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IDEALS AND RADICALS OF SOME
ENDOMORPHISM RINGS

JUTTA HAUSEN AND JOHNNY A. JOHNSON

Let R be the full ring of endomorphisms of a reduced
abelian p-group G. A description is given, in terms of its
action on (?, of the Jacobson radical J(R) of R for the case
that G is sufficiently projective. Other ideals and radicals
of R and their relation to J(R) are discussed.

1* The results* In order to study the structure of a ring R,
one of the most important tools is the investigation of radicals.
In this context, the following ideals are of interest. Throughout,
the word ideal will mean two-sided ideal.

N(R): sum of all nilpotent ideals of R;
B(R): intersection of all prime ideals of R (Baer radical);
L(R): sum of all locally nilpotent ideals of R (Levitzki radical);
K(R): sum of all nil ideals of R (Koethe radical);
J(R) : sum of all quasi-regular ideals of R (Jacobson radical).

One has

(1.1) N(R) S B{R) Q L(R) Q K(R) £ J(R) ,

and all of these ideals, with the possible exception of J(R), are nil
[4, pp. 193-197].

In this note we consider the case where R = End G is the full
ring of endomorphisms of a reduced p-primary abelian group G. Our
interest will be focused primarily on the Jacobson radical.

In [3] and [9], respectively, lower and upper bounds for /(End (?)
where given, namely

(1.2) I(G) S /(End (?) £ H(G)

which are defined as follows. Note that we write mappings to the
right; throughout, λ is a nonzero ordinal such that pxG = 0. Then
let I{G) be the set of all ε e End G for which there exists a finite
sequence of ordinals σQ, σlf , σk+ίf where k — fc(ε), such that

0 = σ0 < σ1 < <σk < σk+1 = λ

and, for i = 0, •••,&, pσiG[p]e £ pσ^G. Let H{G) be the set of all
ε e End G such that, for each nonnegative integer n, pnG[p]ε Q pn+1G.
Clearly, both I(G) and H(G) are ideals of End G. R. S. Pierce has
shown that /(End (?) = H(G) if G is torsion-complete, and /(End G) g=
H(G) if G contains an unbounded direct summand which is a direct
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sum of cyclic groups [9, pp. 287, 288].
We will prove the following theorem. A reduced abelian p-group

G is called sufficiently projective if every countable subset of G is
contained in a totally projective direct summand of G.

THEOREM 1.3. If G is sufficiently projective then J(EndG) = I(G).

Clearly, totally projective groups are sufficiently projective; the
totally projective p-groups without elements of infinite height are
just the direct sums of cyclic p-groups [1, p. 89; 11, p. 251]. Thus,
Theorem 1.3 generalizes Theorem 3.8 of [3] and the p-group version
of (2.3) in [7].

As a consequence we obtain a characterization of the quasi-regular
ideals of some endomorphism rings.

THEOREM 1.4. Let G be sufficiently projective. Then the fol-
lowing properties of the ideal I of End G are equivalent.

( i ) I is quasi-regular.
(ii) I induces in G[p] a nil ring of endomorphisms.
(iii) The restriction of I to G[p] is locally nilpotent.

Radicals of endomorphism rings other than the Jacobson radical,
have received little attention in the past. If G is unbounded then
R = End G contains nil-ideals which are not nilpotent, for example
N(R) (see Corollary 2.5 below). This property characterizes the
unbounded p-groups as the following result shows.

THEOREM 1.5. Let R be the endomorphism ring of a reduced
abelian p-group G. Then the following conditions are equivalent.

( i ) N(R) is nilpotent.
( i i ) J(R) is nilpotent.
(iii) J(R) is nil.
(iv) J(R) = K(R).
( v ) N(R) = B{B) = L(R) = K(R) = J(R).
(vi) J(R) = N(R).
(vii) G is bounded.

As pointed out in [5, p. 312], not all radicals that have been
defined in the past are of equal importance. The Jacobson radical
has been so successful since it seems to have a strong bearing on
the structure of a ring. This is in coincidence with our investiga-
tions of endomorphism rings. The characterization of J(EndG) in
terms of its action on G seems to be more tangible than the char-
acterization of the other ideals of R — End G in (1.1). Moreover, in
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all cases such a characterization of J{R) has been obtained [2, p.
27; 7, p. 170; 9, p. 287; Theorem 1.3 above], it was possible to com-
pletely describe J(R) in terms of its action on G[p]. That this is
not possible for the other ideals of (1.1), can be seen from the fol-
lowing result. Throughout, for subgroups S and T of G, S Q T,
Ann (T/S) denotes the set of all εeEndG such that Tε £ S, and
A n n r = Ann(Γ/0). Clearly, if S and T are fully invariant, then
Ann (T/S) is an ideal of End G.

THEOREM 1.6. Let R be the endomorphism ring of a sufficiently
projective abelian p-group G without elements of infinite height
and let J = Ann G[p]. Then

J(R) = K{R) + J= L{R) + J= B(R) + J= N(R) + J.

We conclude with a remark on various classes of p-groups.
The significance of the class of totally projective p-groups lies

in the fact that it is the largest natural class of p-groups distin-
guishable by certain cardinal invariants [1, p. 100]. Recently, a
number of new classes of ^-groups have been introduced which
properly contain the totally projectives and, for some of them, a
classification by invariants has been obtained. Among those we
mention Warfield's S-groups [13, 14] and the Crgroups of Megibben
and Wallace [8, 12] where λ is an uncountable limit ordinal. How-
ever, for p-groups without elements of infinite height all of these
classes coincide and reduce to the class of direct sums of cyclic
groups which are the totally projective groups of length at most
ω. This is not the case for the class of sufficiently projective p-
groups introduced in this article: there exist sufficiently projective
^-groups of length ω which are not direct sums of cyclic groups
and, hence, not totally projective [1; p. 50].

2* The proofs* Throughout the following, R = End G. We
postpone the proof of Theorem 1.3 and start with a few observa-
tions on endomorphism rings of arbitrary reduced p-groups. As above,
λ is a nonzero ordinal such that pλG = 0.

LEMMA 2.1. The restriction of I(G) to G[p] is a locally nilpotent
ring of endomorphisms of G[p].

Proof Note that I(G) is the sum (and set union) of ideals whose
restriction to G[p] is nilpotent, namely

KG) = U KΦ) - Σ KΦ) ,
ΦQλ ΦQλ

Φ finite Φ finite
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where, for Φ a finite subset of λ = {μ \ μ < λ}, I(Φ) is defined as
follows. If Φ = {σlf , σm} such that #! < σ2 < < σm, put σ0 = 0
and σm+1 — λ, and let

Theorem 1.4 will be an immediate consequence of Theorem 1.3
and the following result.

COROLLARY 2.2. Suppose that J(R) = I(G) and let I be an ideal
of R. Then the following conditions are equivalent.

( i ) I is quasi-regular.
(ii) The restriction of I to G[p] is nil.
(iii) The restriction of I to G[p] is locally nilpotent.

Proof. Obviously, (iii) implies (ii). By (2.1) of [3], (ii) implies
(i). Assume (i). Then IQJ(R) = I(G), and Lemma 2.1 completes
the proof.

For the next result, G need not be reduced. For XQG and
IQ R, XI denotes the set of all xε where x e X and ε 6 /.

LEMMA 2.3. For each integer n ^ 0, H(G) Π Ann pnG is a nil-
potent ideal of R.

Proof. Let I = H(G) n Ann pnG. Clearly, / is an ideal of R.

Moreover,

G[p]In+1 £ pnGI = 0 ,

which implies

(2.4) G[pk]In+ι £ G[pk^] for each k ^ 1 .

Furthermore,

GIQ G[pn] .

Hence, using (2.4),

Qp+ln+l)n Q (J[p n ] ( n + 1 > * Q G[pn~%] = 0 ,

as desired.
The set T(R) of all torsion elements of R is an ideal of R [1;

p. 278] which, as an abelian group, is a p-group. Hence

T{R) == {ε6R\pnε = 0 for some n < ω)

= U Ann pnG = Σ Ann ί>%G .
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COROLLARY 2.5. H(G) Π T(R) = Σ % < ω [H(G) n Ann p^G] is a locally
nilpotent ideal contained in N(R).

Proof of Theorem 1.5. We first show the equivalence of condi-
tions (ii)-(vii). By definition of the various ideals, (ii) implies (vi),
which, in turn, using (1.1), implies (v). That (v) implies (iv) and
(iv) implies (iii) is obvious. Assume (iii). By (1.2), Ann G[p] Q
I(G) C J(G). Thus, (iii) implies that the multiplication p 1^ is nil-
potent. Consequently, (p lG)

n = pn 1G — 0 for some integer n ^ 0
and pnG = 0. Thus (vii) follows from (iii). Assume (vii). Then
pnG = 0 for some integer n ^ 0, and Ann p%G = R. Thus

H(G) = £Γ(G) Π R = H(G) Π Ann pnG .

Using Lemma 2.3, it follows that H(G) is nilpotent and, observing
(1.2), so is J(R). Hence (vii) implies (ii), and the last six conditions
are equivalent. Clearly, (ii) implies (i). The proof will be completed
once we show that N(R) is not nilpotent if G is unbounded. Suppose
the latter and pick an integer n*zl. We construct e 6 N(R) such
that εn Φ 0. Since G is unbounded and reduced, G has a decom-
position

G = 0 (a,) 0 C
i = l

where, for i = 1, •••, n, the order of aif call it mi9 is strictly less
than the order of ai+1. Define ε e R by

αw+1ε = 0

Ce = 0 .

Since, for each i ^ n, mi+1 — m< ̂  1, ε 6 jff(G). Clearly,

p^n+iQe C Cε = 0 .

Hence ε 6 H(G) Π Ann pw^+iG and seN(R), by Corollary 2.5. One
easily verifies that

axe
n = pmn+ι-mian+1 Φ 0 .

Hence εn Φ 0 as desired.

LEMMA 2.6. If pωG = 0

/((?) - [fl"(G) Π Γ(Λ)] + Ann G[p] .

Proof. Since Ann G[p] £ /(<?), it suffices to show that, for each
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ε 61(G), there exists η e H(G) Π T{R) so that ε and η coincide on G[p].
Let ε 61(6?). By definition of I(G), pωG = 0 implies the existence
of m < ω such that pmG[p]ε = 0. It is will known that G has a
decomposition

G = i 0 ΰ , pmG = pmB^ B[p] .

Define ηeR by

Bη = 0

α?7 = αε for all aeA.

Since A(5? — ε) = 0 and

B[p]ε S 2>mG[p]ε = 0 = Bη ,

ε and η agree on G[p]. Thus, ε 61(G) implies η e I(G) £ £Γ(G). By
construction, pmGη ς: Bη = 0, hence pm57 = 0 and η e T(R), completing
the proof.

Observing (1.1), the following corollary together with Theorem
1.3 immediately yields Theorem 1.6.

COROLLARY 2.7. Suppose that pωG = 0 and J(R) = 1(6?). Then

J(R) = N(R) + Ann G[p].

Proof. Lemma 2.6, Corollary 2.5 and (1.1).

Only Theorem 1.3 remains to be proven. For this we require
the following observation.

LEMMA 2.8. Let G = PφC and let c:P->G and π:G-*P be
the corresponding canonical injection and projection respectively.
Then, if J is a quasi-regular ideal of End G, the set

cJπ = {ceπ \ e e J}

is a quasi-regular ideal of End P.

Proof. Define /: End G -> End P by /(ε) = ceπ for all ε 6 End G.
Then / is a surjective ring homomorphism [1; p. 217]. Such func-
tions map quasi-regular ideals to quasi-regular ideals [4; p. 8].

From now on we assume that G is sufficiently protective. As
above, pxG = 0.

PROPOSITION 2.9. Let J be a quasi-regular ideal End G. Then,
for each ordinal σ < λ, pσG[p]J Q pσ+1G.
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Proof. Let eeJ and let xepσG[p]. By hypothesis, G has a
decomposition

G = P@C where x, xeeP, P totally protective.

Let c and π be as in Lemma 2.8. Then

xε = atfβπ 6 (pσG[p] Π P)(cεπ) = p°P[p](cεπ) S (

By Lemma 2.8, cjπ is a quasi-regular ideal of End P and, since P is
totally projective, (2.2) of [3] implies (pσP[p])(cJπ) Q pσ+1P. Hence,

xε e pσ+1P £ pa+1G ,

completing the proof.
For xeG, let h(x) denote the (possibly transfinite) height of x.

PROPOSITION 2.10. Let J be a quasi-regular ideal of End G, let
τ be an ordinal such that 0 < τ ^ λ, and let εeJ, then there exists
an ordinal σ < τ such that pσG[p]ε £ pτG.

Proof. Assume, by way of contradiction, that pσG[p]ε §£ pτG
for all σ < τ. Then, for each σ < τ, there exists xσ e pσG[p] such
that xσε <£ pτG and thus, by Proposition 2.9, σ <; h(xσ) < h(xσε) < τ.
The same result implies that τ is a limit ordinal. Consequently,
there exist yt e G[p], i = 0,1, 2, , such that

(2.11) hiVi) < h(y<β) < h(yi+1) <τ for i = 0, 1, 2,

Let

(2.12) io = sup{fc(y<)|ΐ = 0, l ,2, •••}.

Since ί? is sufficiently projective, it has a decomposition

, P totally projective,

[VVeeP for ΐ = 0,1, 2,

By (2.12), P has length at least p. Let £ and π be the maps of
Lemma 2.8. Then cεπ e cJπ which, by Lemma 2.8, is a quasi-regular
ideal of End P. Since P is totally projective, Theorem 3.5 of [3]
implies the existence of an ordinal σ < p such that

(2.14) pσP[p](cεπ) £ ppP .

By (2.11) and (2.12), there exists an i such that

σ S h{y,) < p ,

and (2.14), together with (2.13), implies
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p°P[p\(cεπ) Q ppP .

Hence, using (2.11), p ^ h(ytέ) < h(yi+1). This contradiction to
(2.14) completes the proof.

Proof of Theorem 1.3. By (1.2), it suffices to show that
J(End G) S I(G). Let εeJ(EndG). Proposition 2.10 implies the ex-
istence of 7 < λ such that prG[p]e £ pλG = 0. Apply Proposition 2.10
repeatedly and use the fact that every properly descending sequence
of ordinal numbers terminates after finitely many steps [10; p. 270].
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