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REDUCTIVITY IN C*-ALGEBRAS AND ESSENTIALLY
REDUCTIVE OPERATORS

ROBERT L. MOORE

Reductivity is defined in the context of C*-algebras other
than the algebra of bounded operators on Hubert space, and
several examples are given. Essentially reductive operators
are defined as operators whose images are reductive in the
Calkin algebra. It is shown that every essentially reductive
operator must be a compact perturbation of a reductive
normal operator.

The concept of reductivity for operators on Hubert space has
generated a rich literature with a large number of interesting results.
In this paper we will begin the investigation of reductivity in C*-
algebras other than B(£ίf) with special emphasis on the Calkin alge-
bra. In what follows, Hubert spaces are separable, operators are
bounded, and subspaces are closed.

Reductive elements of C*-algebras* If P is a projection and if
A is an operator, a necessary and sufficient condition that the range
of P be invariant under A is that AP — PAP = 0. Similarly, a
necessary and sufficient condition that ran P reduce A is that AP —
PA = 0. It thus makes good sense to speak of the operator A as
having invariant and reducing projections. It is possible to recast
the entire lexicon of invariant subspace theory in purely algebraic
terms. We will say that an element p of a C*-algebra J / is a
projection if p2 = p* = p. The projection p is invariant under an
element a if ap — pap = 0; p reduces a if ap — pa = 0, or, equiva-
lently, if both ap — pap = 0 and a*p — pa*p = 0. Eigenvalues make
sense in this context also: p is an eigenprojection of a with eigenvalue
λ if (a — \)p — 0. The definition of reductivity is the same as for
operators. An element a of j y is reductive if every invariant pro-
jection reduces. An element a is transitive if the only invariant
projections for a are 0 and 1; otherwise, a is intransitive.

EXAMPLE 1. The set J*fκ = {λ + K:\eC, K compact} is easily
shown to be a C*-algebra, once it is known that the set is closed;
the inequality ||λ + K\\ ^ |λ | is of use in proving this fact. The
same inequality insures that if Xί + JEi. = λ2 + K2, then λx = λ2 and
K, = K2. Thus, if λ + K is idempotent, we have (λ + Kf = λ + K,
so that λ2 = λ and 2\K + K2 = K. Thus λ is either 0 or 1. If in
addition we require that λ + K be self-ad joint, then either K or — K
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must be self-ad joint and idempotent. The only compact projections
are those of finite rank, so we have shown that the projections in
^fκ are those of finite rank (in case λ = 0) or finite co-rank (in case
λ = 1). It is now easy to see that Szfκ contains transitive elements.
Indeed, if an operator has an invariant subspace of finite dimension,
the operator must have an eigenvalue. Hence if Ko is a compact
operator that has no eigenvalues, and whose adjoint has no eigenvalues,
KQ lies in ^sfκ but no nontrivial projection in J%fκ can be invariant
under Ko. Ko is therefore trivially reductive in j *£, so Jϊ/K contains
nonnormal reductive elements as well.

This example is unsatisfying because KQ is reductive for too
simple-minded a reason: the only invariant projections are 0 and 1.
A better example would have many invariant projections, preferably
a whole chain of them. This suggests the idea of "complete re-
ducibility" for an element a of a C*-algebra Ĵ Γ

We would like to say that a is completely reducible if, when-
ever p is a nonzero invariant projection for a then there is a non-
zero invariant projection q that is a subprojection of p (i.e., pq = q).
The difficulty is that for an arbitrary algebra J%ζ the projection p
may have no nonzero subprojections; the corresponding difficulty for
the algebra B(έ%f) is the case rank p = 1. We avoid this problem
in the same way as for B{Sίf)\ the unpleasant p's are eliminated
from consideration. Thus we say that an element a of Jzf is com-
pletely reducible if the following condition holds: If p is a projec-
tion with (1 — p)ap = 0, and if there is a proper nonzero subprojec-
tion of p in j*J then there is a proper nonzero subprojection q for
which (1 — q)aq = 0.

A slight bit of trickery allows us to exhibit a completely re-
ducible reductive element of sfκ that fails to be normal. For this
purpose let £ίf be a Hubert space, let Ko be as above, and consider
the operator K, = 0 0 Ko on βέf 0 βέfl The operator Kx is compact,
so it lies in J%fκ. Suppose that Kγ has a finite-dimensional invariant
subspace ^ ^ Then Kx has an eigenvector ex lying in ^£. Since Ko

has no eigenvectors, e, must also lie in the subspace έ%f 0 0, and
must in fact reduce Kλ. Thus the relative orthogonal complement
of eλ in ^ is also a finite-dimensional invariant subspace of K19 so
Kγ has an eigenvector in ^ Q {βj. Proceeding in this way, we can
eventually show that ^ is a subspace of £ίf 0 0. Thus if Λ€
has dimension greater than one, it properly contains a nonzero in-
variant subspace of Kt.

On the other hand, if Kx has an invariant subspace Λf* of finite
co-dimension, then K* has one (<yίrL) of finite dimension and the
same kind of analysis shows that Λ^L lies within 3$f 0 0. Hence

reduces Kγ and contains a nonzero invariant subspace of finite
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co-dimension. We have shown that K^ is a reductive and completely
reducible element of J ^ ; on the other hand, Kx is obviously not
normal.

EXAMPLE 2. It is proved in [5, p. 184] that the smallest C*-
algebra containing the unilateral shift is the algebra J^ζ- = {Tφ + K:
Tφ is a Toeplitz operator with continuous symbol and K is compact}.
Since the only compact Toeplitz operator is 0 [2], if Tφ + K = Tr +
K', then Tφ = IV and if = Kr. In order that Γ̂  + K be idemptotent
it is necessary that {Tφ)

2 + (KTΦ + TΦK + if2) = T, + iL By another
theorem in [5, p. 184] for continuous φ the difference (Tφ)

2 — Tμ is
compact, say (Tφ)

2 - 2> = if. Thus for T̂  + K to be idempotent
requires Tμ + (iTT, + T îf + if2 + ίΓ') - Γ, + K; by the above ob-
servation this equation shows that TΦ2 — Tφ — 0, and hence φ2 — φ = 0.
Since ^ is continuous, we must have φ = 0 or ^ = 1. Then IT = 0
and the computation reduces to the one in the previous example.
Thus the projections in J^ are exactly the same as the ones in J*fκ,
namely those of finite rank or finite co-rank. This shows that a
C*-algebra can be made considerably larger without affecting the set
of projections in the algebra. J ^ of course contains at least as
many transitive elements and nonnormal reductive elements as does

One's feeling is that the above examples work because the class
of projections in Jzfκ and J ^ is not rich—a paucity of projections
makes it easier for an element either to be transitive or to be reduc-
tive, since with fewer projections there is less chance of finding one
that is invariant but not reducing. Do transitive elements and non-
normal reductive elements always occur together? that is, if an alge-
bra contains one, will it contain the other? The well known theorem
of Dyer, Pedersen and Porcelli [6] says that this is the case for the
algebra B(M^). The following example shows that arbitrary C*-
algebras may behave differently.

EXAMPLE 3. Let A be a connected subset of the complex plane,
and let C(Λ) be the C*-algebra of continuous functions on Λ. Since
A is connected, the only idempotent continuous functions on A are
the constant functions φ0 = 0 and φγ = 1. Hence every element is
both reductive and transitive. On the other hand, every element is
also normal, so this algebra contains transitive elements but no non-
normal reductive ones.

Normal operators on Hubert spaces of dimension greater than
one always have nontrivial invariant subspaces: the range of any
spectral projection reduces the operator. As the above example
indicates, it may be that none of the spectral projections (except 0
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and 1) appear in the C*-algebra generated by the normal operator.
These spectral projections are, however, contained in the weakly
closed C*-algebra generated by the normal operator. In other words,
any transitive element of a von Neumann algebra must be nonnormal
(and, of course, reductive). We thus have the following question,
corresponding to Dyer, Pedersen, and Porcelli's result:

QUESTION. If a von Neumann algebra contains transitive elements
must it contain other nonnormal reductive elements? Conversely?

Of course we mean the words "transitive" and "reductive" to be
interpreted relative to the algebra; a transitive element of a von
Neumann subalgebra of B(£ίf) need not be transitive in J3(J^).
Example 3 does not dispose of the following possibility either:

QUESTION. If a C*-algebra contains nonnormal reductive ele-
ments, must it contain transitive ones?

Essentially reductive operators. Let 3ίΓ be the ideal of com-
pact operators in B(έ%f) and let <& denote the quotient space <g* =
J?(<^)/J^ that is, the Calkin algebra. From the point of view of
the first question above, the Calkin algebra is quite interesting, since
it is one of the few C*-algebras for which the answer to the question
"Does this algebra contain transitive elements?" is both known and
nontrivial. Brown and Pearcy [3] have shown that the Calkin alge-
bra contains no transitive elements; the statement for operators on
Sίf is that for any operator A, there is a projection P of infinite
rank and co-rank such that (1 — P)AP is compact. An immediate
question is whether ^ contains any nonnormal reductive elements;
the answer is no (Thm. 2).

Let the canonical surjection from B(2ίf) to & be denoted by π.
We will say that an element A in B(3ίf) is essentially reductive if
its image π(A) is a reductive element of the Calkin algebra. In this
section we shall obtain several conditions equivalent to essential
reductivity, and give a pertinent example. Calkin's original paper
[4, p. 850] shows that any Hermitian idempotent element of <g* is
the image of some projection in B{3ίf). Thus, a necessary and suf-
ficient condition for a projection p e ^ to be invariant for π(A) is
that there exist a projection P e ΰ ( ^ ) such that π(P) = p and
(1 — P)APe3έΓ. Similarly, the condition that AP — PA be compact
is necessary and sufficient for p — π(P) to reduce π(A). The proof
of the following lemma is straightforward.

LEMMA 1. Let P be a projection and A an operator, (i) / /
(1 — P)AP is compact, then there is a compact operator K such that
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(1 - P)AP = (1 - P)KP. (ii) // AP -PA is compact, then there is
a compact K' such that AP - PA = K'P - PK'.

If P is a projection and if (1 — P)AP is compact, we shall say
that the range of P is essentially invariant under A] if AP — PA
is compact, we will say that ran P is essentially reducing for A.
The sets of essentially invariant and essentially reducing subspaces
of A will be denoted by Inv eA and Red eA respectively and the sets
of invariant and reducing subspaces by Lat A and Red A. Since
(1 - P)AP = {AP - PA)Pf Red eA £ Inv eA.

THEOREM 1. The following statements are equivalent:
( i ) A is essentially reductive.
(ii) Red eA = Inv eA.
(iii) // C is compact, and if ^ eLat(A + C) then there is a

compact K such that ^f e Red (A + K).
(iv) If Λ€ e Inv eA, then there is a compact K such that ^/ί e

Red (A + if).

Proof, (i) <=̂  (ii) by the remark preceding Lemma 1 and the fact
that Red eA Q Inv eA.

(ii)=>(iii): Let .^C e Lat (A + C) and let P be the projection
onto ^ so (1 - P)(A + C)P = 0. Then (1 - P)AP is compact, or
Λ€ 6 Inv eA. By (ii), ^f e Red βA, so AP — PA is compact. By
Lemma 1 there is a compact operator K' such that AP — PA =
K'P - PK1. Set K = - i Γ ; then P commutes with A + if, so ^ T e
Red (A + K).

(iii) => (iv): Let ran P = ^ 6 Inv eA. Then (1 - P)AP is com-
pact, and by Lemma 1 there is a compact Ko such that (1 — P)AP —
(1 - P)K0P. Thus (1 - P){A - ifo)P = 0, ^£ e Lat (A - iζ,), and the
conclusion follows from (iii).

(iv) => (i): If P is a projection for which (1 — P)AP is compact,
by (iv) there is a compact K so that P commutes with A + K; but
then AP — PA is necessarily compact.

In several ways, Inv eA and Red eA behave like Lat A and Red A;
for instance, if ^^6 lnv e A, then ^f1 eInveA*. However, InveA
lacks what is perhaps the most important property of Lat A: it can
fail to be a lattice.

EXAMPLE 4. We consider the Hubert space 3ί?(3) = £ίf 0 Sίf ©
^ and the operator A defined by A</, 0, h) = <fe, 0, 0>. Let T be
a compact operator on £ίf whose range is dense. Let* ^£ and
be subspaces of J^ ( 3 ) defined as follows:
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This is a standard example of subspaces whose algebraic sum is not
closed. It is easy to check that Λ€ is invariant under A, and there-
fore essentially invariant. The projection Q with range Λr can be
determined to be the following:

Q<f, g, h> = <0, S(g + T*h), TS(g + T*Λ)>

where we have set S = (1 + T*T)~\ Thus

AQ(f, g, h) = (TS(g + T*h), 0, 0> .

T is compact, so AQ is compact and therefore so is AQ — QAQ.
Thus ^£ and ̂ /^ both lie in Inv eA (in fact, it is easy to check that
both lie in Ή,edeA). On the other hand, the span of ^€ and <Λ" is
the subspace 0 0 £ίf © Sίf. (Let x and y be any two vectors in 3$f.
Find g so that T# is "near" y (the range of T is dense); then the
vector <0, x, Tg) = (0, x - g, 0> + <0, g, Tg) lies in ^ + Λ" and is
"near" <0, x, y}.) Let i2 be the projection having ^^Sίf^^f for
its range. Then

(1 - R)AR{f, g,h,) = ( l - R)A(0, g, h)

= (1- R)(h, 0, 0>

- <h, 0, 0> .

Clearly the range of (1 — R)AR is closed and infinite-dimensional,
and consequently (1 — R)AR cannot be compact. Thus ^€ and ̂ 4^
lie in Inv eA, but their span does not.

We remark that the above example is possible because we chose
subspaces ^ and Λ^ whose algebraic sum is not closed. In other
words, it is possible to prove the following statement: If ^ ^ Λ" e
Inv βA, and if ^f + Λ* is closed, then ^/ί + Λ* is in InveA.

Essential reductivity and essential normality* A recent power-
ful result of Voiculescu gives the following fact as an immediate
corollary:

THEOREM 2. Every essentially reductive operator is essentially
normal.

Proof. For any set ά^ consisting of self-adjoint projections in
<if, let Alg C^H = { α e ^ : ( l - p)ap = 0 for all p e J^"}. For A in
&(βέf), let J*f(π(A)) be the norm-closed subalgebra of the Calkin
algebra generated by π(A) and the identity. Let Latπ(A) be the
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set {π(P):PeInve(A)}. By [9, Theorem 1.8] we have

Alg(Latπ(A)) -

Thus if A is essentially reductive, π(A*) is an element of
and in particular commutes with π(A).

It follows from the fact that π(A*) lies in j^(π(A)) and a theo-
rem of Lavrentiev [7, Ch. II, 8.7] that the essential spectrum Λe(A)
of A must have no interior and must fail to separate the plane. In
the next section we present an alternative approach to the proof of
this fact, which uses only the essential nomality of A.

Essential reductivity and essential spectrum* If A and B are
operators and if there exist a unitary U and a compact K such that
A = U*BU + K, we will write A ~ B. The next lemma follows
from the fact that Inv £U*BU + K) = Inv e(U*BU).

LEMMA 2. If A~ B and A is essentially reductive, then so is B.

The following fact is central and is due to Brown, Douglas, and
Fillmore [1, Corollary 2.3]:

THEOREM 3. If A is essentially normal and N is normal with
Λβ(N) Q Λe(A), then A 0 N is unίtarily equivalent to a compact
perturbation of A.

THEOREM 4. Suppose A is essentially normal, N is normal, and
Λe(N) Q Λe(A). If A is essentially reductive, then so is N.

Proof. By Theorem 4.7, N(&A~A. Thus if A is essentially
reductive, so is N 0 A. Now suppose the subspace ^t is essentially
invariant under N. It follows that the subspace ^^ 0 £%f is es-
sentially invariant under N 0 A. But N 0 A is essentially reduc-
tive, so ^ 0 S(f essentially reduces JV 0 A, and therefore ^€ is
essentially reducing for N.

THEOREM 5. Suppose A is essentially normal, N is normal, and
Λ(N) Q Λe(A). If A is essentially reductive, then N is reductive.

Proof. We use the notation N(oo) to represent the direct sum of
countably many copies of the operator N (notice that N{oo) still acts
on a separable space). It is well known that the essential spectrum
of a normal operator consists of all points in the spectrum of the
operator except the isolated eigenvalues of finite multiplicity. Since
iV(oo) cannot have any such eigenvalues, we have Λe(N(oo)) = Λ(N{00)),
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and it is easy to confirm that the spectrum of N{oo) is equal to the
spectrum of N. Hence JV(OO) is a normal operator whose essential
spectrum is contained in the essential spectrum of A.

Now suppose that N is not reductive, that is, there exists a
projection P such that NP - PNP = 0, but NP - PN is a nonzero
operator. It is then obvious that NMPlΌO) - P<~W(oo)P(0O) = 0, so that
the range of P(oo) is certainly essentially invariant for iV(oo). On the
other hand, N{CO)PM - P^Nloo) = (NP - PJV)(OO); even if the range
of NP — PN is one-dimensional, the range of (NP — PJV)(00) contains
an infinite-dimensional subspace, and the operator (NP — PN){oa)-
therefore cannot be compact. Hence if N is not reductive, N{oo) is
not essentially reductive, and the previous proposition establishes that
A cannot be essentially reductive either. This completes the proof.

The upshot of the last theorem is that if there is any non-
reductive normal operator at all whose spectrum is contained in the
essential spectrum of the operator A, then A cannot be essentially
reductive.

K. J. Harrison [8] has proved the following fact:

THEOREM 6. If X is a compact set in the plane which either
separates the plane or has interior, then there is a normal operator
N which is not reductive and whose spectrum is contained in X.

COROLLARY 1. A is essentially reductive if and only if A is
essentially normal and Ae(A) neither separates the plane nor has
interior.

Proof. If Λe(A) fails to satisfy the condition, Theorems 4 and 5
show that A is not essentially reductive.

Now suppose Λe(A) has no interior and fails to separate the plane.
For the proof we forget about operators and deal entirely with

elements of the Calkin algebra. Suppose that α e ^ is a normal
element whose spectrum Λ(a) has no interior and does not separate
the plane. Recall that the Gelf and map c —+c takes elements of a
commutative C*-algebra J ^ into functions in C(M), where M is the
maximal ideal space of J ^ ; the Gelfand-Naimark theorem [e.g., 5,
p. 92] asserts that the map is an adjoint-preserving isometric iso-
morphism. We identify J ^ with the subalgebra of ^ generated by
a and α*.

The range of a is exactly A(a) and for such a set it is known
that there exist polynomials pn for which pn(z)—>z uniformly for
zeΛ(a). Thus pn(a)—>a and pn(a)*~»α*. It now follows easily that
any projection in ^ that is invariant for a is invariant for α*.
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For normal operators, more can be said:

THEOREM 7. If N is normal and essentially reductive, then N
is reductive.

Proof. By Corollary 1, Λe(N) has no interior and does not sepa-
rate the plane. On the other hand, Λ(N) differs from Λe(N) only by
the addition of isolated points. It is an exercise in elementary to-
pology to show that Λ(N) also has no interior and fails to separate
the plane. It now follows from [10, Theorem 7] that N is reductive.

The converse of this theorem fails, however, and provides us
with an example of a reductive operator that is not essentially re-
ductive. For suppose that A is a diagonal unitary operator whose
diagonal entries are dense in the unit circle. Then Ae(A) is the whole
circle, so A is not essentially reductive; on the other hand, every
diagonal unitary operator is reductive [10, Theorem 6].

We also cannot expect to get a statement like Theorem 7 where
the word "normal" is replaced by "essentially normal"; for instance,
every compact operator is trivially essentially normal and essentially
reductive, but only the normal ones are reductive. However, our
Theorem 5 is used in [8] to prove the following fact:

THEOREM 7 [Harrison], // A is essentially normal and essen-
tially reductive, then there is a compact K such that A + K is
normal and reductive.

Proof. Λe(A) has no interior and does not separate the plane, so
by [1, Corollary 11.3 and Theorem 11.1], A is a compact perturba-
tion of a normal operator N such that A(N) — Λe(N) = Λe(A). N is
thus reductive by the same proof as in Corollary 1 (or by [10, Theo-
rem 7]).
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