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LIE ALGEBRAS, COALGEBRAS AND RATIONAL
HOMOTOPY THEORY FOR NILPOTENT SPACES

JOSEPH NEISENDORFER

This paper establishes that the homotopy category of
rational differential graded commutative coalgebras is equiva-
lent to the homotopy category of rational differential graded
Lie algebras which have a nilpotent completion as homology.
This generalizes a result which Quillen proved in the simply
connected case. When combined with Sullivan's work on
rational homotopy theory, our result shows that the homotopy
category of rational differential graded Lie algebras with
nilpotent finite type homology is equivalent to the rational
homotopy category of nilpotent topological spaces with finite
type rational homology.

Our results include the construction of minimal Lie
algebra models for simply connected spaces, and we show
that the rational homotopy groups of a simply connected
CW complex may be calculated from a free Lie algebra
generated by the cells with a differential given on generators
by the attaching maps.

0* Introduction* Sullivan [4] and Bousfield-Gugenheim [2] have
demonstrated the equivalence of two categories: (a) the rational
homotopy category of nilpotent spaces with rational homology of
finite type, and (b) the homotopy category of commutative, associa-
tive, differential graded rational algebras with minimal models of
finite type. Earlier, Quillen [23] had demonstrated the equivalence
of the rational homotopy category of simply connected spaces with
two categories (among others): (c) the homotopy category of com-
mutative, associative, differential graded simply connected rational
coalgebras, and (d) the homotopy category of differential graded
connected rational Lie algebras. In this paper, we combine these two
approaches and generalize the above portion of Quillen's work to nil-
potent spaces with rational homology of finite type (Proposition 7.3).

Since we are developing a theory for nilpotent spaces, nilpotent
Lie algebras play an important role. As a consequence of our work,
we get the purely algebraic result that the homotopy category of
commutative differential graded coalgebras is equivalent to the homo-
topy category of differential graded Lie algebras whose homology is
a nilpotent completion (Definition 3.4 and Proposition 7.2).

We associate to each nilpotent space X with rational homology
of finite type, three types of differential graded models, a minimal
algebra Mx, a minimal coalgebra Cx, and a free Lie algebra J*f(Cx).
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(The minimal algebra is due to Sullivan [4].) When X is simply
connected, we can replace ^f{CΣ) by a minimal Lie algebra Lx. All
three minimal models are unique up to isomorphism and determine
the rational homotopy type of X (Proposition 8.1).

John Moore (unpublished), Baues and Lemaire {Minimal models
in homotopy theory, preprint), and Tim Miller [14] have given inde-
pendent constructions of minimal Lie algebras.

If we forget the differential, the minimal Lie algebra model Lx

is a free Lie algebra on the desuspension of the rational homology
of X (Proposition 8.4). The homology of L x, or of £f (Cz) when X
is not required to be simply connected, is πn+ί(X) (g) Q for n ^ 1
and HQ£f(Cx) is the Lie algebra associated to the Malcev completion
of the fundamental group π^X). (Propositions 8.2 and 8.3.) These
results are dual, in the sense of Hilton and Eckmann, to Sullivan's
description of minimal algebras.

As a consequence of a Hirsch lemma (Proposition 8.11) for Lie
algebras, we get a CW theory for rational homotopy (Proposition
8.12). More precisely, there is a differential on the free Lie algebra
F generated by the desuspended cells of a simply connected CW
complex X such that HF = π(ΩX) (x) Q.

After the basic definitions and lemmas in § 1, § 2 shows that
there is a Lie algebra structure on the homology of the primitives
of a symmetric coalgebra and a coalgebra structure on the homology
of the generators of a free Lie algebra. When applied to the
coalgebra and Lie algebra models, these structures correspond to
Whitehead products in rational homotopy and comultiplication in ra-
tional homology, respectively.

Section 3 studies extension sequences of coalgebras. The main
result is that a symmetric coalgebra is constructible by nonprimitive
elementary extensions (Definition 3.9), modulo tensoring with an
acyclic symmetric coalgebra, if and only if the Lie algebra structure
defined in §2 is a nilpotent completion (Proposition 3.12). This is
the algebraic analogue of representing a nilpotent space as an inverse
limit of principal fibrations. What we do here was motivated by
[4] and is a generalization of results that John Moore [18] proved
for simply connected coalgebras.

Section 4 discusses certain adjoint functions & and ^ between
differential graded coalgebras and Lie algebras. The main result is
that the adjunction maps are homology isomorphisms with no re-
striction to simply connected coalgebras (Proposition 4.1). This result
has been published [Moore, 17] but without proof, so we give one.

In § 5, we introduce Quillen's closed model category concepts
and discuss fibrant, cofibrant, and minimal models (Definitions 5.4
and 5.5), ending in proofs of existence, uniqueness, and a complete
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algebraic characterization (Propositions 5.6 to 5.9).
Section 6 defines homotopy groups for algebras, coalgebras, and

Lie algebras. This is essentially a combination of the structures
defined in § 2 with the concepts introduced in § 5. Our definition of
the homotopy Lie algebra of a coalgebra differs from that preferred
by John Moore [19]. In particular, our homotopy Lie algebra is
always a nilpotent completion (Proposition 6.2) and is invariant under
homology isomorphism of coalgebras.

Sections 7 and 8 contain the results mentioned at the beginning
of this introduction relating algebras, coalgebras, and Lie algebras
to rational homotopy theory. These are the main results of the paper
and the reader who seeks motivation should read those sections first.

The main point of this paper is to establish the equivalence be-
tween differential graded rational Lie algebras and rational homotopy
theory as expounded by Sullivan. In other papers, [15] and [20],
these results are applied to the study of Sullivan's formal spaces,
i.e., those whose rational homotopy type is a formal consequence of
their rational cohomology rings. Minimal Lie algebra models can be
used to show that certain spaces are formal, e.g., every n connected
compact manifold of dimension <;3w+l, n^l [15]. Galois cohomology
applies to minimal Lie algebras to prove: Any simply connected space
which is formal over an extension field of the rationale is necessarily
rationally formal [15].

Most importantly, minimal Lie algebras can be used to give com-
plete calculations of the rational homotopy groups of some quite
complicated spaces. For example, in [20] I calculate the rational
homotopy Lie algebra of all protective algebraic varieties which are
complete intersections of complex dimension ^ 2 .

In Quillen's original approach to rational homotopy theory for
simply connected spaces, there were no finite type restrictions on
homology. We suspect that Quillen's approach may be generalized
to nilpotent spaces with no finite type restrictions. But this removal
of finite type restrictions would be achieved at the cost of the con-
nection between Quillen's work and Sullivan's work. Many applica-
tions would be lost and the treatment would be significantly longer.
So we chose to keep the connection.

Besides the obvious debts to authors already mentioned in this
introduction, I owe much to Alison Beall, Tim Miller, John Moore,
Jim Stasheff, and Larry Taylor for stimulating and encouraging con-
versations.

1* Algebras, coalgebras, and Lie algebras* This section presents
basic definitions and lemmas concerning differential graded algebras,
coalgebras, and Lie algebras. Good references are [16], [10], and [23].
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Let A; be a field of characteristic zero.
DGA is the category of differential graded, augmented, com-

mutative, associative algebras defined over k which are concentrated
in nonnegative degrees and have a cohomology differential (degree
+ 1). We restrict DGA to algebras A which are homologically con-
nected, H°(A) = ft. We call the objects in this category algebras
and shall suppress the augmentations A—>ft in our notation.

The category DGA has coproducts A(g)B and products A V B —
the equalizer of the maps Aφ B —> A —> k and A® B-+ B-+k.

Recall that A == the kernel of A —• k and Q(A)( = A/A A) is the
module of indecomposables.

DGG is the category of differential graded, connected, commuta-
tive, associative coalgebras defined over k which are concentrated in
nonnegative degrees and have a homology differential (degree —1).
We call the objects in this category coalgebras and note that con-
nected coalgebras C have a unique augmentation k—>C.

The category DGC has products C®D and coproducts CV D —
the coequalizer of the maps ft—»C—>C0Z> and ft—».D—>C®Zλ

Recall that C = the cokernel of ft —>Z> and P(C)( = the kernel of
C—*C(g)C) is the module of primitives.

DGLA is the category of differential graded Lie algebras defined
over k which are concentrated in nonnegative degrees and have a
homology differential. We will call objects in this category Lie
algebras.

For the convenience of the reader, we recall the identities for
a graded Lie bracket [ ]: L(x)L—>L over a field of characteristic
zero [11] [23].

(antisymmetry) [x, y] = - (-l) d e g * dβ*»[y, x]

(Jacobi identity) [x, [y, z]] = [[x, y], z] + (-1)** ***[y, [x, z]]

Notice that, whenever A is an associative algebra, defining
[x, y] = %y - (-ί)άesxάesyyx makes A into a Lie algebra.

The reader may dualize these identities to obtain the definition
of a Lie coalgebra.

The category DGLA has products L x 1/ and coproducts L V ΊJ —
free product of L and U.

Quillen [23] has shown:

PROPOSITION 1.1. Lie algebras L have universal enveloping Hopf
algebras U(L) with natural isomorphisms L = PU(L) and HL =
PHU(L).

DEFINITION 1.2. For a Lie algebra L, we define Q(L) = L/[L, L] =
the abelianization of L.
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Let V be a graded vector space with a differential. (The case
of no differential is included, as always, by imposing the zero dif-
ferential.) In DGA, DGC, or DGLA we shall use various objects
S[V], S'[Vl or F[V] which we shall now describe.

= φ V®n is the tensor algebra with multiplication V®n (x)

This is not a commutative algebra. The quotient of T[V] by the
ideal generated by all x (x) y — ( — l)d e g * d e g y2/(g) a?, where a? and # are
in V, is a commutative algebra, denoted S[F] .

The symmetric group acts on each V®n by permuting the tensors
with the usual sign and the projection T[V]~* S[V] has a canonical
splitting σ: S[V]—> T[V] onto the set of invariant elements, e.g.,
σ(xy) = l/2(x <g) y + ( - l ) d e ^ d e ^ ^ (g) a ). The map σ: S[F] -> Γ[ F] is
not an algebra map.

S[V] is called the free commutative or symmetric algebra gen-
erated by V and is characterized up to isomorphism by the universal
property: Given any linear map /: V —• B, where B is a (commuta-
tive) algebra, there exists a unique algebra map S[V]—>B such that
F — S[V]^B equals/.

T'[V] = φ F®% is the tensor coalgebra with comultiplica-
tion F Θ r -> φ m + % = r (V®n (x) F Θ % ) , ^ (g) (g) α?r -* Σfa ® (g) a

This is not a commutative coalgebra. The subspace S'[V] of
invariant elements is a commutative subcoalgebra of T"[F], and
there is a canonical retraction σf: T'[F]—»S'[F], e.g., 0 '(# (g) y) =
l/2(a;® 1/ + (- l ) d e g x deg2/^/(x) ^). The map σ' is not a coalgebra map.

S'[F] is called the injective commutative or symmetric coalgebra
cogenerated by V and is characterized up to isomorphism by the
universal property: Given any linear map g: D—>V, where D is a
(commutative) coalgebra, there exists a unique coalgebra map D—>
S'[V] such that D^Sr[V]^V equals g.

REMARKS. AS S[V] was characterized by every map defined on
V extending uniquely, so S'[V] is characterized by every map into
V lifting uniquely.

F[V] denotes the free Lie algebra generated by V and is char-
acterized up to isomorphism by the universal property: Given any
linear map /: V—+L, where L is a Lie algebra, there exists a unique
Lie algebra map F[V]-+L such that V~+F[V]-*L equals /.

F[V] may also be described as follows: [23] Make the tensor
algebra T[V] into a Hopf algebra by defining the comultiplication
on x in V by x — x <g) 1 + 1 (x) x. Then F[V] = PT[V], T[V] =
UF[V].
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LEMMA 1.3. If A, C, or L is a connected symmetric algebra,
symmetric coalgebra, or free Lie algebra, respectively, then so is
any retract.

This lemma is a simple consequence of the definitions by uni-
versal mapping properties.

We close this section with a collection of technical lemmas for
(connected) coalgebras. These lemmas are the duals of well known
results for algebras and the proofs will be left as exercises.

If D is a coalgebra, we may pick a splitting D —> PD for the
inclusion PD—>D.

LEMMA 1.4. Two coalgebra maps C —»D are equal if and only
if the two compositions C —>D—>PD are equal.

LEMMA 1.5. Given a coalgebra map C—>D and a surjective
coalgebra map C —> C, then G^^D factors into C —> C' ~* D if and
only if G-*D'-+ PD factors into C -> G' -> PD.

If C is a coalgebra, a coderivation on C is a degree —1 linear
map d:C—>C such that the following diagrams commute.

c-±+c c d >c

I
k >k

o

Note that a DG coalgebra is just a coalgebra with a coderiva-
tion d such that d2 = 0.

LEMMA 1.6. Two coderivations on a coalgebra C are equal if
and only if the two compositions C—+C—+ PC are equal.

LEMMA 1.7. Given a coderivation d on a coalgebra C and a
surjective coalgebra map f: C —> Cf, then there exists a coderivation
df on C" such that d'f — fd if and only if there exists a linear map
e:C'~->PC' such that ef= πfd where π: C'—>PC' is a splitting.

LEMMA 1.8. A coderivation d on C satisfies d2 = 0 if and only
if πd2 = 0 where π: C—+PC is a splitting.

LEMMA 1.9. Given a degree —1 linear map d: S'[V]—> V, there
exists a unique coderivation d on S'[F] such that πd — d.
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LEMMA 1.10. (a) If S'[V] is a symmetric coalgebra with HV =
0, then HS'[V] = k.

(b) If S'[V]—>S'[W] is a map of symmetric coalgebras with
HV-+HW an isomorphism, then HS'[V]—>HS'[W] is an isomor-
phism.

Finally, we remark that John Moore (unpublished) has pointed
out that the category DGC is closed under inverse limits but these
inverse limits are not constructed in the obvious way. Hence, it is
worth recording the following:

LEMMA 1.11. (a) If Va is an inverse system of graded vector
spaces, then limS'[F«] = S'[lim Va]

(b) In DGC an inverse limit of injective maps is the "inter-
section."

2. Lie bracket and coproduct structures* Let C be a coalgebra
(algebra, or Lie algebra). We shall denote by C* the coalgebra
(algebra, or Lie algebra) which is identical to G but has zero dif-
ferential.

Suppose C is a coalgebra with C* = a symmetric coalgebra S'[V].
Consider the primitive filtration on C [16], i.e., F°C = k, F\C) =
k φ P{C), , Fn{C) = k © ker (I: C — C^ + 1 ) ), . This gives rise
to a homology spectral sequence of coalgebras with E°(C) = C# =
S'[PC], E\G) = S'[HPC], El>n = Hn+1PC.

d1: E\t% — E\t% composes with &\ HPG (x) HPC -+ S'[HPC] to give
a degree - 1 map < >: HPC® HPC" — HPC.

Letting s~ι denote desuspension and following the standard sign
convention that /(x) g(x ® y) = (~l)άe8XdeS9fx ® gy, we define [ ]:
s~ΉPC ® s'ΉPC ~> s'ΉPC by the commutative diagram:

s~ιHPC (g) s-'HPC - ^ s-'HPC

PROPOSITION 2.1. ϊfϊtλ έfeβ αftovβ bracket, s~ΉPC is a Lie
algebra.

Proof. Since σf is symmetric, < > is also, i.e., (x, y) =
(_-l)4 * *•» »<v- a ). Since [s~% s~'y] = (-l) d β β " β " ^ , »>, if follows that
[ ] is antisymmetric.

Since (d1 ® 1 + 1 (x) ώ1)2 J = 0, where J is the comultiplication, an
elementary computation shows that:
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«χ, y), z) + e«y, «>, χ> + s«z, χ>, y> = o-

S = ( 2 ) d e g a J i d e g y + d e g a r ) δ = ( 2 .) d θ g z ( d θ g a j + d β g y ) .

The Jacobi identi ty for [ ] follows.

R E M A R K . The binary operation < >: HPC (g) HPC-> HPC satisfies

the same identities as the Whitehead product πn(X) (g) πm(X) —>

^»+»-i(-ϊ) i n homotopy theory [ 3 0 ] , HPC is a "Whitehead a lgebra"

in the sense of [21].

Dually, let A be an algebra wi th A* = a symmetric algebra

S [ F ] . We may filter A by the powers of i ts augmentation ideal,

F0(A)n = A, ί ^ A ) = 1 , , Fn(A) = (A)w, . This gives rise to a

cohomology spectral sequence of a lgebras wi th E0(A) = A* =

dx: £fί ιΛ --> ̂ ϊ ' composes wi th σ: S[HQA] -> JΪQA <g) i ϊQA to give

a degree + 1 map < >*: HQA -> HQA <g> H Q A . Define [ ]*: s

) s~ιHQA by the commutat ive diagram.

HQA —^—* HQA (x) JΪQA

Is"1 Is"1 ® s-1

— s~ΉQA 0 s~ΉQA

An argument similar to 2.1 shows [see 21]:

PROPOSITION 2.2. s~ΉQA is a Lie coalgebra.

REMARK. If A is a finite type, then (ίΓ^HQA)* = s~ΉPA* as
Lie algebras.

REMARK. If the induced differential on Q(A) is zero, i.e., if
d(A) a A- A, then QA = HQA and the Lie cobracket s~ιQA -• s^QA (x)
s~ιQA can be read off from the quadratic term of the differential
on generators [see 4 or 26].

Finally, let L be a Lie algebra with Ώ = a free Lie algebra
,F[F]. We may filter L by the descending central series, F\L) = L,
F~\L) - [L, L], , F~n(L) = [L, F~n+\L)l . This gives rise to
a homology spectral sequence of Lie algebras with E°(L) = L*=F[V],
E\L) = F[HV] = F[J3QL], ^ - ^ = fl.-.QL.

dx: JS'1-!̂  -> SL2tn may be composed with l̂ tJEίQL] -> Γ[lίQL] ->
HQL0HQL to give a degree - 1 map HQL-* HQL®HQL. The
commutative diagram below defines a degree 0 map /: sHQL —>
sHQL (x) sHQL, where s denotes suspension.
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HQL > HQL (g) HQL

\s \s®s

sHQL -^-> sHQL (g) sHQL

We define Δ on k © (sHQL) by J(l) = 1 ® 1 , Δ(sx) = sx (x) 1 +
1 (g) so? + J(s#).

An argument similar to 2.1 shows:

PROPOSITION 3.3. k 0 (sHQL) is a (commutative) coalgebra.

A special case of 2.3 admits a nice description. Let L be a Lie
algebra with L* = a free Lie algebra i^[F] and suppose that dL is
contained in [L, L], Such Lie algebras are called minimal. (See 5.5
and 5.7c.) If xa is a basis for V with dxa = Σόβa[xβf %a] + higher
degree terms, then Δ(sxa) = Σ(-l)άesχβca

βa(sxβ (x) sxa + (-l)degίC«dθgaJ^αjαg)
sa?̂ ). In other words, when L* is free and the induced differential
on Q(L) is zero, then Δ can be read off from the quadratic term of
the differential on L. Combined with 4.2b, this gives a complete
computation of the Lie algebra homology coalgebra of a minimal Lie
algebra.

3* Nilpotence* Given a graded Lie algebra L, recall the de-
scending central series F° = L, F'1 = [L, L], with F'/F'1 = Q(L).

We introduce another filtration G° = L, G"1 = [Lo, L], G~z =
[Lo, G-% . . . and set Q(L) =

DEFINITION 3.1. A graded Lie algebra L is nilpotent if either
of the following equivalent conditions hold:

(a) the descending central series terminates at 0 in each degree
(b) the filtration G°, G"1, G~2, terminates at 0 in each degree.
Obviously, a connected Lie algebra, Lo = 0, is nilpotent.
Recall the well known [16]:

LEMMA 3.2. Iff:C—>D is a map between coalgebras with C
connected, then f is monic if and only if P(f): PG—>PD is monic.
If f: A~> B is a map between algebras with B connected, then f is
epic if and only if Q(f): QA—+QB is epic.

For Lie algebras, we have:

LEMMA 3.3. If f: L-*U is a map between Lie algebras with
U nilpotent, then f is epic if and only if either of the following
conditions hold:
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(a) Q{f):Q{L)~>Q(Lr) is epic.
(b) Q(f): Q(L) — Q(U) is epic.

The proof of 3.3 is a simple exercise in the use of the five lemmas.

DEFINITION 3.4. A Lie algebra is a nilpotent completion if it is
isomorphic to some \im L/G~n where L is a Lie algebra.

Clearly a nilpotent Lie algebra is a nilpotent completion.
We now relate nilpotence to extension sequences of coalgebras.

We choose a quite restricted definition (compare [18]).

DEFINITION 3.5. An extension sequence of coalgebras is a se-
quence of coalgebras and maps between them C" -+C-+C" which is
split when we forget the differential.

(A splitting is a coalgebra map C—+C such that C" —>C —>C is
the identity and such that it defines an isomorphism C—+C (x) C" of
coalgebras.)

An extension sequence is called trivial if there is a splitting
C—»C which is a map of differential coalgebras.

C —> C is called the fiber and C —> C" the projection of the ex-
tension sequence.

Given a vector space Vn concentrated in dimension n ^ 1, define
Wn as follows:

If n^2, set W.= Vφs'1Vn with d{s-χV%) = 0 and d:Vn->
s~ιVn an isomorphism.

If n = 1, set Wn ~ 0. (In this section, we will not use this case
but it plays a role in § 5.)

Let E'[Vn] = S'fTFJ and for n ^ 2, consider the extension se-
quence S'[s-ιVn]->E'[Vn]~*S'[Vn] If C" is a coalgebra and /:
C"—>Vn is a (chain) map, then / defines a unique map C"—>S'[Vn]
by the universal property of symmetric coalgebras and we may form
the pullback diagram:

- 1. iv j - -

I
1 i

C" >S'[V.\.

LEMMA 3.6. The left hand side is an extension sequence.

Proof. The pullback is the cotensor product [16], hence C =
Ώs'LrJiE'lV*] = C" (xjS'fs^FJ as nondifferential coalgebras.
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DEFINITION 3.7. An extension sequence of the type in 3.6 is
called an elementary extension of dimension n — 1. An elementary
extension is called nonprimitive if the map PC"—*C"—+Vn is zero.

The reason for introducing nonprimitive elementary extensions
is contained in the next proposition.

PROPOSITION 3.8. Let S ' js^FJ—*C—>C" be an extension se-
quence of coalgebras with (C")# = a symmetric coalgebra. This se-
quence is a nonprimitive elementary extension if and only if the
following sequence is short exact and a central extension of Lie
algebras:

0 > s~2 Vn > s-'HPC > s-ΉPC" • 0 .

Proof. First suppose that the sequence is a nonprimitive elemen-
tary extension. Recall that the cotensor product C = C"\3s'ivniE'[Vn]
is the kernel of Δ (g) 1 - 1 (x) Δ: C" (g) E'[Vn] — C" (g) S'[VΛ ® E'[V.]

It follows from our nonprimitive hypothesis that s^VnQPC"®
{PC" ® s~ιVn) is a differential submodule of C. From this it follows
that the sequence of Lie algebras is short exact and a central ex-
tension.

Now suppose that the Lie algebras are short exact and a central
extension. Short exactness implies that 0 —> s"1 Vn —> PC —• PC" —> 0
is split exact as chain complexes. Let PC^>s~xVn be a splitting.
Consider the composition C-+PC—>s~~ιVn where C—*PC splits the
inclusion PC—+C. (This is not a differential splitting.)

The commutative diagram

C — ->Vn

V \d

C >s~Ύn

defines a chain map C —> Wn and hence a map of differential coalgebras

CE'[VΛ S'IW]
The composition C-~>Wn->Vn factors as C-*C"-*Vn by 1.5.

The only possible obstruction is the composition Gι (g) s~xVn—>C—>

C-+PC-+ s~1Vn which is zero by the central extension hypothesis.
C"->Vn defines a map of differential coalgebras C"->S'[Vn] and

the following diagram commutes by 1.4:

C >E'[VΔ
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The horizontal maps are clearly isomorphisms, hence S'fs^FJ—»
C-+C" is an elementary extension. That it is nonprimitive, i.e., that
PC" —» C" —»Fw is zero, follows from short exactness.

DEFINITION 3.9. Let D and C be coalgebras. D is called an
inverse limit of nonprimitive elementary extensions starting from G
if there is an inverse system Co +-* Gι <— C2 <— with each Cn —* Cn^
the projection of a nonprimitive elementary extension, C = Co, and
D = lim CΛ.

More generally, D is constructible by nonprimitive elementary
extensions starting from C if there is an inverse system A <— A <—
D2 <— with C = Do, D = lim A*> and each A* an inverse limit of
nonprimitive elementary extensions of dimension n starting from A»-i

DEFINITION 3.10. A coalgebra C with C* = a symmetric coalgebra
is called a reduced symmetric coalgebra if d = 0 on PC.

The next proposition is the main result of this section.

PROPOSITION 3.11. A reduced symmetric coalgebra C is con-
structible by nonprimitive elementary extensions starting from the
ground field k if and only if the Lie algebra s~ΉPC = s~ιPC is a
nilpotent completion.

Proof. If C is constructible by nonprimitive elementary exten-
sions starting from k, then it follows from 1.11a and 3.8 that C is
a reduced symmetric coalgebra with s^PC a nilpotent completion.

Conversely, let C be a reduced symmetric coalgebra with s~ΨC
a nilpotent completion. Let C * = S ' [ F ] and denote by V(n) the
graded vector space which is V truncated above dimension n. Use
1.7 to construct an inverse system Do *— A <— Da <— with Dl —
S'[VW] and C= lim A*.

It suffices to show that each Dn is an inverse limit of nonprimi-
tive elementary extensions starting from A>-i Use 1.7 to construct
an inverse system C0*~C1*—C2< with (CJ* = S'[Xm], Xm =
yin-D 0 (LJG""1 n Lft), where G~m is the filtration introduced at the

beginning of this section and V = lim L/G~m. Co = A>-i and Dn —

\imCm by 1.11a. Proposition 3.8 implies that each Cm—>Cm^ is the

projection of a nonprimitive elementary extension.

REMARK. A coalgebra constructible by nonprimitive elementary
extensions starting from the ground field is automatically a reduced
symmetric coalgebra.

Proposition 3.11 may be improved to:
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PROPOSITION 3.12. Let C be a coalgebra with C* — a symmetric
coalgebra. Then the following are equivalent.

(a) s~~ιHPC is a nilpotent completion,
(b) C = D® E where D is a reduced symmetric coalgebra with

s~1PD a nilpotent completion and D = S'[V] with HV = 0.

Proof. That (b) implies (a) is trivial.
Let s-ΉPCbe a nilpotent completion and set C# = S'[W]. Then

W = PC = HPC 0 V, where F is acyclic. Since V is acyclic, it is
injective in the category of chain complexes [5]. Hence, the inclu-
sion V—>C has a differential splitting C—>V.

The map C—*V defines a coalgebra map C —>S'[V]. Let D —
CQr'[F]ft = t h e kernel of this map C-+S'[V]. Then I>* = S'[flPC]
and HD-+HC is an isomorphism by 1.10.

It will follow from 5.8 that D is fibrant (see 5.4) and hence a
homology isomorphism D-+C can be split (5.11). It follows that
there is an isomorphism C-^D®E with E =

We leave to the reader the obvious dualization of 3.5 to 3.12 to
algebras. The algebra analogue of E'[Vn] is denoted E[Vn].

In particular, the dual of a nonprimitive elementary extension
is just Sullivan's [4] notion of an elementary extension of algebras
with decomposable differential. Just as the minimal algebras defined
by Sullivan are constructible from the ground field by elementary
extensions with decomposable differentials, so the minimal coalgebras
( = reduced symmetric coalgebras C with s~ΉPC a nilpotent comple-
tion) to be defined in § 5 are constructible by nonprimitive elementary
extensions starting from the ground field. (See Proposition 5.8b.)

4* Adjoint equivalences* Quillen [23] has defined adjoint
functors

and shown that the adjunction maps C—*<ίf£f(C) and
are homology isomorphisms when C is a simply connected coalgebra,
C1 = 0, and L is a connected Lie algebra, Lo = 0. In this section
we show that these assumptions are not necessary.

^f may be described as follows: As a Lie algebra, Sf{C) =
F[s~xC] = the free Lie algebra on the desuspension of C = ker (C—*k).
The differential on £f(C) splits as a sum of two differentials d =
di + djf where on generators s^c, ceC,

dIs~1c = —s~ιdc
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if A(c) = c(g)l + l(g)c + Σ(c'i (x) c" + (-l)d e g cί ***cϊcϊ (x) cj).
£f(C) has a natural bigraded structure with generators s~xc

having bigrading = ( — 1, degree c).

REMARKS. Sf(C) = Pi2C = primitive elements in the cobar con-
struction ΩC an C. [1], [10]. Hence, H£f(C) = HPΩC = Pffi2C = P
Cotor <? (k, k) where Cotor is the differential Cotor of Eilenberg and
Moore [5]. That HPΩC = PHΩC follows from the fact that ΩC is
a cocommutative differential Hopf algebra. See Smith [25, p. 130]
or Quillen [23, p. 280].

As a coalgebra, ^(L) = S'[sL] = the symmetric coalgebra on the
suspension of L, The differential on ̂ ( L ) splits as a sum of two
differentials d = dΣ + dn. A differential d on S'[sL] is uniquely
characterized by the projection

d: S'[sL] • S'[sL] > sL .

(See 1.6 and 1.9.)
With respect to the natural generators s/, (s/")(s/") = s/r (g)

s/" + (~iγ«s/ι ^/ns/" 0 s/', . . . of S'[sL\ c T[sL],

and are zero on all other generators.
^ ( L ) has a natural bigraded structure with elements s/ having

bigrading = (1, degree /).

REMARK. If L is concentrated in degree 0, then C^{L) is just
the standard complex for calculating Lie algebra homology. In
general, ^ ( L ) is a subcoalgebra of BU(L) = the bar construction
on the universal enveloping algebra of L and the injection ^(L)—>
BU(L) is a homology isomorphism [17]. Hence, H^{L) = Tor^[L] (&, k)
where this is the differential Tor of Eilenberg and Moore [25].

The adjunction maps a:£?^(L)-*L and β: C-»<tf£f(C) may be
described as follows:

(a) a is the unique map extending s"1<^(8L)—> ^(sL) —> sL —> L,
(b) β is the unique map lifting C~-> s^C-

PROPOSITION 4.1. The adjunction maps £f^{L)-*L and C
are homology isomorphisms.

This is an immediate consequence of our next theorem.

PROPOSITION 4.2. (a) Let C be a coalgebra such that C* = S'
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then s~ιHPC is isomorphic to H£f(C) as Lie algebras.
(b) Let L be a Lie algebra such that L% — F\V\ then sHQL

is isomorphic to H^(L) as coalgebras.

Proof, (a) Consider the map s'ΨC^ £?(C). Filter £f(C) by
the second coordinate of its bidegree and give s~ιPC a trivial one
stage filtration. The map is a map of filtered objects and both filtra-
tions are bicomplete [7]. Hence, a spectral sequence isomorphism
implies a homology isomorphism s~~ιPC~+£f(C).

In the spectral sequence for s~ιPC we have E1 = s~ΨC, E2 =

In the spectral sequence for £f(C), we have E° = £f(C*) =
PΩ(C*). E1 = HPΩ(C*) = PHΩ(C*) = PSy-'V] = s~ΨC.

E2 = His-'PC). Hence, s-ΉPC-»H£f(C) is an isomorphism of
graded vector spaces. That it is an isomorphism of Lie algebra fol-
lows from

ds~\x 0 y + ( - l)d e g *d e δ yy (x) x)

= -s-'dixtgϊy + (-l)desxdesyy(g)x)

if x and y are primitive in C.
(b) Consider the map ^(L) -»sQL. As before, filter ^(L) by

the second coordinate of its bidegree and give sQL a trivial one
stage filtration. Both filtrations are bicomplete and it suffices to
compute the spectral sequence for ^(L).

E"=^(V). Since L*=F[V] is free, Eι = H^(L*) = ΊoτmzJt)(kf k) =
kφsV= kφsQL.

Hence, H^(L) —• sHQL is a isomorphism of vector spaces. That
it is an isomorphism of coalgebras follows from the observation that:
If /e L projects to a cycle in Q{L) and if s/ + Σ{s/'){s/") + is a
cycle in ^(L), then —d/Λ- Σ[sr, /"] = 0 modulo boundaries and ele-
ments of length ^ 3 in L.

The next proposition is an immediate consequence of the defini-
tions of ^ and Sf.

PROPOSITION 4.3. (a) If L is a Lie algebra, then s~γΉ.P^{L) =
HL as Lie algebras.

(b) If C is a coalgebra, then sHQ£f(G) = HC as coalgebras.

We close this section with:

PROPOSITION 4.4. (a) If L —> U is a homology isomorphism of
Lie algebras, then ^(L) —> ί^(Z/) is a homology isomorphism.
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(b) If C^>C is a homology isomorphism between simply con-
nected coalgebras, then Sf (C) —> £f (C) is a homology isomorphism.

Proof. Both (a) and (b) are consequences of respective Eilenberg-
Moore spectral sequences, (Filter by the first coordinate of the
bidegree.)

In (a), E2 = H^iHL) and the filtration is bicomplete, so we have
no problems [7].

In (b), E2 = H£f(HC) and the filtration is bicomplete if C is
simply connected.

The simply connected hypothesis is necessary in 4.4b. For ex-
ample, let C = ^(so (3)) where so (3) is the real Lie algebra of the
Lie group SO (3). (We regard so (3) as being concentrated in dimen-
sion zero.) A classical computation of E. Cartan (see H. WeyΓs
book [29]) states that HC = iKf (so (3)) = if(SO (3); B) = S'[x] with
degree x = 3. Hence, there is a homology isomorphism C-+C where
Cr - S'[x\. Then H£f(C) = so (3) by 4.1, but H£f(C) = Fls^x] by
4.2. Therefore, J*f(C)-+J*f(C') is not a homology isomorphism.

In 6.4, we shall draw the conclusion of 4.4b with an alternate
hypothesis.

5* Cofibrant and fibrant models* We begin this section by
observing that DGLA, DGA, and DGC are closed model categories
in the sense of Quillen [22] [23]. Recall Quillen's definition.

DEFINITION 5.1. A closed model category is a category ^ en-
dowed with three selected classes of morphisms, called fibrations,
cofibrations, and weak equivalences and subject to the following
axioms:

CM 1. ^ is closed under finite direct and inverse limits.

CM 2. If gf is defined and any two of /, g, gf are weak equiva-
lences, then so is the third.

CM 3. A retract of a fibration, cofibration, or weak equivalence
in one also.

CM 4. We can complete any commutative diagram

A >X

B >Y



NILPOTENT SPACES 445

whenever i is a cofibration, p is a fibration, and either p or i is a
weak equivalence.

CM 5. Any map / may be factored in two ways: f= pi where
p is a fibration, i is a cofibration, and either p or i is a weak
equivalence.

Following Quillen [23], DLGA is a closed model category with
weak equivalences being maps which induce isomorphisms in ho-
mology, fibrations being maps which are surjective, and cofibrations
being maps which satisfy axiom CM 4 for all fibrations which are
weak equivalences. Although Quillen treats only those Lie algebras
with LQ = 0 and uses a slightly different notion of fibration, his proof
that they form a closed model category remains valid in this more
general context.

Bousfield and Gugenheim [2] have shown that DGA is a closed
model category with weak equivalences being maps which induce
isomorphisms in cohomology, fibrations being maps which are sur-
jective, and cofibrations being maps which satisfy axiom CM 4 for
all fibrations which are weak equivalences.

Again following Quillen [23], DGC is a closed model category
with weak equivalences being maps which induce isomorphisms in
homology, cofibrations being maps which are injective, and fibrations
being maps which satisfy axiom CM 4 for all cofibrations which are
weak equivalences. Unfortunately, Quillen's proof that this is a
closed model category [23, p. 256] relies heavily upon the applica-
tion of the comparison theorem to spectral sequences which happen
to have a sufficiently nice E2 term only when the coalgebras involved
are simply connected, d = 0. Fortunately, a proof can be given
which avoids these technical difficulties.

PROPOSITION 5.2. DGC {DGA, DGLA) is a closed model category.

Proof. Only axioms CM 4 and CM 5 are nontrivial and half of
CM 4 is true by definition.

In the course of this proof, we need two kinds of standard
fibrations.

LEMMA 5.3. (a) If V is a DG vector space, then S'[V]—>k is
a fibration.

(b) If Vn is concentrated in dimension n*tl, then E'[ Vn] —>
Sf[Vn], which is defined in §3, is a fibration.

The proof of 5.3 is an exercise in the universal mapping property
of symmetric coalgebras. Since pullbacks of fibrations are fibrations,
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5.3b implies that elementary extensions (3.7) are fibrations.
Now let /: C-+D be a map in DGC. We will verify CM 5 for

this map:
(a) / = pi where p is a weak equivalence.
(b) f — pi where i is a weak equivalence.
(a) Pick an acyclic DG vector space V, HV = 0, and an injec-

tive DG map C—»F. By the universal property of S', there is a
unique factorization C-+S'[V]-+V and S'[V] is a acyclic by 1.10.
Since (g) is the product in DGC, there is an injective map i:C—>
D(x)S'[V] and the projection p: D(x) S'[V]—>D is a weak equiva-
lence, p is a fibration since it is the pullback of the fibration
S'[V]-+k under D-+k.

(b) By part (a), we can assume that C—>D is an injection.
Pick a DG map C->HC which is a homology isomorphism. This
need not be a coalgebra map. This defines C—> S'[HC] and, by
replacing C —>D by C—>I?(x) S'[J5ΓC], we may assume that C—•!> is
both injective and injective on homology.

Make the inductive assumption that we have constructed a fac-
torization Cτ»En—+D where pn is a fibration, i% is a cofibration, and

*n Pn

H(in) is an isomorphism in dimensions <,%.

Pick a projection En —> coker fl»+1(i»). This defines a map £?„—*
S'[coker jffw+1(i%)] and it is not hard to see that there is a commuta-
tive diagram

JS?'[cokerfin+1«Λ)]

S'[cokerJΪΛ + 1(iΛ)]

where En>ι-+En is the pullback fibration.
Repeating this process, construct an inverse system of fibrations

Set = lim Enyίfι and let i%+1: C—> En+ί be the natural map.

Define pn+] to be the composition En+1—>En-+D. Then iw+1 is a
cofibration and pn+1 is a fibration since it is a composition of fibra-
tions. Finally, H(in+1) is an isomorphism in dimensions <Ln + 1. This
verifies the inductive assumption.

Set E — Y\mEn. The factorization C—>E—>D verifies the second

half of CM δ Γ
To complete the verification that DGC is a closed model cate-
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gory, it remains to demonstrate CM 4 when p: X —> Y is a fibration
and a weak equivalence. In verifying the first half of CM 5 we
showed that p could be factored as X —> Y® S'[V] —> Y where ί is

% q

a cofibration and p is a fibration and weak equivalence. By CM 2,
i is a weak equivalence. By the definition of a fibration, we can
complete the commutative diagram below.

X >X

Y(g)S'[V] > Y
Q

Hence, p is a retract of the product fibration q. It is easy to
verify CM 4 for q and hence for p.

This completes the proof that DGC is a closed model category.

Given a pointed closed model category ^ with point object *,
an object X is called cofibrant (respectively, fibrant) if the map
* —>X is a cofibration (resp., if X—>* is a fibration). Notice that
DGLA, DGC, and DGA are pointed with point objects 0, k, and k,
respectively. In DGLA and DGA, every object is fibrant and in
DGC every object in cofibrant.

DEFINITION 5.4. Given an object X in a pointed closed model
category, a cofibrant model (respectively, fibrant model) for X is a
cofibrant (fibrant) object Y and a weak equivalence Γ—>X (X—>Y).

Cofibrant and fibrant models always exist because of axiom CM
5. We shall adopt the notation cX—*X for cofibrant models and
X—*fX for fibrant models. Notice that CM 5 implies that we may
take c l - > l to be a fibration and X—>/X to be a cofibration.
Using CM 4, it is easy to see that c (and /) give well defined func-
tors from <& to the homotopy category ho ^ c of cofibrant (ho ^f

of fibrant) objects of <gf [22].
(Given a category ^ and a multiplicative class of morphisms S

in &, in our case weak equivalences, the homotopy category ho <if —
S~lc^ is the localization of ^ with respect to S [9]).

DEFINITION 5.5. An algebra A (respectively, Lie algebra L) is
called minimal if it is cofibrant and the induced differential on Q{A)
(respectively, Q{L)) is zero. A coalgebra C is called minimal if it is
fibrant and the differential is zero on P(C).

A minimal model for an algebra A, denoted by m i - > A, or for
a Lie algebra L, denoted by mL—*L, is a minimal cofibrant model.
A minimal model for a coalgebra C, denoted by C-+mC, is a minimal
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fibrant model.
The rest of this section will be devoted to the following five

propositions, 5.6-5.10 Taken together, they give a rather complete
characterization of cofibrant, fibrant, and minimal models.

PROPOSITION 5.6. (a) Every algebra A has a minimal model
mA —> A ond mA is unique up to isomorphism.

(b) Every coalgebra C has a minimal model C —> mC and mC
is unique up to isomorphism.

(c) Every Lie algebra L with Lo = 0 has a minimal model
>L and mL is unique up to isomorphism.

Although it is not true that only those Lie algebras L with
Lo = 0 have minimal models, it is easy to see that some restriction
is necessary. For example, let L = so (3) = the real Lie algebra of
the Lie group SO (3). Suppose mL—>L were a minimal model. Then
Q(mL)oΦθ since H0L = so (3) Φ 0. But 4.2b and 4.4a imply that
Q(mL\ = H&imL) = H^{L) = 0 since JKf(L) = iί(SO(3); R) =
H(SZ; R) [29]. Hence, no minimal model for so (3) exists.

Conjecture. A Lie algebra L with HL nilpotent has a minimal
model.

PROPOSITION 5.7. (a) An algebra A is cofibrant if and only if
A & mA (x) S[V] where HV = 0.

(b) A coalgebra C is fibrant if and only if C ^ mC(x) S'[V]
where HV = 0.

(c) A Lie algebra is cofibrant if and only if it is a retract of
a Lie algebra L with L* — a free Lie algebra.

PROPOSITION 5.8. (a) An algebra A is minimal if and only if
A is constructible by decomposable elementary extensions starting
from the ground field k.

(b) A coalgebra C is minimal if and only if C is constructible
by nonprimitive elementary extensions starting from the ground
field k.

(See 3.9 for the definition of constructible by elementary ex-
tensions. For algebras, replace inverse limits by direct limits in the
definition for coalgebras.)

Note that if we combine 5.8b with 3.11, we see that a coalgebra
C is minimal if and only if C is a reduced symmetric coalgebra with
the Lie algebra s^HPC — s~ΨC a nilpotent completion.
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PROPOSITION 5.9. A coalgebra G is fibrant if and only if C* =
a symmetric coalgebra and the Lie algebra s^HPC is a nilpotent
completion.

PROPOSITION 5.10. // A is cofibrant (respectively, minimal)
algebra of finite type, then A* is a fibrant (reespctively, minimal)
coalgebra.

REMARK. By 5.7, and 5.8, cofibrant algebras are symmetric alge-
bras, fibrant coalgebras are symmetric coalgebras, and cofibrant Lie
algebras are free Lie algebras.

The results 5.6, 5.7 and 5.8 are known for algebras. See [4]
and [2]. Furthermore, 5.7 and 5.8 imply 5.10 since the dual of a
decomposable elementary extension is a nonprimitive elementary ex-
tension and the dual of a symmetric algebra is a symmetric coalge-
bra. It remains to show 5.6, and 5.7, 5.8, and 5.9 for coalgebras
and Lie algebras.

We treat coalgebras first. A slight modification of the proof of
Cm 5b in 5.2 shows that we can factor C-+k into C—>D—>k where
C —>D is a weak equivalence (but not a cofibration) and JD—>k is a
fibration. Given C —>D%—*k where Dn —»k is a fibration and HC —>
HDn is an isomorphism in dimensions ^n and an epimorphism in di-
mension n + 1, construct a nonprimitive elementary extension D'n —>
Dn of dimension n + 1 and a factorization C—>D'n—*Dn such that
HC—>HD'n is an isomorphism in dimensions <̂ w + 1. Specifically,
JD; = Dn(g)S'[V] where V= kernel of Hn+ί(C-> Dn). Following the
proof of 5.2, construct an inverse limit of nonprimitive elementary
extensions Dn+i —* D'% of dimension n + 2 and a factorization C —•
Dn+1'-*D'n such that HC—*HDn+ι is an isomorphism in dimensions
<̂  n + 1 and an epimorphism in dimension n + 2. Then D = lim Dn

yields a factorization C—>D—>k with D—>k a fibration and C—+D
a weak equivalence. D is therefore fibrant and, by the remark after
3.11, D is a reduced symmetric coalgebra, therefore minimal.

Hence, minimal models for coalgebras exist. Furthermore, the
above minimal model mC = D is constructible by nonprimitive ele-
mentary extensions starting from the ground field.

REMARK. The above procedure is dual to Sullivan's construction
of minimal models for algebras.

LEMMA 5.11. (a) If X—* Y is a cofibration and a weak equiva-
lence and X is fibrant, then there is a splitting Y —+ X such that
X-+Y-+X is the identity.

(b) If X—> Y is a fibration and a weak equivalence and Y is
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eofibrant, then there is a splitting Y—>X such that X—*Y~*X is
the identity.

This lemma is a consequence of axiom CM 4.
To show the uniqueness of minimal coalgebra models, let C—>

mC be any minimal model and let C—>m0C be the specific minimal
model constructed above. We can find a fibrant model C —>mC 0
S'[V] such that this map is a cofibration and HV = 0. CM 4 implies
that there is a map mC® S'[V]—>m0C which is a weak equivalence.
Hence, the composition mC—>mC(x) S'[F]—>m0C is a weak equiva-
lence between minimal coalgebras. We claim it is an isomorphism.

Factor mC —• m0C into mC —> m0C (x) S'[ W] —> m0C where mC —•>
mQC®S'[W] is a cofibration and HW = 0. Apply 5.11a to get a
splitting m0C (x) S'[ ΫF] —> mC. mC is a retract of a symmetric co-
algebra, therefore, it is a symmetric coalgebra. Hence, P(mC) =
HP(mC) ~-> HP(m,C® S'[V]) = P(m0C) is a split monomorphism with
splitting P(m0C) -> P(mC) induced by m0C (x) S'[W] ~-> mC.

Replacing mC—>mjC by m0C(g) AS'[TF]—>mC in the above para-
graph, we conclude that P(m0C) —> P{mC) is also a split monomor-
phism. Hence, P(mC) —> P(m0C) is an isomorphism. Since mC and
m0C are symmetric coalgebras, mC~>m0C is an isomorphism. This
concludes the proof of 5.6 for coalgebras.

The minimal model mQC is constructible by nonprimitive elemen-
tary extensions starting from the ground field. Any coalgebra so
constructible is minimal. Together with 5.6, this proves 5.8 for co-
algebras.

Since the minimal coalgebra m0C satisfies 5.9, uniqueness proves
5.9 for all minimal coalgebras. An argument similar to the proof
of 3.12 proves 5.7 for coalgebras. Proposition 5.9 for fibrant coal-
gebras follows from 5.7 and 5.9 for minimal coalgebras. This com-
pletes the proofs for coalgebras.

It remains to prove 5.6 and 5.7 for Lie algebras.
It is easy to see that any Lie algebra L with L* = a free Lie

algebra is eofibrant. Hence, so is any retract. Conversely, Quillen
has shown [23, p. 256] that any eofibrant Lie algebra L is a retract
of a Lie algebra U with (L')f = a free Lie algebra. His proof re-
mains valid if Lo Φ 0. This proves 5.7 for Lie algebras.

Let L be a Lie algebra with Lo = 0. Pick a chain splitting
HJL —> L. This defines a map Fx == F[HγL\ —> L which is an epimor-
phism in one dimensional homology. F1 is minimal.

Inductively, suppose we are given Fn—>L which is a isomor-
phism (epimorphism) in homology in dimensions <n«n + 1) and such
that Fn is minimal and free on generators concentrated in dimensions
<n + 1. Furthermore, suppose Fn = F[Z] with a splitting Zn =
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W%@V% where d{Wn) = 0, and d: Vn-*HF%-X and Wn~>HFn->HL
are monomorphisms. Construct Fn+1 —> Z/ as follows. Pick a lift
F —*Fn where F = ker Hn{Fn —> L). Consider the composition d:
sV—>V—>Fn and use this to extend the differential on Fn to
Gn+i — Fn V F[sV], Then Gn+1 is minimal and maps isomorphically
in homology in dimension <n + 1.

Let W = coker Hn+1(Gn+1 —>L) and pick a splitting TF—*L. Define
d to be zero on TF and use this to extend the differential on Gn+1 to
Fn+1 = Gw+1 V ϋ^TF]. Then JF

7

W+1 is minimal and W->L defines and
extension to a map .Fw+1 —* L which is an isomorphism (epimorphism)
in homology in dimensions <n + 1 «n + 2). The required splitting
of Fn+1 is obvious from our construction.

Setting F — limi^, the map F—*L is a weak equivalence and

F is a minimal model for L.
Finally, minimal Lie algebra models are unique up to isomorphism

by an argument similar to that for the uniqueness of minimal coal-
gebra models. This completes the proof of 5.6 for Lie algebras.

6* Homotopy groups* We now define "homotopy" groups for
Lie algebras, coalgebras, and algebras.

DEFINITION 6.1. (a) If L is a Lie algebra, then πL = HQ{cL).
(b) If G is a coalgebra, then πC = HP(fc).
(c) If A is an algebra, then πA = HQ(cA).
That πC and πA are well defined up to isomorphism follows from

5.6 and 5.7. That πL is well defined up to isomorphism will follow
from 6.3. If we choose minimal models, then πL = Q(mL), πC =
P(mC), and πA = Q(mA).

By § 2, sπL has a coalgebra structure, s^πC has a Lie algebra
structure, and s~ιπA has a Lie coalgebra structure. As a consequence
of 5.9, we have:

PROPOSITION 6.2. For any coalgebra C, the Lie algebra s~ιπC is
a nilpotent completion.

From 4.2 and 4.4 we get:

PROPOSITION 6.3. (a) If L is a Lie algebra, then sπL—Hr^{L) =
H^{cL) as coalgebras.

(b) If C is a coalgebra, then s~ιπC = H^f(fC) as Lie algebras.
If cx = 0, then s~xπC = H£f(C).

REMARK. This result shows that πL is a functor and πC is a
functor if Cί — 0. Bousfield and Gugenheim [2] have shown that πA
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is a functor by constructing a natural cofibrant model cA —> A. It is
possible to construct natural cofibrant (fibrant) models cL—>L(C—>fC).
Hence, πL, πC, πA are functors with no connectivity hypothesis.

Since πC is well defined, 6.3 implies:

PROPOSITION 6.4. If f:C—*C is a weak equivalence between
fibrant coalgebras, then £f(f): -Sf(C) —• £f(C) is a weak equivalence.

Together with 4.4b, 6.3 implies:

PROPOSITION 6.5. If C is a coalgebra with C, = 0, then s~ιπC =
H£f(G).

7* Equivalence of homotopy categories* Recall Quillen's equiva-
lence theorem [23, p. 235] and [22, 4].

THEOREM 7.1. Let ^ and ^ be closed model categories and let

F

G

be a pair of adjoint functors such that
(1) F preserves cofibrations and G preserves fibrations.
(2 ) If f: A~-> B is a weak equivalence between cofibrant objects

in ^ i , then F(f) is a weak equivalence in ^ 2 If g: X~-*Y is a
weak equivalence between fibrant objects in ^2> then G{g) is a weak
equivalence in <&x.

(3 ) If A is a cofibrant object in ^ and X is a fibrant object
in &2, then a map f: A —• GX is a weak equivalence if and only if
the corresponding map fb: FA —> X is a weak equivalence.

Then F and G are induce equivalences of homotopy categories.
Moreover, if ^ and ^ 2 are pointed, then this equivalence preserves
the loop and suspension functors and the families of fibration and
cofibration sequences.

A careful reading of Quillen's proof shows that F and G induce
equivalences of homotopy categories even if hypothesis 1 is weakened
to: F preserves cofibrant objects and G preserves fibrant objects.
(See [22], 4.7, (3).)

Let ncDGLA be the full subcategory of DGLA consisting of
Lie algebras L such that HL is a nilpotent completion.

Unfortunately, ncDGLA is not a closed model category since it
is not closed under finite coproducts. Hence, the homotopy category,
ho(ncDGLA), does not make sense by itself. What we mean by
ho(DGLA) is the full subcategory of ho(DGLA) generated by objects
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of ncDGLA. As in the paper [2] of Bousfield and Gugenheim, we
shall use this convention whenever we are dealing with a full sub-
category of a closed model category.

PROPOSITION 7.2. The adjoint functors

ΌGC^HΌGLA

induce equivalence of homotopy categories ho(DGC) P& ho(ncDGLA).

Proof. Since £f{C)* — a free Lie algebra, £f(C) is always co-
fibrant by 5.7. Hence, Sf preserves cofibrant objects. If L is an
object in ncDGLA, then ^(L)* = a symmetric coalgebra with
s~ιHP^{L) = HL, a nilpotent completion. Therefore, ^ ( L ) is fibrant
by 5.9 and ^ preserves fibrant objects when restricted to objects
in ncDGLA.

Hypothesis 2 in 7.1 is a consequence of 4.4 and 6.4. Hypothesis
3 follows from hypotheses 1 and 2 and 4.1.

Hence, 7.1 implies 7.2. Specifically, the equivalence of homotopy
categories is given on objects by C —> £f(fC) and L—><g%L). Notice
that HcSf(fC) = s'ΉPifC) by 4.2 and is a nilpotent completion by
5.9.

In the remainder of this section, the ground field will be the
rationals. We are going to relate the algebra developed in this paper
to rational homotopy theory.

A connected pointed Kan complex, hereafter referred to as a
space, is called nilpotent if π1 is a nilpotent group and πn for all
n Ξ> 2 is a nilpotent πγ module [2]. A nilpotent space X is called
rational if the groups Hn(X; Z), or equivalently the groups πn(X),
are uniquely divisible. A nilpotent space X is of finite Q-type if
the vector spaces Hn(X; Q), and hence πn(X) (x) Q for n ^ 2, are finite
dimensional [2].

The homotopy category of rational nilpotent spaces is a retract
of the homotopy category of nilpotent spaces. The retraction functor
is denoted X-> X(g) Q and if X(x) Q = Y® Q we say that X and Y
have the same rational homotopy type. (For details, see [8], [4],
[3], or [23].)

Sullivan [4] [8] and, in a more functorial manner, Bousfield and
Gugenheim [2] have shown that the homotopy category of rational
finite Q-type nilpotent spaces is equivalent to the homotopy category
of rational algebras A with πA of finite type and H\A) = Q.

We adopt the following notation:
(a) S is the category of connected spaces.
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(b) nS is the category of connected finite Q-type nilpotent spaces.
(c) S ® Q is the category of rational spaces in nS.
(d) nDGA is the full subcategory of DGA of algebras A with

πA of finite type.
(e) nDGC is the full subcategory of DGC of coalgebras C with

πC of finite type.
(f) nDGLA is the full subcategory of DGLA of Lie algebras

L with HL nilpotent of finite type.
(g) W:S-+DGA is Sullivan's PL deRham functor (see [4] or

[2]).
(h) R: DGA-+S is Bousfield and Gugenheim's realization functor

[2].

PROPOSITION 7.3. The following four homotopy categories are
equivalent: ho(S(x)Q), ho(nDGA), ho(nDGC), and ho(nDGLA).

Proof. The equivalence of ho(S(g)Q) and ho(nDGA) is due to
Bousfield and Gugenheim and is given by the contravariant functors
X~*ξ?(X) and A-+R(mA) [2].

The equivalence of ho(n(DGA) and ho{nDGC) is given by the
contravariant functors i - > ( m i ) * and C—>(mC)*.

The equivalence of ho{nDGC) and ho{nDGLA) is given by the
restriction of the covariant functors in 7.2, i.e., C—>Jί?(fC), L—>
^(L) . Note that, if s~ιπC is of finite type, it is nilpotent since
it is a nilpotent completion 6.2. Since s~ιπC = H£f{fC) by 6.3,
^f(fC) is in nDGLA. Conversely, given L in nDGLA, ^(L) is in
nDGC since s~ιπ^{L) = HL by 4.3.

8* Minimal models for spaces* Let X be a connected finite
Q-type nilpotent space. Using the equivalence in 7.3, we may as-
sociate to X a minimal algebra Mx, a minimal coalgebra Cx, and a
cofibrant Lie algebra =S^(CZ). If X is simply connected, we may
associate to X a minimal Lie algebra Lx. These three minimal ob-
jects are determined by X up to isomorphism. They are called the
minimal algebra model, the minimal coalgebra model, and the minimal
Lie algebra model, respectively.

Specifically, Mx = m^{X) = the minimal algebra model for the
PL deRham forms. (This is contained in [4].) Cx = (Mx)* = the
dual coalgebra to Mx and Lx = m£f(Cx) — the minimal Lie algebra
model for £f{Cx). We do not know whether Lx always exists if X
is not simply connected. The following proposition is immediate.

PROPOSITION 8.1. If X and Y are connected finite Q-type nil-
potent spaces, then the following are equivalent:
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(a) X(g)Q= Y(g)Q.
(b) Mx and Mγ are isomorphic algebras.
(c) Gx and Cγ are isomorphic coalgebras.
(d) There is a weak equivalence £f(Cx) —> £f(Cγ).
(e) // X and Y happen to be simply connected, Lx and Lγ are

isomorphic Lie algebras.

Given a nilpotent group G, there is a universal mόrphism G —>
G (x) Q of G into a nilpotent uniquely divisible group G®Q. This
is called the Malcev completion of G and agrees with the tensor
product when G is abelian [13] [23].

There is an equivalence between the category of nilpotent uniquely
divisible groups G and the,category of nilpotent rational Lie alge-
bras L (nongraded) given by G-+L — PQ[G] = the primitives of the
completion of the rational group algebra with respect to its aug-
mentation ideal [12] [23]. Given G denote the corresponding Lie
algebra by s(G).

PROPOSITION 8.2. If X is a connected finite Q-type nilpotent
space, then the following Lie algebras are isomorphic: /(π^X) 0 Q) =

Proof. The first isomorphism is in [4]. The rest follows from
4.2.

For n, m ^ 2 the Whitehead product πn(X) (x) πm(X)
corresponds to the Samelson product πn-ι(ΩX)®πm_ι(ΩX)—>πn+m__1(ΩX)
under the isomorphism πn(X) = π^^ΩX). For n ^ 2 the Samelson
product makes the homotopy groups πn_γ{ΩX) into a graded Lie alge-
bra. The next proposition is proved in the same way as 8.2 with
a similar assist from [4].

PROPOSITION 8.3. If X is a connected finite Q-type nilpotent
space, then for n ^ 2 the following are isomorphisms of graded
Whitehead algebras: πn(X)(g)Q = (πnMxy=πnGx=Hn_lcSf(Cx) { = Hn_λLx

if X is simply connected).

From 4.2, we also get:

PROPOSITION 8.4. // X is a connected finite Q-type nilpotent
space, the following are isomorphisms of graded coalgebras:
Hn(X; Q) = H\MXY = Hn(Cx) - πn^

Propositions 8.2, 8.3, and 8.4 give the following description of
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minimal models.
The minimal Lie algebra model Lx is the free Lie algebra gen-

erated by s^HiX; Q) with differential d given on generators s~*x by
ds~ιx = Σ\s"ιai9 s~xb] + P, where P is a sum of brackets of length
three or greater and A(x) = Σai®bi + (~l)dβg**dβg&*δ<(g)α4.

The minimal coalgebra model Cx is the symmetric coalgebra with
primitives equal to /(π&X) ® Q) + Σ%^ 2 πn(X) (g) Q = sHLx.

The minimal algebra model Λfx is the symmetric algebra gen-
erated by the dual of PCX [4].

As exercises for the reader we leave the following lemmas.

LEMMA 8.5. Mxxγ = Mx (x) Λfr, Cxxγ ~ Cx (x) CF.

LEMMA 8.6. L X V F = £χ V Lγ if X and Y are simply connected.

Recall Sullivan's definition of formality [4].

DEFINITION 8.7. Let X be a finite Q-type nilpotent space. X is
called formal if there is a weak equivalence Mx —• H*(X; Q).

The next proposition enables one to construct the minimal Lie
algebra model for many examples.

PROPOSITION 8.8. If X is formal and simply connected, then
Lx is isomorphic to SfH{X; Q).

Proof. Dualize Mx —> iϊ*(X; Q) to get a weak equivalence
H(X; Q) -+ Cx. By 4.4b, £fH{X; Q) -> Sf(Cz) is a weak equivalence
since Cx is simply connected. Since H(X; Q) has zero differential,
H(X; Q) has a decomposable differential and is a minimal Lie algebra.
Since minimal models are unique up to isomorphism, Lx is isomorphic
to £fH(X; Q).

For example, let X = V Sn<*, na ^ 2, be a wedge of spheres.
Then X is formal. (See, for example, [15].) Hence, Lx is isomor-
phic to J?fH(X', Q), the free Lie algebra on generators xa with degree
xa = na — 1. Since all nontrivial cup products vanish, dxa = 0 for
all a.

CPn is formal. In fact, any compact Kahler manifold is formal
[4]. Hence, LCPn is isomorphic to cSfH(CPn; Q), the free Lie alge-
bra generated by yJ9 , 7n with degree Ίk = 2fc — 1 and dΎk =

To study nonformal examples, we need to study cofibration se-
quences. Let A—»X—>X/A be a cofibration sequence. Recall that
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i*: gf(X)->gr(A) is an epimorphism [4] and let &(X, A) = kerneH*.
Since the composition ί?(Xf A)—>&(X)—• &(A) is trivial, there is a
factorization if(X/A)—»ST(X, A)-> iT(X). From the long exact ho-
mology sequence and the five lemmas, it follows that &(X/A)—+
%f(Xy A) is a weak equivalence. Hence, we might as well use the
sequence g"(X, A)—> §?(X)—>ξ?(A) as the representative of A—>X—>
X/A in the category of algebras.

LEMMA 8.9. If A—>X —* X/A is a cofibration sequence of finite
Q-type nilpotent spaces with A simply connected, then the sequence
%f(X, A)—> i?(X) —> &(A) is weakly equivalent to a sequence Aγ—*
A2 —»A5 of connected finite type algebras with A2 —> A3 surjective
and Ax = kernel (A2 —> A3).

Proof. By Cilί 5, we can choose a surjection -2J—•g?(A) where
D is cofibrant and acyclic. Hence, we get a map MA®D~-*&(A)
which is a fibration and a weak equivalence. By CM 4, there is a
commutative diagram

Pick a cofibrant acyclic algebra E and a surjection E-+MA

By CM 4, there is a commutative diagram

E > MA®D Mx®E >MA(x) D

and hence

In the last commutative diagram, the vertical maps are weak
equivalences and the horizontal maps are surjections. Now consider
the composition Mx ® E —> ikf̂  (x) i) —> M"̂ , where the second map is
projection. If we use the same techniques that we applied to get
E, we can find an acyclic F and a surjection F—>MA giving a com-
mutative diagram

MX®F >MA

MX®E >MA.

But MA is of finite type and MA = 0; hence, we can find an F
which is of finite type and connected. Set A3 = MΛf A2 = Mx (x) F,
and A± = kernel (A2 —> il8).
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COROLLARY 8.10. If A—+ X-+X/A is a cofibration sequence of
finite Q-type simply connected spaces, then there is a sequence Lt —•
L2—>L3 of cofibrant Lie algebras with Ll9 Ltf-Ls weakly equivalent
to LA, Lx, Lx/A, respectively, and this sequence splits into a free
product when we forget the differential, that is, L*2 = L\ V L\.

Proof Apply the functor Sf to the sequence of coalgebras
which is dual to the finite type sequence constructed in 8.9.

The next proposition is the Lie algebra version of the Hirsch
lemma. It tells us how to attach a cell. Recall that Lsn = F[x],
the free Lie algebra on a generator x of degree n — 1.

PROPOSITION 8.11. Let X be a finite Q-typs simply connected
space and let Lx-+F be a weak equivalence with F cofibrant. Let
a: Sn —> X and Y = X \Ja en+1 with n ^ 1. Then there is a weak
equivalence LY—>F' where Ff = F' V F[y], the differential on F'
extends that on F, and dy is a chain representative for the attaching
map a, degree y = n.

Proof. Apply 8.10 to the cofibration sequence X—> Γ —> Sn+ί and
let L1~+Li—+Ls be the resulting sequence of Lie algebras.

Since F is cofibrant, it is not hard to use CM 4 to get a weak
equivalence F~>LX. Consider the map F[x] = Lsn —* Lx and form
the compositions F\x\~*Lx^>F —>Lt. Let x2 and $i denote the
images of x in F and Llf respectively.

Recall the "cofibration" spectral sequence in [23, p. 262, 6.7].
l,2 = Lx V Ls is filtered by the degree of the Lz factor and E2

p>q =
HPLZ V HqLx with Er converging to HL.

Since HL3 — F[y], it follows that y transgresses to a generator
of the kernel of fi^Li —»Hn_xL2. Hence we can choose a represen-
tative yx for y in L2 such that dyt = xίm Set F* = F V F[y] with
dy := x2. Map F'—*L2 by the map F~+LL~*L2 and y-^y^ This
map Ff —• L2 is a weak equivalence by the comparison theorem aβ^
plied to the cofibration spectral sequences of F—* F'•—* F[y] and
Lί—^Lz—* L3.

Since F'—> L2 is a weak equivalence, the minimal model for Fr

is isomorphic to Lγ. That is, there is a weak equivalence Lγ-+F'.

An immediate corollary of 8.11 is the following.

PROPOSITION 8.12. Let X be a finite type CW complex with a
single point for its one skeleton. Let C(X) denote the rational CW
chains on X. Then there is a differential on L — F\s~^C{X)\ such
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that there is a weak equivalence LΣ—*L. In particular, HL is
isomorphic to π(ΩX) (x) Q. If e is a cell of X, then ds~ιe is a chain
representative of the attaching map of e.

For example, let X — S2 V S2 \Ja eδ where the attaching map a
is the iterated Whitehead product [[β, 7], 7] on generators β, 7 of
τc2(S2 V S2). Let F be the free Lie algebra on generators x, y, z
where degree x = degree y — 1 and degree z = 4. Define dx — dy = 0
and dz = [[x, y\ y]. By 8.12, there is a weak equivalence Lx-+F.
Since F is a minimal Lie algebra, Lx is isomorphic to F.

As the above example shows, 8.12 gives the minimal Lie algebra
model when applied to a minimal CW structure. Conversely, if the
minimal model is known, then 8.12 gives representative cycles for
the attaching maps in a minimal rational CW structure. For example,
8.8 implies that, for a simply connected formal space, the attaching
maps for a rational CW structure can be read off from the rational
homology coalgebra.

Minimal Lie algebra models can sometimes be effective in an-
swering the following question. How many rational homotopy types
are there with a fixed rational homology coalgebra C? By the re-
marks which follow 8.4, this is equivalent to looking at isomorphism
classes of free Lie algebras Fls^C] with the quadratic term of the
differential specified by C. Since this will be the subject of another
paper, we will not go into any detail here. We leave the following
straightforward exercises to the reader. There are two rational
homotopy types that have the rational homology coalgebra H(SS V
S3 V S8; Q). There are countably infinite rational homotopy types
that have the rational homology coalgebra H(S* V S3 V S12; Q). We
were motivated to look for this second example by Stasheff.
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