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A CLASS OF MODIFIED ζ AND L-FUNCTIONS

E. GROSSWALD AND F. J. SCHNITZER

The purpose of this paper is the construction of a class
of functions that have exactly the same complex zeros as
the Riemann zeta function ζ(s), or as any Dirichlet function
L(s, χ). The motivation for this construction is found in
certain attempts to study the Riemann hypothesis.

The problem of the Riemann hypothesis has been approached,
occasionally

(a) by attempts to study functions that share with ζ(β)(s = σ+it)
certain analytic properties (e.g., representation by Dirichlet series,
functional equation, Euler product, etc.), in order to see what restric-
tions these properties impose upon their zeros; or

(b) by the construction of functions, whose zeros are subject to
certain restrictions (e.g., they do, or they don't satisfy a "Riemann
hypothesis"), in the hope to detect similarities with, or differences
from ζ(β), or L(s, χ).

To the first approach belong attempts to show that some of those
analytic properties suffice to impose some kind of "Riemann hypothesis."
These attempts were not too successful, in part because it turned
out that functions like the the Epstein zeta function, with many of
the properties of ζ(β) (functional equation, Dirichlet series-but no
Euler product) may have zeros with σ > 1, and also with 0 < s < 1
(see [4]).

To the second approach belongs, e.g., an attempt by Rademacher
[5] to disprove the Riemann hypothesis, by studying the class of
functions for which, assuming "the Riemann hypothesis," the sum
X r 7"1 sin Ίt — f{t) (7 = imaginary part of the complex zero 1/2 + iΎ)
exhibits the discontinuities known to occur when p = lf2 + iΎ are zeros
of ζ(s). It was shown, however, by Rubel and Straus (see [6] and
[7]) that the known behaviour of f(t) for ζ(s) is implied already
by conditions much weaker than the Riemann hypothesis.

The results of the present paper seem to indicate that the last
approach is unlikely to lead to interesting conclusions, but suggest a
new and potentially useful approach. Indeed, we construct a class of
functions of analytic character very different from that of ζ(s) and,
nevertheless, with the same complex zeros. We also sketch the
constrution of functions that share their complex zeros with Dirichlet's
L-functions. In principle, the construction is valid for all Dirichlet
series with an Euler product. These new functions have a Dirichlet
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series representation, also an Euler product, but, in general, they
do not satisfy any functional equation and often cannot even be
continued analytically beyond σ > 0.

Section 2 contains the principle of the construction and the state-
ments of the main results. Sections 3 and 4 contain the proofs,
Section 5 discusses analytic continuations and Section 6 mentions
some possible applications.

2* Main results* Let pn be the nth prime and select qn so that

( 1 ) Pn^Qn^ Pn+l

With these qn form the infinite product

(2) ζ*(β) = Π (1 - ϊ ί )"1

The product converges absolutely for σ > 1 and uniformly σ ^ 1 + ε
(ε > 0), so that ζ*(s) is holomorphic for σ > 1.

THEOREM 1. The function ζ*(s) possesses the following properties:
(i) ζ*(s) Φ 0 for σ > 1; (ii) ζ*(s) can be continued as a meromorphic
function in σ > 0; (iii) in σ > 0, ζ*(s) has a single pole at 8 = 1
with residue r, 1/2 ^ r ^ 1; (iv) in σ > 0, ζ*(s) /ms £fee same zeros,
with the same multiplicities as ζ(s).

Theorem 1 remains valid if qn is restricted only by pn ^ qn for
all n ^ wo> with lim^oo pjqn = 1. In general, any restriction on <jrΛ
may be applied only to subscripts n ^ n0 (n0 arbitrarily large). Many
other generalizations of Theorem 1 are also possible.

THEOREM 2. Let L(s, χ) = ΣϊU λ O ) ^ = Π* (1 - X(v)v~T\ where
χ(n) is a Dirichlet character modulo the natural integer k. For
K^h, select rational integers qn that satisfy the two conditions

(3) pn ^ qn ^ pn + K and pn = qn (mod k) .

For σ > 1 define L*(s, χ) by the absolutely convergent infinite product

(4) L*(s, χ) = π a - χ(<7)<rr,

extended over all q = qn. The function L*(s, χ) can be continued
into the whole half plane σ > 0, where it has exactly the same zeros
(including multiplicities) as L(s, χ). If χ(n) is not the principal
character, then L*(s, χ) is holomorphic in σ > 0.

The sketch of the proof of Theorem 2 (see §4) will suggest to
the reader a number of more general possible versions of the theorem.
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3. Proof of Theorem 1* Set

(5) φ{s) = Π id - JΓ')(1 - β-r'} ,
P

where p runs through the primes pn and q through the corresponding
real numbers qn; here and in what follows the subscript n is suppressed
whenever this does not lead to ambiguities. For σ > 1, the infinite
product (5) converges absolutely (in fact, each factor converges
separately) and

( 6 ) ζ*(β) = <p(s)ζ(s) .

LEMMA 1. The infinite product (5) converges absolutely in
σ > 0, where φ(s) Φ 0. The convergence is uniform on compact sets
σ0 <* σ ^ σlf \ 11 ^ T, for any given constants with σx > σ0 > 0 and
T>0.

Assuming Lemma 1, (6) may be used to define the analytic con-
tinuation of ζ*(s) to the whole set into which φ(s) can be continued,
which contains the half plane σ > 0. From this all statements of
Theorem 1 follow immediately, except the value of the residue r.
For real s one obtains, by using the uniformity of the convergence,
that

r = lim {ζ*(s)/ζ(s)} - Km Π {1(1 - P"s)(l - g^D
S-+1+ β-»l+ p

= Π {(1 - P-'XI - Q'T1} = lim Π id - JΓ'XI
p-

π {(i - ίCXi - q T1}
N-*oo n=l

By (1) and p, = 2 it follows that

1 = 1 - 1 = lim ί ί {(1 - iCXl - PίiiΓ1} ^ r
2 2 -zv-oo »=i

^ lim fi {1 - 3>Ϊ1X1 - V«rι) = 1 ,
N-*oo n=l

as claimed.
The proof of Theorem 1 has been reduced to that of Lemma 1.

In its proof (and also in that of Lemma 3) we shall need several,
presumably wellknown inequalities, which we collect, for convenience,
in

LEMMA 2. For integral, rational m0 and real cc, xf y, ε, and u,
with 0 < α ? < l , 0 < ? / < l , 0 < ε < 1/2, u > 0, the following inequalities
hold:
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( i ) 1 - cos a < α2/2;
(ii) |loga;|<(l-flOAc;
(iii) 1 < (1 - ί»)/(l - xy) < y-\ with l i π w - {(1 - x)/(l - xy)} = y~ι;
(iv) if f(x) = Σ S - ,+1 »»~ V", then 0 < f(x) < x™°+ίj(l - x)(m0 + 1 ) ;

( v ) 1 - (1 - e) < (1 + e)(l - β—).

Proof of Lemma 2. (i) is classical, (ii) follows from

I log x\ = |log(l - (1 - aθ)| = Σ » - 1 ( l ~ *)" < (1 - *) Σ (1 - &)"
% = 1 % = 0

= ( 1 - a?)/a? .

For (iii), observe that x < xy <1 and the first inequality holds. Set
g(xf y) = 1 + #2/ — ̂  — #*; the second inequality is equivalent to
g(x, »)>0. This follows from #(1, y) = 0 and {dg/dx}a<1 = y(l - α ^ X O .
The limit for α?—>1~ may be obtained by LΉospitaΓs rule. To
prove (iv), consider f'(x) = Σm=m0+i %m+1 = #w°/(l - a?), so that
0 < f{x) < [ V ° ( l - w ) " 1 ^ < (1 - a?)"1 ["u^du = xwo+1/(l - a?)(m0 + 1).

Jo Jo

For (v), set h(u) = (1 + e)(l — e~εu); then (v) is equivalent to h(u) > 1,
for u > 0. We verify that Λ(0) = 1 and h'(u) > 0 for % > 0. The
first is obvious and the second is equivalent to (e~ε/(l~e))u(l + e) >
—e'Mogίl — ε). As β~ε > 1 — ε, we only need to have 1 + ε >
Σ?=i sw"Vw, or 1/2 > Σ^U ε71"2/^, easily verified to hold, say, for
ε < 3/5.

Proof of Lemma 1. We consider

log φ) = Σ {log (1 - P~s) - log(l - <ΓS)}

where the interchange of summations is easily justified for σ > 1.
By the absolute and uniform convergence of the double series for
σ *> 1 + ε, it is sufficient to study its convergence on compact sets
C of the form σQ ^ σ <; 1, 11 \ ̂  T, with given σ0 > 0 and T > 0. For
fixed s = a + ίέ 6 C, define m0 = [cr1] + 1, where [x] stands for the
greatest integer function. We split the sum over m into two parts,
Σϊ=i = Σm°=i = Σm2=Wo+] + Σ 1 + Σ 2 , say. The absolute and uniform con-
vergence of Σ 2 is almost obvious. Indeed,

Σ Σ m~\q-ms - p~
m=mo+l p

^ Σ m,-1
 Σ (q~m° + p~m°)

m=m o +l

™>~ι Σ Vmσ = 2 Σ Σ
l

Σ
m>m 0
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By Lemma 2(iv) with x — p~% it follows that the inner sum is majorized

by

(1 - p~°)(m0 + 1) = (1 - 2-σ°)(m0 + l)pσm°+σ p1+σ*'

with ex = (1 - 2-σή-\ because σm0 + σ = tffltf"1] + 2) > cr^"1 + 1) =
1 + o ̂  1 + σQ. Here and in what follows, cif c2, stand for constants
depending at most on σ0 and T.

It now follows that I Σ Ί ^ 2^PP~{1+ao) and the right-hand side
converges and does not depend on s.

As for Σ 1 , the outer sum contains the finitely many terms with
1 <̂  m 5̂  m0, and m0 = [σ"1] + 1 <̂  tf"1 + 1 < σ^1 + 1. Hence, it is
sufficient to prove the absolute and uniform convergence of the inner
sums ΣIP \v~ms ~ Q~ms\ for 1 <: m ̂  m0. Let qn = pn + r ^ p w + j ; then
(see, e.g., [2] (14.3), page 131) r = r(p) ^ p 3 / 5 + ε for every ε > 0,
provided that p Ξ> P(e). I t follows that 0 ^ r(p) ^ p4/δ, except,
perhaps for finitely many primes, which have no influence upon the
convergence of the series. If x = x{p) = p/q, then 1 — r/q — (q — r)/q =
p/q = a.(p) g 1, and, for p ̂  P(l/5), aj(p) > 1 - q~lf\ so that lim^oo x(p) =
1". In particular, for sufficiently large p, a?(p)2 > 1/3. It follows
that \p~~ms - q~ms\ = p~ m σ | l — £ m s | = p~ m σ | l — ̂ v ί m l o g x | . If p = q,
this difference vanishes; otherwise, a? < 1, r > 0, and the last factor
can be estimated for 3~1/2 <^ x <1 and m < m0, by using (i), (ii), and
(iii) of Lemma 2, with 0 < y = mσ < 1, as follows:

11 - x™>eitml°** |2 = (1 - ^m σ cos(£m log x))2 + ^2 w σ sin2 (tm log α?)

= (1 - xmσf + 2^mσ(l - cos(ίm log a?)) < (1 - xmσf

+ xmσ(tm log xf ^ (1 - #mσ)2 + xma

1 - α;m

X ) V l ( 1 - x m σ ) 2 { l + (σm)-2x~2t2m2}
— xm

- (1 - xmσ)\l + έVα V2)

^ (1 - xmσ)\l + 3Γ2/σ2) ,

so that |1 - x™e

itml08x\ < cί(l - xwσ), with cj = (1 + 3T 2 K) 1 / 2 . This
sequence of inequalities does not hold for the last term of the sum,
with m = m0, because for it mσ = moσ = ([σ"1] + 1) > o~ισ = 1. In
that case, however, (1 — x)/(l — xmQσ) < 1, so that

= (1 - α;wσ)2(l + x-'tXiσ-1] + I)2) ^ (1 - ^w σ)2(l + x^tXσo1 + I)2)

+ I)2)
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and

with c2 = (1 + δ FOo-1 +1) 2) 1 / 2 As c2 > c2, the inequality 11 - ^ V ί m l o g a Ί <
c2(l — #mσ) holds for all m with 1 ^ m <: m0.

If the inner sums are extended only over the primes p < pN,
the error of each sum is majorized by

Σ I P ~ W 8 - Q~ms\ = Σ

a telescoping series, with sum c2pχmσ. It follows that the total error
of Σ 1 is majorized by c2 Σ ϊ - i PNmσ° ̂  c2m0pπσ° and can be made arbi-
trarily small, by taking N sufficiently large. This estimate is inde-
pendent of s and the uniform convergence of the double series Σ S °f
the absolute values m~ί\q~ms—p~m8\ is proved. From the convergence
of the series for log φ{s) it also follows that φ(s) Φ 0 and this finishes
the proof of Lemma 1, hence also that of Theorem 1.

4* Proof of Theorem 2. Let

(7) φχ(8) = π {(i - χ(p)p-s)(i - χ(Q)Q-T1}.
p

Then

( 8 ) L*(s, χ) = φχ(s)L(s, χ)

and Theorem 2 is an immediate corollary of

LEMMA 3. For σ>0, the infinite product (7) converges absolutely
and φχ(s) Φ 0. The convergence is uniform on compact sets σQ ^
a <i σlf 111 ̂  T, for any constants σ0, σί9 T, that satisfy σ} > σ0 >
0, T > 0.

Proof of Lemma 3. The absolute convergence of (7) for σ > 1
is obvious; hence, it is sufficient to consider the convergence on the
stated compact sets. As in the proof of Lemma 1, we take the loga-
rithm of cpx(s) and, by taking into account also (3) and the absolute
convergence for σ > 1, we get

logφx (β) = ΣΣm- ι {χ((Γ)?-" - X(pm)p-ms}
(9)

m—l
χ(Pm)(q~ms - P'MS)
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Hence, \logφχ(s)\ is majorized by Σm=iW~1Σ3)|^~ms—ί>~ms|. The uniform
convergence of this series is proved exactly as in the proof of Lemma
1, except for minor details in the handling of Σ 1 . Its outer sum,
we recall, contains no more than m0 ^ σ^1 + 1 terms; this bound does
not depend on s, so that it is sufficient to prove the uniform con-
vergence of the inner sums. The terms with q = p vanish. In the
others, set x = p/q and observe that 0 < a? < 1. lΐ q = p -{- r and
ε = r/q, then r ^ K, s ^ K/q and 1 - K/p< 1 - K/q ^ 1 - ε = 1 - r/q =
(q — r)/q = P/Q = & < 1. Except for finitely many primes, ε = r/q
stays below any preassigned positive quantity, so that l i m ^ x(p) =
1". It follows as before that

|1 - x

mσeitmlogx\ < c2(l - xmσ) = c 2 (l-(l - ε)mσ) .

By Lemma 2(v), this is less than c8(l — e~εmσ) < cBεmσ <̂  czmσK/q <Z
c4mσ/p ̂  cjp. Here c3 <; (1 + ε)c2 ^ (3/2)c2, c4 = Kc3 and c5 may be
taken equal to 2c4, because ma ^ moσ ^ (σ"1 + l)σ = 1 + a <Ξ 2. It
now follows that

\χ(qm)q~ms - %(pm)p~ms\ ^ p~mσ\l - χ™eitmlosx

By summing only over p < pN, each sum has an error not in excess
of ΣAP>PN CδP"1"00 < V> w i t h - V arbitrarily small, provided that pN =
pN(σOf T, η) is chosen large enough. This choice does not depend on
8 and leads to a total error on Σ 1 that is majorized by mj] < (071 +1)57.
The proof of the absolute and uniform convergence of (9) is complete,
and with it the proofs of Lemma 3 and of Theorem 2.

5* Analytic continuation* We have shown that φ(s) and, more
generally, φx(s) can be continued analytically into the whole half
plane σ > 0. By (6) and (8) this implies the analytic continuability
to σ > 0 for ζ*(s) and L*(s, χ). In some cases it is obvious that
φ{s), or even φx(s) can be continued as meromorphic functions into
the whole complex plane, e.g., if qn = pn+ί. On the other hand,
one may select the qn's so that σ — 0 becomes a natural boundary
for φ(s) (see [1] for a similar result). Indeed, let all qn Φ pn, pn+1;
then φ(s) has poles at all the points s = it, with t = tn>k =
2kπ(\og qn)"\ keZ. One may select the real numbers qn so that the
poles itn>k will be dense on the imaginary axis. Apparently, this
will be the case, whenever at most a finite number of factors 1 — q~8

in the denominator of φ(s) are cancelled by identical factors in the
numerator, but we have not pursued this matter further. Similar
considerations hold for φx(s).

When σ = 0 is a natural boundary for φ(s)9 then it also is one
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for ζ*(s); hence, ζ(s) and ζ*(s), while sharing all their complex zeros,
have an entirely different analytic character and a similar statement
holds for L(s, χ) and L*(s, χ).

6* Possible applications* In 1948 Turan ([8]; see also [9]) showed
that if the partial sums ζn(s) = Σϊ=i m~s of the ζ-function do not
vanish in the half planes σ > 1 + wr1/2+ε(ε > 0), then the Riemann
hypothesis holds. Recently [3] H. Montgomery showed, however,
that these partial sums do, in fact, vanish for sufficiently large n
even in the half planes 1 + c(log log n)(\og n)~\ provided that c <
(4 — π)/π, that bound being best possible. The question arises, whether
it is possible to choose the qn so that Turan's theorem remains valid,
while Montgomery's construction may not apply.

Another possible approach is the following: The functions holo-
morphic in the half-plane σ > 0 form a ring H under ordinary addition
and multiplication. Within H the functions with the same zeros in
σ > 0 as (s — l)ζ(s) form an ideal I, to which belong all functions
(s — l)ζ*(β). The study of I and of H/I may throw some light on
the problem of the Riemann hypothesis. We intend to return to this
topic on a later date.
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