AN INEQUALITY INVOLVING THE LENGTH, CURVATURE, AND TORSIONS OF A CURVE IN EUCLIDEAN n-SPACE

Joel L. Weiner

Let x be a closed nondegenerate C^{n} curve in E^{n} parametrized by arc length s. We prove an inequality for such x which lie in a ball of radius R. For nonplanar curves in E^{3} the inequality is

$$
L \leqq R^{2} \frac{\int_{0}^{L} \kappa^{2} d s \int_{0}^{L} \tau^{2} d s-\left(\int_{0}^{L} \kappa \tau d s\right)^{2}}{\int_{0}^{L} \tau^{2} d s}
$$

where L is the length of x, and κ and τ are the curvature and torsion of x, respectively. Equality holds only if x is a great circle on a sphere of radius R. We also obtain from the general inequality necessary conditions on the length, curvature, and torsions of x in order that x be a closed curve or a closed curve with at most one corner.

1. Definitions. We say a C^{n} curve x in \boldsymbol{E}^{n} is nondegenerate if it has a Frenet framing. That is, there exists an orthonormal set of vector fields $e_{1}, e_{2}, \cdots, e_{n}$ along x such that

$$
\begin{align*}
x^{\prime} & =e_{1} \\
e_{1}^{\prime} & =\kappa e_{2} \\
e_{2}^{\prime} & =-\kappa e_{1}+\tau_{1} e_{3} \tag{1}\\
e_{3}^{\prime} & =-\tau_{1} e_{2}+\tau_{2} e_{4} \\
\vdots & \\
e_{n}^{\prime} & \\
& -\tau_{n-2} e_{n-1}
\end{align*}
$$

where the prime denotes differentiation with respect to arc length, κ is the curvature, and $\tau_{1}, \tau_{2}, \cdots, \tau_{n-2}$ are the torsions of x. For the remainder of this paper, we assume that x is nondegenerate and $\tau_{i} \neq 0$, for $i=1,2, \cdots, n-2$. In what follows we also let $\tau_{0}=\kappa$ and $\tau_{n-1}=0$.

We say $x:[0, L] \rightarrow E^{n}$ is closed if it induces a C^{n} mapping $x: S^{1} \rightarrow$ E^{n}, where S^{1} is the circle. To say $x:[0, L] \rightarrow E^{n}$ is closed with at most one corner means that $x(0)=x(L)$ but $x^{\prime}(0)$ need not equal $x^{\prime}(L)$.

Define $x_{i}=\left(x, e_{i}\right)$, for $i=1,2, \cdots, n$, where (,) denotes the inner product in E^{n}. Then from (1) we obtain

$$
\begin{align*}
& x_{1}^{\prime}=1 \quad+\kappa x_{2} \\
& x_{2}^{\prime}=-\kappa x_{2}+\tau_{1} x_{3} \\
& x_{3}^{\prime}=-\tau_{1} x_{2}+\tau_{2} x_{4} \tag{2}\\
& \vdots \\
& x_{n}^{\prime}=r \\
&
\end{align*}
$$

2. The inequality. Now suppose that x is closed with at most one corner; if x is not closed let $x(0)=x(L)=$ origin in E^{n}.

Theorem. Let $|x| \leqq R$. Then

$$
\begin{aligned}
L \leqq & R^{2}\left[\sum_{j=1}^{q}\left|\prod_{k=1}^{s-1} \mu_{k}\right|\left[\frac{\int \tau_{2 j-2}^{2} \int \tau_{2 j-1}^{2}-\left(\int \tau_{2 j-2} \tau_{2 j-1}\right)^{2}}{\int \tau_{2 j-1}^{2}}\right]^{1 / 2}\right. \\
& +\left|\prod_{k=1}^{q} \mu_{k}\right|\left[\left[\tau_{2 q}^{2}\right]^{1 / 2}\right]^{2}
\end{aligned}
$$

where $q=[(n-1 / 2)]$, $\mu_{k}=\int \tau_{2 k-2} \tau_{2 k-1} / \int \tau_{2 k-1}^{2}$, and all the integrals are taken with respect to s over $[0, L]$. Equality holds only if $x([0, L])$ is a circle of radius R in \boldsymbol{E}^{2}. (Note that for n odd $\tau_{2 q}=\tau_{n-1}=0$ so that the last term in the sum is 0.)

Proof. We rewrite (2) by means of integral formulas. All the integrals are taken with respect to s over $[0, L]$. Since x is either closed or has its "corner" at the origin, we obtain

$$
\begin{gather*}
L=-\int \kappa x_{2} \tag{3.1}\\
0=\int \tau_{i-2} x_{i-1}-\int \tau_{i-1} x_{i+1} \tag{3.i}
\end{gather*}
$$

Here $i=2, \cdots, n$. Let $\mu_{j}, j=1, \cdots, q$ be arbitrary real numbers. Then $(3 \cdot 2 j+1)$, for $j=0,1, \cdots, q$ imply

$$
\begin{aligned}
L & =-\int \tau_{0} x_{2}+\sum_{j=1}^{q} \prod_{j=1}^{j} \mu_{k}\left[\int \tau_{2 j-1} x_{2 j}-\int \tau_{2 j} x_{2 j+2}\right] \\
& =\sum_{j=1}^{q} \prod_{k=1}^{j-1} \mu_{k}\left[\int\left(\mu_{j} \tau_{2 j-1}-\tau_{2 j-2}\right) x_{2 j}\right]+\prod_{k=1}^{q} \mu_{k} \int \tau_{2 q} x_{2 q+2}
\end{aligned}
$$

Taking absolute values of each term in the sum and applying the Cauchy-Schwartz inequality, we obtain

$$
\begin{aligned}
L \leqq & \sum_{j=1}^{q}\left|\prod_{k=1}^{j-1} \mu_{k}\right|\left(\int\left(\mu_{j} \tau_{2 j-1}-\tau_{2 j-2}\right)^{2}\right)^{1 / 2}\left(\int x_{2 j}^{2}\right)^{1 / 2} \\
& +\left|\prod_{k=1}^{q} \mu_{k}\right|\left(\int \tau_{2 q}^{2}\right)^{1 / 2}\left(\int x_{2 q+2}^{2}\right)^{1 / 2}
\end{aligned}
$$

But $\left|x_{2 j}\right| \leqq R$, for $j=1,2, \cdots, q+1$. Also letting

$$
\mu_{j}=\int \tau_{2 j-2} \tau_{2 j-1} / \int \tau_{2 j-1}^{2}
$$

which minimizes each of the integrals $\int\left(\mu_{j} \tau_{2 j-1}-\tau_{2 j-2}\right)^{2}$, we establish our inequality.

It is easy to check that equality holds only if $x([0, L])$ is a circle of radius R in E^{2}. (Remember that we demand that $\tau_{i} \neq 0, i=$ 1, $\cdots, n-2$.)

Remark. The inequality in the theorem is sometimes better and sometimes worse than the inequality $L \leqq R \int \kappa$. As an example of a curve for which our inequality is better consider the curve in E^{3}

$$
x(t)=\left(\left(c+\frac{1}{n} \cos t\right) \cos \frac{1}{n^{2}} t,\left(c+\frac{1}{n} \cos t\right) \sin \frac{1}{n^{2}} t, \frac{1}{n} \sin t\right),
$$

where $0 \leqq t \leqq 2 \pi n^{2}, c+1 / n=1$, and n is a positive integer. This is a curve that winds n^{2} times around a torus of radii c and $1 / n$. For this curve $R=1, L=O(n), \int \kappa=O\left(n^{2}\right)$, but

$$
\frac{\int \kappa^{2} \int \tau^{2}-\left(\int \kappa \tau\right)^{2}}{\int \tau^{2}}=O(n)
$$

as $n \rightarrow \infty$.
3. Some corollaries. By a theorem of Rutishauser and Samelson [1], we know that any closed curve in E^{n} of length L is contained inside a sphere of radius $L / 4$. Hence we may replace R by $L / 4$ in our inequality if x is closed and obtain an inequality involving only L, κ, and $\tau_{i}, i=1, \cdots, n-2$. We state the result only for closed curves in \boldsymbol{E}^{3}.

Corollary 1. Let x be a closed curve in \boldsymbol{E}^{3}. Then

$$
\frac{16}{L}<\frac{\int \kappa^{2} \int \tau^{2}-\left(\int \kappa \tau\right)^{2}}{\int \tau^{2}}
$$

A similar result holds if x has one corner.
Corollary 2. Let x be a closed curve in \boldsymbol{E}^{n} with at most one
corner, where n is odd. It is not the case that $\tau_{2 j-2} / \tau_{2 j-1}=c_{j}$, a constant, for $j=1, \cdots,(n-1) / 2$.

Proof. Since $|x| \leqq R$ for some R we may apply the theorem. If $\tau_{2 j-2} / \tau_{2 j-1}=c_{j}$, for $j=1,2, \cdots,(n-1) / 2$, then $\int \tau_{2 j-2}^{2} \int \tau_{2 j-1}^{2}-\left(\int \tau_{2 j-2} \tau_{2 j-1}\right)^{2}=0$, for $j=1, \cdots,(n-1) / 2$. This implies for n odd that $L=0$, which is an obvious contradiction.

References

1. H. Rutishauser and H. Samelson, Sur le rayon d'une sphere dont la surface contient une courbe fermée, C. R. Acad. Sci. Paris, 227 (1948), 755-757.

Received July 11, 1977. Research supported in part by NSF Grant MCS 76-08320.
University of Hawail at Manoa
Honolulu, HI 96822

