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HEREDITARY CROSSED PRODUCT ORDERS

H. MERKLEN

In this paper one deals with crossed product orders A of
the following form: Let & be a Dedekind domain with
quotient field &~ and £f a semisimple, commutative, algebra
of finite dimension over ^ . Let ^ be a finite subgroup of
the group of automorphisms of £f whose fixed subalgebra
is ^~y and let Λo be an ^-order in ^ , which is ^-stable.
Then, if [f] is an element of the second cohomology group
#2(5f, U(Λo))f our order is A = J(f, Λo, £Q One is interested
in the set of all maximal orders in s/~ A(\, if, &) which
contain A and also in all hereditary orders in *$/ which con-
tain A. In particular, one is interested in knowing sufficient
conditions for A itself to be hereditary. This last question
is answered by Theorem 1, and the other, more general
question, is succesively reduced to the classical complete case
(i.e., when & is a local complete Dedekind domain and If is
a Galois field extension of &~ with group ^ ) , to the totally
ramified case (i.e., when, furthermore, £f/^*is totally ramified)
and, finally, to the wildly ramified case.

1* Introduction* In general, we use in this paper the termino-
logy of [3]. With & we denote a Dedekind domain whose field of
quotients is ^ 7 J ^ will be a separable ^J^algebra and g* a finite
dimensional, semisimple, commutative subalgebra of J ^ We denote
with g^ a finite subgroup of the group of automorphisms of g\

Let & be a commutative ring with identity and 2^ a finite
group of authomorphisms of &. Then the group of units of &, V{0\
is a G-module. Let f be a factor system: [f] e iP(5f, U{0)). Then
we define the ring J(f, &, &) as a free ^-module with basis {tσ}(σ e &),
for which a multiplication rule is given by means of:

(htσ)(άτ) = bcη(σ, τ)tστ (ί>, c e . ^ ( 7 , r e ? )

and extended by additivity.

DEFINITION 1. Given g7, a finite dimensional, commutative,
semisimple ^^algebra, and a finite subgroup S^ of the automorphisms
of S? such that the fixed subalgebra of if under the action of S?
is ^:&^ ^ ^ we say that J ^ is a crossed product of g?7 over g*
when J ^ is isomorphic to the .^algebra J(f, g7, ^ ) , for some factor
system f corresponding to an element of

DEFINITION 2. We say that the & -order A is a crossed product
of 2/" over Ao when: Ao is an ̂ -order in g*, when the fixed subalgebra
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of if under the action of & is ^ 7 when Ao is stable under &, and
when A is isomorphic to J(f, Λo, &), for some factor system f corres-
ponding to an element of H2{^, U(ΛQ)).

In the case of Definition 1 we usually allow ourselves to write
= z/(f, gf, gf), and A = 4(f, A, Sf) in the case of Definition 2. In

both cases it is possible to assume, without loss of generality, that
f is normalized, which we will do unless it is otherwise stated. If
Jzf = Λ(f, if, &)9 one can introduce crossed product orders in S/ by
merely taking an & -order Ao in g7 which is ^-stable and such that
f(8^ S )̂ c U7(Λ), and forming J(f, Ao, 9) within szf. What we mean
by this is the following: If J ^ = J(f, g*, S^), there is a basis {tj
(σ 6 gf) of the g'-module J ^ such that (stα)Ojtr) = $Tf(σ, τ)taτ and, if
1 is the identity of ^ , tx = 1, the identity of Ĵ C Such a basis
will be called a natural %?-basis for Ĵ C In a similar way, we have
a natural J0-kasis for a crossed product order A. In these cases each
σ 6 ^ coincides with the restriction to g7 (resp. AQ) of the conjugation
by tα. Now, if J ^ is such a crossed product with such a natural
g7-basis, given an ^-order Ao in W, which is ^-stable and such
that f(gf, ^ ) c U(A0) it is enough to form A = Σ ^ ^ Λ t = θαe^Λt
to have a crossed product order in j ^ which is isomorphic to

Also, given a crossed product order A = J(f, 4,, ^ ) , it is an order
in a crossed product algebra of the form A{\, W, &), which is obtained
as the usual algebraic container: Ssf — ̂  ®^ A.

It is an easy exercise to prove that a crossed product algebra
is centrally simple, and hence separable (cf. [2]). If όzf is a crossed
product, let W£i = 1, , m) be the simple components of g7, and
1 = d + + em the corresponding decomposition into primitive
orthogonal idempotents. The requirement that g ^ = ^ in Definition
1 implies that 2^ operates transitively on {elf •••, em}. Each ^ is a
field, which is Galois over ^ e { with Galois group Jgf = Stab^(ei), and
each pair g*, ^ is a pair of fields conjugate with respect to
Sometimes, by abuse of language, we say that g* is Galois over
with group Sίfi. If it denotes the order of Ŝ , the dimension of g7

over 'S^ and the rank of Jzf over g7 are both equal to n, while the
dimension of J ^ over JF~ is n2. It may be noted (which is also
easily proven) that g7 is a maximal commutative subalgebra of Jtf.

We will refer to the case in which g7 is simple (i.e., when it is
a field) by saying that we have a classical crossed product algebra
or a classical crossed product order.

2+ Hereditary crossed product orders*
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THEOREM 1. Let &ί be a local complete Dedekind domain with
field of quotients J^. If the extension ίg'JJ^ is tamely ramified
and if Λo is the maximal &-order Ω in if, then A = zf(f, Ao, &) is
a hereditary order and, moreover, a principal hereditary order
{for the definition of it, see [6]).

This result, which is essentially equivalent to a theorem of
S. Williamson (cf. [5]), is, in a more general form, a corollary of
Proposition 1, except for the part that affirms that the hereditary
order is principal. We give a direct and easy proof, based on
S. Williamson's result.

Proof. By calling fL the function e3 f and Ssfx the algebra
we have that Jtf[ is a crossed product J(fw g^, Sίfd that is a classical
crossed product. If we call Λt the ^-order zjίz^ we see that it is
a classical crossed product order J(f3, Λ01, Sίf^) in j&[, where ΛQ1 is the
^-order ^Ao in the field g\.

According to S. Williamson's result, Ax is principal hereditary
if gy^"* is tamely ramified. In this case, the radical of Alf ^V[, is
of the form: ^Ϋl — πyAX9 where πx is a prime element of Λoι (and,
hence, πγ generates the radical of Λ01, which is its unique maximal
ideal). Let σ1 — 1, σ2, ••, σm be a system of representatives of the
cosets σiSίf of ^-modulo 34f = Sίfx such that σfa) = ειf and then
define π to be the element of Λo obtained by:

Let ^V be the radical of A. Theorem 1 will be proved if we succeed
in showing that Λ" = πA = JTΓ. The second equality is clear, in
view of the definition of π. It follows readily from Nakayama's
lemma that πAc^yK To prove the reverse inclusion, we form the
quotient

A.-J
πΛ '

which is in an obvious way of the form

πA0

(bars denoting objects modulo π), and show that rad (/Γ) = 0.

But here we notice at once that (A\ = (Λ), where the left-hand
side means e^Ά^ and the right-hand side means Aγj(πxA^ — Aγ\%sΫZ.
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Hence, Λ± is semisimple. Now, if we express elements of Ao as the
corresponding sums of their projections into the simple components,
an arbitrary element δ in rad (A) is of the form

δ = Σ «ιfΛt
i,σ

and a direct calculation shows that (for each i, i)tσ-ieι8ζjtOi is equal to
0 because it is an element of rad (A) Π Aγ c rad (ΛίΊ). It follows that
all the ai>σ are 0, so that δ — 0.

2* Reduction to the local case* In this section we assume &
is a local Dedekind domain and we keep the preceeding notations
and conventions. We assume further that Λo is equal to the sum
of its simple components (meaning that all the idempotents eέ are
elements of Λo).

Let us be given a crossed product order A = Λ(f, Ao, &) in the
crossed product algebra Szf — 4(f, gV ^ ) We considerar a Λ-ideal,
^ί< i.e., a full ^-lattice in j ^ such that A^€ c ^ ^ and Λ€A
In particular, ^ C may be any order containing A. We define,

It is immediate then that ^x = ^ ^ Γl

LEMMA 1. T7

Proof. It is clear that ^ [ is a Λ0-Hiodule (left and right). Next,
given an element ι of ^€, we have through a direct computation
that

so that elements:

are in ^ γ and are such that

I = Σ Wf1

This shows that ^ f c A^Jl c ^ C which gives the desired result.

e. For this result one does not need to assume that & is
local.

PROPOSITION 1. Let ^ be the set of all A-ideals in Jϊf and *J\
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the set of-all A^ideals in J&ί. We introduce the following mappings:

R:

S:

Then R and S are inverse bijections and have the following pro-
perties:

( i ) ^fc^r'=*R(^t)c:R{Λ").
(ii) Γe^ is an order if and only if R(Γ) is an order.
(iii) If Γ e ^ is an order, then £f is a Γ-ideal if and only

if R(£f) is an R(Γ)-ideal. In particular, rad (R(Γ)) = i2(rad (Γ)),
rad (S(Γ)) - S(rad (Γ)).

(iv) Γe^ is a maximal (resp. hereditary) order if and only
if R{Γ) is a maximal (resp. hereditary) order.

Proof, (i) clear, (ii) If Γ is an order containing Λ, it is clear
that Γx is a finitely generated ^-module which is a ring containing
Λ1 and, hence generates JK under J^. Conversely, if Γ1 is an order
in J ^ containing Λlf SiΓJZ) S^Λ,) = A, whence S(ΓX) is a finitely
generated ^-module containing A. Its closure under multiplication
follows from: AΓγAAΓγA = AΓ^Ae.Γ.A = AΓγAJTλA = ̂ tΓ^. (iii) If
^ is a Γ-ideal, ΓSf = . ^ Γ = . ^ implies: Γ l c ^ = e1Γc1c]βg

:7e1 c
tJΓSftt = «2fi and, similarly, ^ c ^ . The converse is equally
easy, (iv) Let Γ be a hereditary order containing A and let us call

the radical of Γ. We also introduce:

= {£ e j ^ / s ^ r c 4 , ^ 7 - rad(Λ))

and ^//Γ1 = ίϊ e ^K/ϊ-^1"1^A} Then, there exist two finite families:
&, ̂ , such that &e^r, ^e^V"1 and Σ^iϊi = l It follows that the
elements ίσ-^βι are in ̂ V[, and the elements e&e,^ in ̂ f̂ ""1. It follows
easily t h a t ^ T " 1 ^ ^ = A This suffices to say that ^Y[ is a projective
Γ^module, which is a necessary and sufficient condition for an order
(in the local case) to be hereditary. Conversely, if Z\ is hereditary
(that is, if ^TΓ 1 ^^ = Λ) it follows: AΛl^A-AΛlA = jUrrιΛιΛϊA =
A^YΓ^^KA — AΓtA = Γ, which is enough to guarantee that Γ is here-
ditary.

Note. The assumption that & is local is used only in the proof
of part (iv) in the preceeding theorem.

COROLLARY. , Let AQ = Ω, the unique maximal order in the com-
mutative algebra g*. Then the following propositions are equivalent:

( i ) A is hereditary for every factor system f
(ii) if f = 1, A is hereditary,
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(iii) i?! is a tamely ramified extension of
If furthermore, the residue class field of AQί is perfect, then the
propositions above are equivalent to the following:

(ii)' There exists a factor system f such that A is hereditary.

Proof, (i) implies (ii), and (ii) implies that J(l, if, gf X is he-
reditary which, by S. Williamson's results (cf. [5]) implies (iii). Again,
by S. Williamson's results, (iii) implies that Λx is hereditary, which
implies (i). (ii)' implies that A(\, if, gf X is hereditary for some f.
Then, if ΛQ1 has a perfect residue class field, by Harada's results
(cf. [1]), (iii) follows from (ii)'. Clearly, (i) implies (ii)'.

Remark on the possibility of an effective computation of the
Schur index. Let & be a local complete Dedekind domain and let
us assume that g y , ^ is tamely ramified. We are going to show
how, using only the information contained in the data for the definition
of A as a crossed product order, it is possible to compute the Schur
index of both όzf and Jtf[ (which, as it turns out, are equal to each
other).

Let us work first under the simplifying assumption that we are
in the classical case: J^/ = J3<, g7 = if x. The centrally simple algebra
Szf can be viewed as a matrix algebra of degree ϊ, say, over a
division algebra 3fm Since A is a principal hereditary order, it is a
block order corresponding to a matrix of the form:

0

1 0 . . .

1 1 0

0\

0

0

\l 1 1 . . . 1 0/

whose blocks are all of the same size (xxx, say) (cf. [3], Ch. IX, §2).
In [5], S. Williamson has proved that if t is the number of blocks
(and, hence ϊ = xt) then t can be computed as the order of the con-
ductor group of [f], £Γ[f] which depends only on [f].

It is well known that <3ϊ has a unique maximal order Ω with a
unique maximal ideal ^ and that the Schur index of J ^ (which is,
by definition, the square root of the .^dimension of &), 3, is equal
to the dimension of £& = Ωj^Γ over ^ — ^ / r a d (^?). Let us
introduce the notation f* for the residue class degree of if over ^ 7

Then we can look at the quotient A — Aj^Γ in two different ways,
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namely as a direct sum of π = (2^: 1) copies of i? = i2/rad(42) and
as the direct sum of "residue matrix blocks" which arises when we
compute the quotient starting from the general form of the matrices
in Λ. A computation of the J^dimension of A from each point of
view gives:

from which we get that:

Then, we obtain the desired result in the form of the formula:

8 = "

U
If we proceed, for the general case, in a similar way, we get

that the Schur index of όzf is equal to the Schur index of j*£.

Remark on the reduction to the complete case. Assume once
again that & is a local Dedekind domain. Questions regarding the
hereditarity or maximality of orders in Jzf containing A can be
reduced to the same questions concerning orders in j2^ containing
the completion Λ of Λ. However, the completion J ^ of a classical

• crossed product όzf = 4(f, £?, &) is in general no longer a classical
crossed product, but rather a crossed product in the sense of our
Definition 1 (see Proposition 1.4 of [5]). More precisely, Szf =
4f, Φ, %?) where i? = g\ ® © If, and the gft denote the com-
pletions of i? at each of the prime ideals ^ lying over the prime
ideal of j ^ . The rest of the paper is devoted to reducing the study
of A in jzf to the local complete case, namely to the study of Ax in
j9[ = J(fi, gΊ, ^ ) where ^ denotes the decomposition group of ^ .

3* Reduction to the totally ramified case* Throughout this
section we keep our general notations but we assume that & is a
local complete Dedekind ring and that & jj^ is a Galois extension
with Galois group 5 .̂

We fix a normal subgroup S$f of & and call £f the fixed field
of Sίf so that g 7 ^ is Galois with group Sίf and S^l^ is Galois
with group ^\^f.

We use the following natations:
7Γ is a prime element of ^ , so that rad

A^ — Λ0Π ^f = i2 = the maximal ^ - o r d e r in
Λf =
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aγ — 1, σ2, •••, σm are representatives of the cosets of S^-modulo
Sίf, or of the elements of ^jSίf.

We assume that Jzf is identified to the subalgebra 1 (x) J ^ of

LEMMA 2. 1/ S^\^ is an unramified extension, then Af is
equal to the sum of its simple components.

Proof. The ..^algebra & ®^- g? is semisimple and it contains
in an obvious way the semisimple .^algebra Sf ® ^ £f and both
have the same primitive orthogonal idempotents. Let (^)(t = 1, , m)
be an ^-basis of Ω and let Δ be the discriminant of this basis.
The standard decomposition of a tensor product of .^extensions:
*5Γ (&jr Sf, where £f\&~ is separable, through the Chinese remainder
theorem allows for a direct computation of the irreducible idempotents
ei# In our case, one obtains:

-** 1 y* 1 — 1 C\ u 1 c* 1

JJ:

Now, if is unramified, J is a unit and the lemma follows.

The group 3^ may be considered as a group of automorphisms
of the semisimple commutative ^ a l g e b r a £?^, provided that we
define the action of σ e g ' in g 7 ^ by establishing that ( ϊ®^) α =
%<g)φ (£€£%*)£ &f σe&). On the other hand, the factor system f
may be viewed as a factor system f: ^ x ^ —> g 7 ^ (by identifying
each f(ff, τ) with 1 (g) f(σ, r)). If we do this, we can state:

LEMMA 3. jχ?M' is a crossed product J(f, £?•**,

Proof. Straightforward.

We introduce the following sets:
g?3* is the set of all orders Γ in Jzf^ which contain A* and verify
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the following condition:

for each element j in Γ there is a representation of the form

(*) x = Σ ^ ® ϊ i

{with tot e Ω, & e όzf) such thai each 1 (g) & is also an element of Γ.

is the set of all orders in J ^ which contain A.
Next, we consider the following two functions:

O

Then we have:

PROPOSITION 2. P and I are order preserving bijections, inverses
of each other.

If> furthermore, JZf/^~ is an unramified extension, the following
diagram is commutative:

PΛ
\

6? ib

where R and S are the mappings which were introduced in the
Proposition 1, applied to the case in which <S%f is j ^ ^ and, thus,
S^i is (J^Oi = : J ^ = : Δ(\\£ίf x &* g7, £ίf). If follows that έ?^
(the image of έ?^ under R) is the set of all ^-orders in
which contain

Furthermore, in this latter situation both P and I carry hereditary
orders into hereditary orders.

Proof. Most of the proof is direct. For example, to prove that
Pol= ib, we take Γ e ^ r and form i 2 ® ^ ( Γ Π J ^ ) , which has to
be shown is equal to Γ. It is obviously contained in Γ. But also,
if 7 e Γ , according to (*), we can write it in the form: Σί &>«§<)£«>
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with each 1 ® ${ belonging to Γ. But this actually means that each
1 ® & belongs t o Γ ί l J ^ whence 7 e Ω ® ^ (Γ Π J ^ ) . The fact that
the other composite, IQP, is the identity of & goes as follows: Let
Γ e ^ 5 ; then Γc(ΛOjr (g)Γ) Π Ĵ C Now, if 7 is in the latter order
and if toέ is an ^-basis of £, then there are elements & in Γ such
that 7 = Σt toi ® & — 1 ® I (with £ in j y ) . Then, if ax are elements
of £f such that 1 = Σι «M> it follows that a& = & e Γ, which implies
that £ = Σι toiXie ̂

In the case that £f\&~ is unramified, according to Lemma 1,
AT is the sum of its simple components and we can apply Proposition
1 to our situation in which S/^ plays the role of J ^ and Aw the
role of A.

As for the statement on the behavior of P and I in this unramified
case, we proceed as follows. Let ^/Γ, ^V**, be the radicals of Γ and
P(Γ) = Γ* and let

We claim that Λ"* = P(^Π = :Ω®#^K In fact, ^K is π-nilpotent
(meaning that for some integer m, <yf^m a πΓ), so that Ω ®̂ > ̂ ^ is
π-nilpotent too and hence Ω ® ^ ̂ V c ^ ^ ^ . On the other hand, the
assumption that ^f/^ is unramified forces Ω/πΩ to be a separable
extension of ^ and from this it follows readily that
is semisimple, and hence that Λ"Xef c Ω ®

It is then easy to see that also {^T^)~ι

Now, if Γ is hereditary, we have ^Ϋ^^Ϋ" = Γ, from which it follows
that {^r^T^^V^ = Γr' which says that Γ* is hereditary. Con-
versely, if Γ^ is hereditary, {^V^)~\ ^Γ^ = Γ^ and then we have
also that ^K"1^!^ = Γ, or that Γ is hereditary. This completes
the proof.

Let us remark before proceeding any further that the algebra
3/^ =; j(f \ge? x §tf, g-, ̂ r ) is a crossed product of the ^-algebra
if and either A& or any other ^-order in ^7^ is at the same time
an order over the Dedekind ring Ω = AQ^. Also, it is important to
keep in mind that questions of maximality or hereditarity for elements
of tfsr are the same independently that one considers them as ̂ ?-
orders or as i2-orders.

Let gΐ'sr be the family of all orders in &^ which are invariant
under ^ , i.e., the set of all orders Γ in && for which it is true that:

taΓt;ιc:Γ

and let us introduce the following two functions:
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p(Γ) = ΓΛ = ΛΓΛ .

Then we have:

PROPOSITION 3. Jop is the identity map of d^^. and, for each Γ
in d7, p(J(Γ)) is the minimum of the elements of a? whose under J
is J{Γ).

If £fj^~ is unramified, the following diagrams are commutative:

R d7

\

A/\*
and therefore έ?'^ = £?&? and both bijections p and J preserve here-
ditary orders.

Proof. It is clear that J" is a mapping from & into <^^, because
j ^ is invariant under S .̂ It is also easy to see that, for Γ in
&'&•, ΓA — Σ<τ Γtσ, from which one obtains readily that p(Γ) is an
element of έ?. The statements about the composites Jop and poj
are proved straightforwardly.

Let us assume that Sf\^ is unramified and let us take Γ in
&. Then R(P(Γ)) is the set of all elements of the form

Σ toiίt A

such that

for all i. But this means exactly that R(P(Γ)) = J(Γ), which is the
commutativity of the first diagram. On the other hand, if Γ is in
^., , it contains Λ^9 so that:
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= ((Ω (X) ̂ A)Γ(Ω <g) ΛΛ)) Π S/ = (0 (g) *(ΛΓ,1)) Π

and the order on the right contains p (Γ) == ΛLΓΛ. Conversely, an
element £ of I(S(Γ)) can be written in the form:

i

(to,, an ^-basis of i2; fy 6 ΛΓΛ = p(Γ); 2 6 j^) .

If â  are elements of Sf such that 1 = Σi to A we obtain at once
that t)ϊ = α:^ so that s = Σι to$ι e ί>CO This proves the commutativity
of the second diagram. The rest follows because of Proposition 2.

COROLLARY. Let ^ he the inertia group of S?/,^ and W^- = : JSf
the inertia field, and let us assume that the order Λo contains Ω =
ΛQJT = Ω^ {the inertia ring of the maximal &-order in If). Then
the lattice & of orders in Jzf is isomorphic to the lattice of Ω-
orders in J^S. The isomorphism preserves hereditary orders. Hence,
the study of orders containing the crossed product A = Λ{\, Λo, S?)
is reduced to the study of orders containing A^ = J(f, Ao, ^), a
classical crossed product order corresponding to a Galois extension
g7=2f which is totally ramified. In particular, if g 7 / ^ is an
inertial extension and Ao is the maximal &-order in if, then A =
zf(f, Ao, %?) is a maximal order in S>/. [This last statement has been
proved by Auslander and Goldman (see Th. A.12 and Prop. 7.1 of
The Brauer group of a commutative ring).]

4* Reduction to the wildly remified case* In [2] we introduced
in a first approach the idea of a noncommutative crossed product.
For the time being, we write below an ad-hoc definition which
suffices for the purposes of the present paper.

Let y be a ring, & an ^-algebra and φ a finite group. Given
a mapping φ: φ > Aut ( ^ ) such that:

(a) & = ιK,
(b) W Γ ^ r 6 l n A u t ( ^ ) ,

we define the two mappings:

a: gf x & > In Aut

(σ, τ) > aσ>r

f: ^ x #

by the conditions:

( ί ) ΦoΦa = 0>σ,tΦoτ

(ii) αα,Γ(χ) - f(σ, τ)sf(σ, r ) " 1 (Vσ, r 6 G, Vj e
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Let {tσ}(σ 6 gf) be any set in 1 — 1 correspondence with S? and
let J^f be the free ^-module with basis {tj. Then the rules:

( i ) tJb = φo(K)tσ,

(ii) t£ = f(<τ, τ)tσr ( σ , τ e ^ ; 6 e ^ )
define a multiplication in *jy which makes it into an ^-algebra.
This algebra will be denoted by Δ(φ9 &

DEFINITION 3. If ^ is any field and & is a finite dimensional
any algebra ^ which is isomorphic to one of the form

Δ(φ, έ%, # ) discussed above, will be called a (noncommutative) crossed
product of & over ^ . If Γ is an ^-order in & which is in-
variant under each of the φσ's any order Γ which is isomorphic to
Δ(φ, Γ, %?) will be called a (noncomutative) crossed product of gf
over Γ. (For more details see [2], §6.)

The proof of the following result is fairly direct, but rather
long. It is written in details in [2].

LEMMA 4 (Maschke's theorem). Let J?~ be any field and p its
characteristic and let .^? = Δ(φ, &, g?) be a crossed product J^-
algebra. Then, if p does not divide the order of &, we have:

& is semisimple = > & is semisimple

& is separable = > & is separable .

For the remaining of this section we go back to the notations
of §3. The situation of Proposition 3 provides us with an example
of noncommutative crossed product algebra and an example of non-
commutative crossed product order, which is actually the main justi-
fication for the introduction of this idea in the present paper.

Let us make J ^ play the role of &, and &l3ίf the role of
Sp\ Let us choose a set of representatives of & in g ,̂ and let, in
general, σ be the representative of the coset ά e ^ . Let Φ be the
mapping which sends each σ e 5^ to the automorphism of j ^ i . which
is conjugation by tσ. Then j%? is a crossed product Δ{φ, j ^ ,
In a similar way, A is a crossed product order: A = Δ(φ, A^y

and, more generally, for each Γ e ^ , p(Γ) = AΓA = Δ(φ, Γ,

PROPOSITION 4. // the characteristic of j ^ ~ does not divide the
order of gf = ^\§ίf, we have:

1. For each Γ e ^ , rad(p(Γ)) = rad"(Γ) j)(Γ);
2. Γ e Λ is hereditary if and only if p{Γ) is hereditary;
3. VΓeέ?, if J(Γ) is hereditary,,then Γ is hereditary.
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Note. This proposition applies in the case that S ? / ^ is totally
ramified when 3$f = &ly the first ramification group. In this case,
j ^ = j ^ P l = Λ(\\&x x ^ , g*, ^ ) is a 2^-algebra, where 3^ is the
ramification field of £?AJC The extension g 7/^ is wildly namified.
Thus, this proposition provides a reduction for our study to the
wildly ramified case.

Proof. 1. Let ^ T be the radical of Γ and let

Then ~/F' is a two-sided ideal of p(Γ) and, by Nakayama's lemma,
' c rad (p(Γ)) On the other hand,

' = Δ{φ, r,

where, for each σ 6 G/H, φ^ is the passage to the quotient ΓI^V* of
the automorphism φj of Γ. Then, by Maschke's theorem,
is semisimple, whence rad(p(jΓ)) = *>V = ^V-p{Γ) = : p(yK*).

2. Let Γ 6 ^ i- be hereditary. Then there are elements
such that Σϊί ϊ ι = l I* follows from 1 that &e

£ j so that p(Γ) is hereditary.
Now let p(Γ) be hereditary and let {&} be an ^-basis of

and jc[ be elements of p{^K)~1 such that Σ ϊίίi = l We can write
each & in the form tytj , where {̂ J is an ^-basis of f̂C If χ{

happens to be, in this notation, tyfe. we denote it j i fj and £ ^ the
corresponding jc'. Hence, we can write:

It follows easily that each bj-a-T belongs to Λ~ 1 and since

Σ h^t-Λfc =

which implies

\>o

we have that Γ is hereditary.
3. We have p(J(Γ)) c Γ. Hence, if J(Γ) is hereditary, p(J(Γ))

is hereditary, by 2, and Γ is hereditary because it contains the latter.

DEFINITION 4. Let A = A(ψ, A, %?) be a noncommutative crossed
product in a separable .^-algebra ^ ? = 4(6 Ĵ < S )̂, where J ^ is a
central simple ^"-algebra. Let -^(4) be the center of Λ. Then:

(1) The inertia group, ^ of A over A is:
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= {σ e #/Vj: 6 sr(Λ), φj® = Ϊ mod (rad (A))}

is a normal subgroup of gf )ί
( 2) .ί is tamely ramified over A if
( i ) JΓ(/f/rad (/f)) is. a field, an algebraic, separable extension

of ^ and
(ii) The characteristic, p, of JF" does not divide the order of

THEOREM 2. With the notations of Definition 4, if A is tamely
ramified over A and if A is hereditary, then A is hereditary and
rad (A) = γad(A)-A. [Note: In fact, for the proof of this theorem
we do not make use of the separability of ^Γ(Λ/rad (A))/^.]

Proof. It is enough to prove the latter statement (cf. the proof
of Proposition 4). As in Proposition 4, we can write Γ — A/ΐ2id(A)A
in the form Δ(φ, A/r&d {A), # ) , and it would be enough to show that
this algebra is semisimple. Let ΓQ = Δ(φ, Λ/rad (A), ̂ ). Then Γ is
in an obvious way a noncommutative crossed product of 5^/^ over
Γo. By Maschke's theorem, Γ is semisimple. Also, it is clear that
rad (Γ) Π Γ o c rad (Γo) = 0. By contradiction, we assume that rad(Γ) Φ
0, and take δ Φ 0, Serad(Γ). We write δ as a linear combination:

5 = Σ«itσi (δ,6fβ)

wite a minimal set of nonzero coefficients and we can assume, w.l.o.g.,
that one of the tσ. is tOl= 1. Also, since δ Φ &, the number of
coefficients is at least two. Let j be an element of %*(A) such that,
for some index i which we keep fixed thereafter,

φσι(l) & j mod (rad (A)) ,

so that if £ is its class in ΓOi φπ.(χ) Φ J. We have:

By the assumption of minimality, it follows that p — δφ"1® = 0,
which implies δ,-^ — ̂ ( j ) ) = 0, a contradiction.

COROLLARY If Γ e && is a maximal order and p \ [J^:
where ^' \<%f is the inertia group of p(Γ) over Γ, then p(Γ) is
hereditary.

Proof. We know that J^S is simple and if Γ is maximal,
Γ/rad (Γ) is a simple algebra whose center is a field, so that the
proof of Theorem 2 applies to this case.
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Note. This paper has been written under the assumption that
for Galois (field) extensions 8 7 _ ^ the residue class field extension
U\β" is separable (cf. Cor. to Prop. 3, Prop. 4). This assumption
is convenient for our purposes, but is not really necessary.
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