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ON CHARACTERISTIC HYPERSURFACES OF
SUBMANIFOLDS IN EUCLIDEAN SPACE

Keti TENENBLAT

The main purpose of this paper is to prove that Mn c EN,
where N = n(n + 1)12, the characteristic (n — l)-dimensional
submanifolds of Mn are the asymptotic hypersurfaces.

1* Introduction* The concept of a characteristic submanifold
of a given solution for a differential system, was introduced by E.
Cartan in his theory of partial differential equations ([2], p. 79). Its
importance appears in the treatment of the Cauchy problem.

Given an ^-dimensional submanifold Mn of the Euclidean space
EN, we can define geometrically the notion of asymptotic submanifolds
of Mn. The asymptotic lines have been used extensively for the
study of the geometry of a surface in E3. For higher dimension
and codimension some results have been obtained, using the generaliz-
ed concept [3], [4], [9], [10]. It is well known, that the character-
istic curves of a surface in E3 are the asymptotic lines ([2], p. 143).

In §2 we start with a brief introduction to the Cartan-Kahler
theory of differential equations. Then given a Riemannian manifold
M*9 we consider the differential ideal, whose integral submanifolds
determine local isometries of4 Mn into EN, N = n(n + l)/2. Next
assuming M* c EN, we characterize the (n — l)-dimensional character-
istic submanifolds of Mn.

In §3, we define the concept of asymptotic submanifolds of
MnaEN, prove the main result and obtain a first order partial
differential equation whose solutions are the characteristic hypersur-
faces of M.

I am grateful to Professor S. S. Chern for helpful conversations.

2* Characteristic submanifold* Let M be an w-dimensional
differentiate manifold. We denote by Λk(M) the vector space of
differential &-forms on M and Λ(M) = Σfc=o Ak(M). A differential
ideal is an ideal U in Λ{M) which is finitely generated, homo-
geneous (i.e., U=Σk=oUk where Uk = U Π Λk(M)) are closed under
exterior differentiation. We assume that U is a differential ideal
which does not contain functions i.e., Uo = 0. A p-dimensional sub-
manifold S of M is said to be an (p-dimensional) integral sub-
manifold for U, if ί*(E0 = 0 i.e., ί*(£/,) = 0 where i:S->M is the
inclusion map.

We denote by TXM the tangent space to M at x e M; GP

X(M)
denotes the Grassman manifold of ^-dimensional subspaces of TXM
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and GP(M) = \JxeMGp

x{M) is given the usual manifold structure. An
element EpeGl(M) is said to be an integral element for U, if all
the differential forms of U vanish when restricted to the elements
of El.

Let Il(U) denote the set of ^-dimensional integral elements for
U at x, and let IP(U) = \JβeχIΪ(M) be given the topology as a sub-
space of GP(M). If El is an integral element for U generated by
{vlf •••, vp}, we define the polar space H(Eΐ) by

H(El) = {ve TXM; φ(v, vlf vlf , vp) = 0,Vφe Up+l} .

An integral element El, p ^ 1 is said to be ordinary if there exist
integral elements E°x, E

ι

X9 , EΓ1 with ElaElc: -- EΓι c El such
that dim iϊ(2£*) is constant on a neighborhood of El in F(JJ) for
i = 0,1, , p — 1. A zero-dimensional integral element El is said
to be regular if dim H(E°X) is constant on a neighborhood of 2£J in
I\U). A p-dimensional integral element El, p ^ 1 is said to be
regular if it is ordinary and dim H(Eΐ) is constant on a neighborhood
of £7? in IP(U). We remark that when M is connected, this defini-
tion of regularity is equivalent to Cartan's ([2], pp. 61-67) according
to which, an integral element El is regular if it is ordinary and
dim H(l) is equal to the dimension of a generic p-dimensional ordinary
integral element.

It follows from Cartan-Kahler theorem ([2, pp. 68-74], [7, p. 26])
under the assumption that the manifold M and the differential forms
are analytic, that given a ^-dimensional ordinary integral element
El, then there exists a g-dimensional integral submanifold S, which
contains x ond satisfies the requirement TXS = El.

An integral submanifold S for U is said to be singular if Vx e S,
the integral element TXS is not ordinary. We remark, that an
integral submanifold S may be singular because none of its points
is regular, or none of its tangential subspaces of dimension one, or
two, •••, etc., or p — 1 is regular, where p is the dimension of S.
Hence one may have different classes of singular integral sub mani-
folds, whose degree of singularity decreases in a certain sense when
one goes from one class to the next one.

Let S be a p-dimensional nonsingular integral submanifold for
U, a submanifold S c S of dimension q < p is called characteristic
if Vx 6 S, the integral element TXS is not regular.

The concepts introduced above, can be found with more details
in [2] and [7]. The Cartan-Janet theorem [1], [6] asserts that any
real analytic, ^-dimensional, Riemannian manifold can be locally
mapped by a real analytic isometric embedding, into a Euclidean
space EN of dimension N — n(n + l)/2. In what follows we consider
the differential ideal, whose integral submanifolds give local isome-
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tries of M into EN. Next assuming MaEN, we characterize the
(n — l)-dimensional characteristic submanifolds of M. We adopt the
following indices convention

1 ^ i, j , k, I ^ n, n + 1 <: λ, μ, a <; N

1 ^ J, J, X ^ N iV = n(rc + l)/2

and the summation convention with regard to repeated indices.
Let M be an ^-dimensional Riemannian manifold with metric g.

Let F(M) denote the bundle of orthonormal frames over M, with
the usual manifold structure. Under the action of the orthogonal
group O(n), F(M) is a principal fiber bundle over M, with structural
group 0{n). Let π: F(M) —> M be the usual projection. We define
the canonical forms ft)1, , ωn on F(M) by

π*z(y) - ω%v)ei where z = (x, elf , β j e F(M) and 'y G TZ(F(M)),

hence τr*# = Σ < ω i ® ^^ The connection forms ω{ on ^(ilί) are
uniquely defined by

dωι = ωd A (o), ωl + ω) = 0 .

Finally, if we consider

i2| = dω| — ό)i Λ α>ί

then there exist functions 22^, the components of the Riemann
curvature tensor, defined on F(M) such that

Ω{ = -^Rίmωk A ωι , Riikl = -Rijlk .
Li

Similarly for EN, we denote by F(EN) the bundle of orthonormal
frames over EN, π: F(EN) -> EN the projection, ώ1 the canonical forms
on F(EN), ώj the connection forms on F(EN).

We consider the product manifold B = F(M) x F(EN), and define
the differential ideal on B. Let p:B-+ F(M) and ρ:B-> F(EN) be
the usual projections. Using ^ and /? we can pull the differential
forms ω\ ω3

if ώτ, ώj back to B, we will denote the pulled-back forms
by the same symbols. Let U be the differential ideal on B generated
by

ωλ

(*) ώί-ωί
ω* A (o\

ώi A ω{ + ±-Rimωι A ωk

2
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We remark that there is a left action of O(n) on B which
preserves the differential ideal U. Namely if A = (ati) e O(n) we
consider LA:B-*B, which associates to

z = ((a?, elf , en), (x, eί9 , eN)) e JS

the point

, Σ au&ij - - , Σ βw<, ^> βΛ+1, ,

It is not difficult to verify that M(U f] Λt(B)) c Uf] AX(B) and hence

L1(U) = f̂
Since we want to determine the (w — )-dimentional characteristic

submanifolds of MnaEN, we start characterizing the nonregular
in — l)-dimensional integral elements ETι for U in B, whose projec-
tions π*°p*(Eΐ~ι) are (n — l)-dimensional. This characterization is
obtained in Lemma l(c).

Let p be an integer 0 <; p < n, we adopt the additional index
conventions

1 ^ a, b, c ^ p p + 1 <^ r, s, t <> n .

Suppose that Eξ is a p-dimentional integral element for U, generated
by vectors e19 , ep such that

ω\eb) = δt , ωr(eb) = 0 .

If we denote, h\a = ώ](ea) then it follows, from the fact that the
generators of U vanish when restricted to Eξ, that

(1) hλ

ab = hi

( 2 ) Σ (hλ

iah
λ

ib - hλ

ίhh)a) - Rijab = 0 .
x

Denote by

the vector in the (N — ̂ )-dimentional Euclidean space.
Let Jp denote the set of ^-dimensional integral elements Eξ,

which satisfy the following conditions:
1. ωι A Λ (op Φ 0 and ωp+1 = = ωn = 0 when restricted

to #?.
2. the vectors [Hma: 1 ^ a ^ p, a ^ m ^ n — 1} are linearly

independent. Let F* = {Eξe IP(U): LJJΞΪ) e J* for some 4eOW}.
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Then Vp is an open subset of I*{U). Part of the next lemma is
proved following ([5], with the obvious modifications).

LEMMA 1.

(a) // 0 <; p < n, then dim H(EP) is constant on Vp;
(b) For 0 ^ p < n, if Epe Vp, then it is a regular element;
(c) If p = n — 1, and E^"1 is an integral element such that

π* o p^E*'1) is (n — ϊ)-diτnensional, then E^1 is regular if and only
if EΓ'eV"'1.

Proof, (a) Since L*A(U) = U it suffices to show t h a t &\mH{Ep)
is constant on Jp. Assume t h a t Ep is generated by e19 "',ep such
t h a t ωa(eb) — h% and o)r(eb) = 0. We consider the polar space

H(Ep) = {ve TZB; φ(v, elf ., βp) = 0V^6 UJ

= {ve TZB; φ,{v) = 0 and φ2(v, ea) - 0V^ 6 Ulf φ2 e U2}

where last equality follows from the fact that U is generated by
(*). Hence H{EP) consists of vectors v e TZB which satisfy the
following system of equations:

( 3) ώ\v) - ω\v) = 0

(4) ω » = 0

( 5) ώ{{v) ~ ω((v) = 0

( 6 ) hiaω\v) - ώl(v) = 0

( 7) Σ hλ

iaώi(v) + Σ hlaώί(v) - Biilaω\v) = 0 , ΐ < i .

If we specify ω\v), ω((v) then equations (3)-(6) will uniquely
determine ω^v), ώ&v) and ώλ

a(v). Moreover we remark that for
1 ύ i, j ^pf equation (7) is an immediate consequence of (1), (2) and
(6). So we need only to consider (7) where l ^ i ^p, p + 1 ^ j ^ n
and p + 1 <[ i < j rg n> i.e.,

Σ h}aώl(v) + Σ Haώ
s

λ(v) - Rbslaω\v) = 0
( 8 )

Σ hiaώl(v) + Σ hlaώ λ(v) - Rtsia(o\v) = 0 .
i ^

Since in (8), for a φb, interchanging a and 6 does not modify the
equation, we need only to consider

(9) Σ hiaώi(v) - ( Σ hiM - Rbsia)ω%v) , a ^ b

(10) Σ W.ώKt>) - Σ H M ( v ) - « , .« .<»*(«) , s < t .
λ λ
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Denote the vectors

We determine the vectors Hp+1(v), —-,Hn(v) so that they satisfy (9)
and (10). The system (9) determines the dot product of Hp+1(v) with
the p(p + l)/2 linearly independent vectors HbaJ a ^ 6. Once we have
chosen a particular Hp+1(v) which satisfies this liner system of rank
p(p + l)/2, the dot product of Hp+i(v) with each of the p(p + l)/2 + p
linearly independent vectors {Hma: l^a^p, a^m^p + 1} is com-
pletely determined by (9) and (10). We continue in this fashion.
Finally we find that the dot product of Hn(v) with each of the
p(p + l)/2 + p(n — p — 1) linearly independent vectors {Hma: l<*a^p,
a ^ m ^ n — 1} is completely determined. Hence we find that ω\{v)
must satisfy a consistent system of linear equations which has rank
np{n — p)/2. The polar system of El consists of these equations
together with (3)-(6). Hence dim H(EP) depends only on n and p
whenever EpeJp.

(b) Suppose that Ep

zeJp is generated by eίf •• ,βί), such that
ωa(eb) = δl and ωr(eb) = 0. If 0 ^ q <; p, we let E\ be the g-dimen-
sional integral element generated by e19 " ,eq. Then Eq

zeJq and
hence dim iϊ(i?!) is constant in a neighborhood of E\ in Iq(U). It
follows that JS?ί is regular. Consequently if El e Vp, then it is a
regular integral element.

(c) From (b) we only need to prove that if ET1 is a regular
integral element then S Γ e F * " " 1 . Since π* op^E*"1) is (n — 1)-
dimensional, we can find an element A e O(n) such that ύ?)w = 0 on
LA*(E"~ι). Hence, we can assume that Έn

z~
ι is generated by eif , en_lt

such that ωα(e6) = <5£ and α)*(β6) = 0, where 1 ^ α, 6 ^ w — 1. Since
En

z~
ι is regular, it follows that dim H{ETX) is constant in a neigh-

borhood of EΓ1 in In~\U). The polar system of E^Γ1 is given by
(3)-(6) and (7) reduces to

(11) Σ Ma&iiv) =

λ

As in (a) if we specify ω\v), ω{(v) then ωz(v), ώ{(v) and ώ*(v)
will be uniquely determined by (3)-(6). Moreover the n(n — l)/2
components α)i(v) must satisfy the linear system (11) which has ex-
actly n(n — l)/2 equations. Hence, if dim H{ETι) is constant in a
neighborhood of E^~\ then the determinant of the coefficient matrix
in (11) is nonzero, i.e., the vectors {Hba: l<^a^b^n — 1} are linearly
independent, which implies Eΐ^eJ*"1.

Let M be an ^-dimensional Riemannian manifold and /: ikf —»EN

an isometric imbedding. If xoe.M, there exists a neighborhood V of
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xQ in M and a section σ: V —> F(EN) such that if σ(x) = (/(#), βi(α?),
• , eN(x))9 then βi(a?), •• ,e"»($) are tangent to /(ilί). We consider
the section σ: V—>F(M)9 defined by σ(x) = (x, ex(x)9 •••, e»($)) where
f*(ei(χ)) — βiix). For simplicity, we denote by ω% ω\ the differential
forms σ*ω\ σ*ω{ induced on V and similarly ώz

9 ώj will denote the
pulled-back forms σ*ώz

9 σ*ώί on V. Consider the map Γ:V->B
defined by Γ(x) = (α-(a?), σ(x)). Since / is an isometry, Γ(V) is an
integral submanifold for U in J5. We say that a g-dimensional vector
space Lq c jFβ0Λf, 0 ^ g < w is regular if Γ+{L) is a regular integral
element for U. Similarly, a (/-dimensional submanifold S of V is
said to be characteristic, if Γ(S) is a characteristic submanifold of
Γ(V). The characteristic hypersurfaces of M have at each point a
nonregular tangent space. Our next lemma characterizes the non-
regular in — l)-dimensional spaces tangent to M.

We denote the matrix Hx = (/^ ) where hλ

iά — ώ\(βj). Moreover,
given a matrix A, we denote by Ab the δth row of A and At denotes
the transpose of Ah. Assume Γ(V) is not a singular integral sub-
manifold for U, then as an immediate concequence of Lemma l(c),
we obtain

LEMMA 2. Let n^1 — 0 be an (n — l)-dimensional subspace of
TXQM. We may assume that Σ*=i ^5 = l Choose A — (ai5) e O(w)
sî cfe t/ιαt α%ΐ = Ui. Then utoo* — 0 is nonregular if and only if the
vectors

(AaH
n+1AU , AaH

NA\) , l ^ a ^ b ^ n - 1

are linearly dependent, as vectors in EN~%.

We remark that this condition determines a first order partial
differential equation, and the characteristic hypersurfaces of M are
the solutions of this equation. In the next section as a consequence
of Lemma 3, the partial differential equation will be given in another
form, which will not involve the choice of matrix A.

3* Asymptotic submanifolds; proof of main result* Let M
be an ^-dimensional C°° submanifold of EN, N = n(n + l)/2 with the
induced metric and such that the inclusion i: M->EN is nondegenerate.
Let xeM and denote by s the second fundamental form. A q-
dimensional 0 < q < n linear subspace L of the tangent space TXM
is called asymptotic if there exists a vector ξ normal to TXM such
that (s(X, Y), £> = 0, VX, YeL where < , > denotes the Euclidean
metric. If L is of codimension one, we have an asymptotic hyper-
plane at x. A g-dimensional submaniford V of M, q < n is called
asymptotic at xe V if TxV is asymptotic and asymptotic if this is
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true for each xeV. It is not difficult to see that V is an asymptotic
hypersurface of M if and only if there exists a normal to the os-
culating space of V, which is also normal M. The notation of asymp-
totic submanifold in a more general context can be found in [4].

Let elf , eN be an orthonormal frame defined on a neighbor-
hood of x e M, such that eίf , en are tangent to M and en+ί9 , eN

are normal to M. Let ω\ , ωN be the dual frame. With the
same indices convention as in §2, we denote by hi3- = ω\{eό) where
ω\ are the connection forms. It follows from the definition that a
hyperplane u^ — 0 is asymptotic if and only if the second funda-
mental forms hljO)1 (g) ω3' are linearly dependent when restricted to
U.Q)1 = 0.

The following algebraic lemma shows that the condition obtained
in Lemma 2 is eqivalent to saying that u^1 = 0 is asymptotic. As
in §2 given a matrix A we denote by Ab the 6th row of A and At
denotes the transpose of Ab.

LEMMA 3. Let φλ be n x n symmetric matrices X = n + 1, , N.
N = n(n + l)/2 and let A — (α^ ) 6 O(ri). Then the vectors

(Abφ
n+1Alf , Ahφ

NAl) , 1 ^ ' δ ^ c ^ Λ - l

are linearly dependent, as vectors in EN~n, if and only if the
quadratic forms φ^ω1 (g) ωj are linearly dependent when restricted
to a^O)1 = 0, where ω1 are n independent 1-forms.

Proof. The vectors (Abφ
n+1Al, , Abφ

NAι

c) are linearly dependent
iff laλ e R not all zero, such that

b( Σ !ί = 0 ,

We denote by D the matrix D = ΣΛ <*>\φι and TΓ = (ω\
will prove that AbΌA\ = 0 V
WDWt = 0 whenever A^ΐ^* = 0.

Consider

α>w). We
^ ^ - 1 if and only if

(12) WDW* =

Suppose AδDAc = 0, Vl ^ & ^ c ^ ^ — 1, then since D is symmetric

i-,WAL]'^[WA,
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Hence if AnW
ι = 0 then WDW1 = 0, i.e., the quadratic forms WφιWι

are linearly dependent whenever AnW* = 0.
Conversely, suppose WDW* = 0 when AnW

ι — 0, then it follows
from (12) that

(13) 0 = Σ AbDAt(ti <W»*Y + 2 Σ AhDA*( Σ α**αβIα>* (x) ω1) .
6 = 1 U = l / 6,c=l \k,l=l /

b<c

Let et be the dual basis of ω\ i.e., α)*^) = δj . If we evaluate (13)
at the pair (e4, ek) we get

Σ AhDAla\k + 2 Σ AδDA^δfeαc, = 0 , Vfc - 1, , n .
6=1 6,β=l

b<c

Adding over k, since AeO(n) we get

(14) Σ AhDAl = 0 .
6 = 1

If we apply (13) to the pairs (ek, ei)(elf ek)l Φ k and subtract we get

(15) Σ AhDA&abkaol - abιack) = 0 , Vl ^ k ^ ί ^ n .
δ,c=l
6<c

This is an homogeneous linear system of n(n — l)/2 equations with
(n — ϊ)(n — 2)/2 unknowns AhDA\, l<>b<cίίn — 1. We claim that
the rank of this system is (n — l)(n — 2)/2. In fact, otherwise it
follows from Sylvester-Franke theorem on determinants ([8], p. 94,
take m = 2), that the cofactor of ani in A is zero, Vi = 1, , ^, which
contradicts the fact that det A =£ 0. Hence from (15) we have that

(16) AbDAl - 0 , l ^ b < c ^ n - l .

Now (13) reduces to

(17) Σ>AhDA\(£ αδ,ω
6=1 \k=ί

and from (14) we have

(18) A^DAU = - Y>
6=1

If we substitute (18) in (17) we get

fc=l
(abk + an_ίk)ωk) = 0 .

Applying this equation to the pairs of vectors (ek9 e{)9 (el9 ek), I Φ k
and subtracting we get
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n-2

Σ ^% - an,lkabl) = 0 , ^ k < I n

This is a linear system of n(n — l)/2 equations with w — 2 unknowns
A6DAb, 1 ^ b ^ w — 2. The rank of this system is n — 2. Other-
wise, using Laplace's development of a determinant in the general
version (i.e., the determinant is a linear function of the minors
comprised in any number of lines) we get that the system (15) has
rank lower than (n — ΐ)(n — 2)/2, which is a contradiction. Therefore
AbDAt = 0 for b = 1, , n - 2 and finally from (16) and (18) we
conclude that AbDAc

t = 0 Vl ^ ft ^ c ^ ^ - 1.

Let f: M-> EN be an isometric embedding, with the same nota-
tion as in 2, we say that / is singular if Vx e M, Γ*{TXM) is not
an ordinary integral element for U in B. Then our main result
follows immediately from Lemmas 2 and 3:

THEOREM. Let f: ikf—> EN be a nonsingular isometric imbedding.
An (n — lydimensional submanifold of M is characteristic if and
only if it is asymptotic.

We remark that / being nonsingular implies that / is non-
degenerate, but for n > 2 it may exist a nondegenerate isometric
imbedding which is singular; in this case all hypersurfaces would
be asymptotic.

We observe that it is not difficult to prove that u^ — 0 is
asymptotic if and only if there exist real numbers aλ, bt not all zero,
such that

axhijO)10 ωj = Uiύo* (g) bβω
j .

This reduces to a homogeneous equation in ut of degree n} P(ulf u2,
-' , v*f) = 0. In order to describe the polynomial P we consider the
matrices

0 un

0 0 0

Lo
where Up has the first (p — 1) rows equal to zero, 1 <; p <; w — 1
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Then

hN hN

it'll '"22

A — O
jtXp — ct

1 Sv^n-1.

ίί'ΛΛiJ.I ll/ninJL.'

P(u lf u2, , un) = detLLA A,

ΐlpn

= 0 .

Hence the characteristic hypersurfaces of M are the solutions of
the first order partial differential equation defined by P(uίf , un) = 0.
For n = 3 this equation was obtained by Cartan ([2], p. 208).
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