewhat like a
theorem due to Marden [8, Theorem (4.2)], deduces as corollary the
first part of Walsh's two-circle theorem [12], [7, Theorem (20.1)]
on the critical points of rational functions. (The second part of
Walsh theorem has already been considered as a corollary of Theorem
2.5.) Our second result is essentially a generalization of Walsh's
two-circle theorem [7, Theorem (19, 1)] on the critical points of the
product of two polynomials. Before we take up these results, we
give the following definition and some relevant explanations.

DEFINITION 4.1. Given distinct elements plf p2, p3 e K, we define
the cross-ratio mapping (with respect to plf p2, p3) to be the homo-
graphic transformation [16, p. 353], [13, pp. 24-25] h: Kω—>Kω given by

(4.1) h{p) - 6J=JL . J^ZLA = ( A fllf p2f p3) ypeKω.
P - Pz Pi - P2

We call (p, p19 p2, ps) as the cross-ratio of p with pί9 ρ2, pz. In the case
when any one of the p/s is taken as ω, we define the corresponding
cross-ratio to be the expression got by deleting in (4.1) the factors
which thereby involve ω. E.g., (p, ω, p2, p3) = (p — p2)/(p - ρ3), etc.

It is trivial to verify that the homographic transformation in
(4.1) maps plf p2, p3 to 1, 0, ω, respectively, and that there is no
other homographic transformation with this property. Consequently,
identity mapping is the only homographic transformation which can
map 1, 0, ω to 1, 0, ω, respectively. Furthermore, cross-ratios are
invariant under every homographic transformation T, i.e., (p, plf p2, p3) =
{Tp, Tp19 Tρ2, Tp3). This follows from the fact that T~ι is also a homo-
graphic transformation and that hT~ι is a homographic transformation
which maps Tpu Tp2y Tρ3 to 1, 0, ω, respectively. Now we prove

THEOREM 4.2. // all the hypotheses of Theorem 2.5 are assumed,
except that the circular cones E^\i = 1, 2) are not necessarily disjoint
and that (2.17) is replaced by the condition Σ L i ?% Φ 0, and if Aι =
ΣLiWfc and A2 = ΣLp+i %> then Φ(xlf x) Φ 0 for all linearly inde-
pendent elements x, xx of E such that x1eE—E{o) Π E{

0

2) and xeE—
E^[JE{o2)ϋ Ts(xQ, yQ), where (xOf yo)eNf)£f[x, xι\ xι = ΎxQ + δyQ, and
where
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(4.2) S(x0, y0) = {p e Kω \ (ft Ύ/δ, plf ft) = —^-\ ft e Gt(a?0, y0), i = 1, 2} .

( 0 / course, Φ(xit x) Φ 0 for any two nonzero and linearly dependent

elements x, x, such that xeE - E^ Π E{

0

2).)

Proof. The statement within parenthesis is self-evident in view
of (3.1). In order to prove the other case, we first observe that
every linearly independent pair (x, xj of elements x, x^eE determines
a unique element (x0, yo)eNn £f[x, xt], a unique set of scalars a, β, Ύ, δ
(with aδ — βΎ Φ 0) such that x = ax0 + βy0 and x1 = Ύx0 + δyoy and,
thereby, a unique set S(x09 y0) defined by (4.2). Let us take two line-
arly independent elements x, x1 of E such that xt eE— E^ΓϊE^ and
x 6 E — E{

0

1] U i?o2) U Ts(x0, y0), where S(x0, y0) is the unique subset of
Kω determined in the above manner by the pair (x, xλ). If Pk(sx + txt)
is given by (2.8), then proceeding as in the proof of Theorem 2.5 we
see that μjA, e U{Gix0, y0)) for i = 1, 2, where U(p) = (δp - 7)l(-βρ + a)
for peKω and where

% and A = έ Σ ^ f t * .

At this point, we note that μx and //2 cannot vanish simultaneous-
ly. For, otherwise, 0 e U{G1{xQi y0)) f] U(G2(x0, yQ)) and, therefore, Ύ/δ
would lie in G^XQ, y0) Π G2(xQ, y0). This would imply that x1 = 7x0 +
3y0 6 Γffl(a?0,2/o) Π TG2(x0, y0), contradicting the fact that x1 ί E{

o

ι) ΓΊ E{

0

2).
Next, we observe that μx + μ2 Φ 0 whenever μ1 = 0φμ2 or μγΦ
0 = μ2. In case, however, μlf μ2 Φ 0, we again show that fii+fJ^ΦO
as follows: Since μJAt belongs to U(Gi(x0, y0)) for i = 1, 2, there
exist elements ft 6 (^(#0, y0) such that ^ / ^ = U{p%) = (δft—7)/(—βPi+a)
for i = 1, 2. If (on the contrary) μx + ft = 0, then ft/ft = — 1 and
Ύ/δ, pl9 p2 are distinct elements (since μlf μ2 Φ 0 and Ax/A ^ — 1) and
hence

δρ2 - 7 . -/9ft + α _ . M
_ J±Λ J±2

-βpt + <X Spί-Ί

That is (cf. Definition 4.1),

(α/A 7/ί, ft, ft) =
- ft Ύ/δ - ft

and, hence, a/β e S(xQ9 y0). This implies at once that x — ax0 + βy0 e
Ts(%09 Vo), contradicting the choice of x already made above. (In the
above arguments, let us note that β and δ cannot vanish simultaneously
(since AJA2Φ —1).) We have, therefore, shown that in all cases
ft + μ2 Φ 0. Finally, the proof follows from (2.20) - (2.22).
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The above theorem leads to the following corollary, which is the
first part of the (so-called) two-circle theorem due to Walsh on the
critical points of rational functions. In the following result we shall
write D(c, r) = {zeC\]z — c\ <>r} and call it a disc with center c

and radius r.

COROLLARY 4 3 (Walsh [7, Theorem (20,1)]). If f (resp./2) is a
polynomial from C to C of degree n1 (resp. n2) such that all the zeros
of fι (resp. f2) lie in the disc D(c19 r j = Dt (resp.D (c2, r2) = Dz) and
if Mi Φ w2, then all the finite zeros of the derivative of the quotient
f{z) = f(z)lf2{z) lie in \J\=ι D{ciy r,), where

r3 I n2 —

Proof. Letting x0 - (1, 0), y0 = (0, 1), N = {(x0, yQ)}, GlxQ, y0) =
Dij /i(^) = Σfcio »feî fe for i = 1, 2, we notice (cf. Remark 1.1) that the
sets

Si<} = E0(N, Gt) = {sί»o + *2/o ^ 01 (s, t) e C2, β/t G JDJ(* = 1, 2)

are circular cones in C2 and that the mappings P^C2 —* C, defined by

Plx) = Pt(sx0 + ty0) = Σ dkiSktni-k Vx = (β, ί) 6 C2

jfc=θ

for ΐ = 1, 2, are a.h.p.'s of degree nt such that ZPi(a?0» Vo) £ ^.(^o, y0)
for i = 1, 2. Now the generalized polar ^{^!, a?) of the product
Pι(x)PJ[x)t given by

(4.4) Φ(xlf x) = n^fa, x)P2(x) ~ n2Px{x)P2{xiy x)

for all elements x = (s, έ) and ^ = (slf tj of C2, satisfies all the hypo-
theses of Theorem 4.2 with mt = Ax = n1 and m2 = A2 = — ̂ 2. For
the special choice of ^ as x0 (so that sL = 1 and έL = 0), we proceed
as in the proof of Corollary 2.7 and observe that (for nonzero elements
x and for i = 1, 2) PΛ&) = t^f^s/^dPJds = t^-fUs/t), dPJdt =

- stni-2fί(s/t) and (hence) that

(4.5) = t i+--i. [fl(s/t)f2(s/t) - f(s/t)fKs/t)]

Since α?0 ί ^o^ Π ̂ o2), Theorem 4,2 implies that Φ(#o, a?) ^ 0 whenever
x is linearly independent to x0 such that # g JB7̂ 1) U ̂ 0

2 ) U TS(X0, y0).
That is Φ(α?0, x) Φ 0 for all elements # = (s, t) for which t Φ 0 and
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s/t g A U A U S(x0, y0), where S(x0, y0) is given by (since 7 = 1 and
δ = 0 in the notations of Theorem 4.2).

S(xot Vo) = \peCω\(ft ω, ft, ft) = -^ pt eG&o, yQ), i = 1, 2}

- A ) = A ; A 6 A ; i = 1, 2

- nx) | ft e A, ft 6 A}
, r8) (due to (4.3)).

From (4.5) it follows that /'(«/£) Φ 0 for all s,teC such that £ =£ 0
and sjt <£ A U A U J5(c8, r3) and, hence, the corollary follows.

In the above theorem, the constants mk e Ko have been assumed
to have a nonvanishing sum, with at least one mk > 0 and at least
one mk < 0. Next, we deal with a case when all the mk's in Theorem
4.2 are taken as positive elements of KQ and obtain the following
corresponding result.

THEOREM 4.4. If the a.h.p.'s Pk(k — 1, 2, , q) and the circular
cones E{

o

ι) and E(

0

2) (not necessarily disjoint) satisfy the conditions
2.16 of Theorem 2.5 for some 1 ^ p < q and if mk > 0 for k = 1, 2,
• , #, £foew $(#!, #) =£ 0 /or all linearly independent elements x, xx

of E such that x,eE- £Ό(1) n E^ and xeE- E^ U E{

0

2) U Ts(x0, y0),
where S(x0, y0) is as defined in Theorem 4.2. (Of course, Φ(x19 x)Φθ
whenever x, xt are nonzero and linearly dependent such that x e
E - EP U E[2).)

Proof. The proof is exactly the same as in Theorem 4.2.

An application of this theorem furnishes the following result on
the zeros of the formal derivative of the product of two polynomials
(from K to K). For K = C, this result reduces essentially to the
two-circle theorem due to Walsh [7, Theorem (19,1)], By the formal
derivative [16, p. 360], [14, p. 121] / ' of a polynomial f(z) - Σ*=o akz

k

(from K to K), we mean the polynomial f'(z) = Σ*=i kakz
h~ι. If,

however, P(s, £) is a polynomial (from K2 to iΓ) in s and t, we define
the formal partial derivative dP/ds of P with respect to s (say) as
the formal derivative of P when P is regarded as a polynomial in
s(t being held fixed). In the following corollary, we shall write
D(c, r) = {zeK\\z — c\ ^ r) and call it a δαZΪ with center c (c being
in K) and radius r (r being in Ko+). The balls are usually called
discs when K = C.
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COROLLARY 4.5. // f (resp. f2) is a polynomial from K to K of
degree nx (resp. n2) such that all the zeros of fx (resp. /2) lie in the
ball D(c19 r1) = Dί(τes'p. D(c2, r2) = D2), then all the zeros of the formal
derivative of the product f(z) = f{z)-f2{z) lie in \J3i=iD(cif r,), where

(4.6) c3 = n ° + n ° ^ r + ^ n
3 , 3

nx 4- n2

 3 nx + n2

Proof. Proceeding as in the proof of Corollary 4.3, with C replaced
by K and Φ(x19 x) in (4.4) replaced by

Φ(xlf x) = nJPfa, x)-P2(x) + n.PM-P^x,, x),

we notice that Φ(xlf x) satisfies the hypotheses of Theorem 4.4 with
mt = A1 — nlf m2 = A2 — n2. Following the computation used for
obtaining (4.5), we can easily verify that (for all nonzero elements
x = (s,t)eK>)

Φ(x09 x) - t^^'[fl(s/t)f2(s/t) + f(s/t).f2'(s/t)]

where xx = xo$ E{

0

1] Π E$\ (since ω $ Gt(x0, y0) = Dt for i = 1, 2) and
//, Λ', / ' denote the formal derivatives of fί9 /2, / respectively. By
Theorem 4.4, Φ(x09 x) Φ 0 whenever the element x = (s, t) is linearly
independent to x0 and is such that x ί E[ι) U E{

0

2) U ^(^o, y0). That is,
/'(β/t) ^ 0 for all s,teK such that t =£ 0 and s/έgD t U A U S(a?0, Vo)9

where

Γω I (p9 ω, ft, ft) = -njn2; p, e Gt{xQ, y0), i = 1, 2}

= {/o e ΐΓω I (/o - ftVdo ~ ft) - -njn2; ft eDifi = 1, 2}

- {(^ft + n^jin, + w2) I ft e A , ft 6 A}

= D(c8, r3) (due to (4.6)) .

Hence, all the zeros of / lie in U?=i D(cif r<), as was to be proved.
If Theorem 4.4 is specialized for the case when G^x, y) =

G2{x, y) = G{x, »)(say) for all (x9 y)eN (so that ^ X ) - E{

0

2) - JS0(N, G) =
JS?0, say) we easily conclude that Φ(a?w x) Φ 0 for all linearly independent
elements a?, x1 such that x1eE — Eo and xeE — E0{J Ts(x0, y0), where

], xt - 7xQ + δy0 and (cf. (4.2))

S(α?o, »o) = ί/o 6 ^ω I do, Ύ/δ, ft, ft) = - Λ / Λ ; ft, ft e G(α?0,

Since σ — 7/5 g G(α?0, y0)
 a n d since ft, ft can vary over only distinct

elements of G(x0, y0), we see that every element p of S(x0, y0) is given
by

p = (A,ft + A2ft)/(Λ + Λ) if σ = ω
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or

φa{p) = [Aiφχp2) + A2<pσ(ft)]/(Λ + A2) if σ Φ ω

for some distinct elements plf p2 in G(x0, y0), where <pσ(z) = l/(z — σ)Vz e
Kω. In the first case, G(x0, yQ) happens to be Zo-convex (since ω 0
G(x0, Vo)) and p e G(x0, y0). While in the second case, <po(G(x0, y0)) is
iΓ0-convex (cf. definition of g.c.r.) and so φσ{p) e φσ(G(x0, y0)) and pe
G(x0, y0). Consequently, in either case, we discover that S(x0, y0) £
G(x0, y0) and so Ts(x0, y0) Q TG(x0, y0) £ Eo. Therefore, we conclude
that Φ(xlf x) Φ 0 for all linearly independent elements x, x1 e E — Eo.
This fact together with the statement of Theorem 4.4 within par-
enthesis, suggests that in the present set up Theorem 4.4 reduces
essentially to Theorem 3.1. In view of this and the remark following
Corollary 3.3 we again notice that Theorem 4.4 and Corollary 4.5
cannot be further generalized in the two directions in which Theorem
2.5 could not be extended.

Next, we give an example to show that Theorem 4.2 cannot be
generalized to vector spaces over nonalgebraically closed fields of
characteristic zero.

EXAMPLE 4.6. In the notations of Example 2.9, take E = K%,
Gi(x0, yQ) = Ct = {0} for i = 1, 2 (so that the circular cones E^ and
E{

0

2) are identical), and define

Pλ{x) = P.isx, + ty0) = s3 + st2 = s(s2 + t2)

P2(x) = P2(sx0 + ty0) = s3

Φ(xlf x) = 2P1(xlf x)-Pt(x) - Pι(x)-Pt(xι, x)

for all elements x — (s, t) and xt — (slf tj of E. Proceeding as in
Example 2.9, we can easily verify that ZP.(x0, y0) £ TG.(x0, yQ) for
i = 1, 2 and that Φ(x19 x) = (l/3)s3(3s2 - t2) if we take x, = x0 - (1, 0).
In the notations of Theorem 4.2, let us note (since 7 = 1, δ = 0, A± =
2, A2 = —1) that S(xQ, yQ) consists of all elements peKω such that
(ft <*>, ft, ft) = (p - p,)l{p - ft) = 2. That is, S(a?0> y0) = 0 . Now,
the polynomials P* and the generalized polar Φ(x19 x) satisfy all the
hypotheses of Theorem 4.2, but Φ(xlf x) = 0 for the linearly independent
elements χι = (1, 0) and x = (1, τ / T ) , where ^ g j&Jυ Π J&i2> and x <£
JSrS11 Π J?o2) U Γ̂ Ĉ w l/o)» contrary to the conclusion in Theorem 4.2.

FINAL REMARK. At the end, let us recall that the condition
"E{

o

ι) Π Ek2) = 0 " has been used as hypothesis only in case of Theorem
2.5. In what follows, we show that this hypothesis is necessary in
order for the conclusion in Theorem 2.5 to hold. To this effect, we
reconsider Example 2.9 with necessary modifications: In fact, we



556 NEYAMAT ZAHEER

replace the maximal ordered field Ko by an algebraically closed field
K of characteristic zero and take the same polynomials Px(x)> P2(x)9

φ(χlf x) and the same g.c.r. Q = G^Xo, yQ) as in Example 2.9, but this
time we define

C 2 = G2(x0, Vo) = {zeKn\\8z + 9 \ £ 17}

= {zeKω\\6Azz + 72(z + z) - 208 ^ 0} .

Indeed, C2eD(Kω) [14, p. 116] and the elements z — ± 1 and z =
- 3 ± i belong to C2, so that Cx n C2 = { - 1} and (hence) E{

o

n Π ̂ 2 ) ^
0 . Also ZPi(x0, Vo) Q TGi(xQf Vo) for i = 1, 2. Therefore, all the
hypotheses of Theorem 2.5 are satisfied by the polynomials Px(x)9

Pz(x)t Φ(χi> χ) a n ( i the circular cones E{

o

ι), E{

0

2) (except that they are
disjoint), whereas Φ(x19 x) = 0 (see Example 2.9) for the linearly inde-
pendent elements xt = (1, 1) and x = (1 + τ/69, |2) ί JS?έ1} U E{

0

2) (since
(1 + τ/69)/2 ί C2). This is contrary to the conclusion in Theorem 2.5.
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