SUPER TRIANGULATIONS

R. H. Bing and Michael Starbird

Abstract

This paper concerns itself with continuous families of linear embeddings of triangulated complexes into E^{2}. In [2] Cairns showed that if f and g are two linear embeddings of a triangulated complex (C, T) into E^{2} so that there is an orientation preserving homeomorphism k of E^{2} with $k \circ f=g$, then there is a continuous family of linear embeddings h_{t} : $(C, T) \rightarrow E^{2}\left(t \in[[0,1])\right.$ so that $h_{0}=f$ and $h_{1}=g$. In this paper we prove various relative versions of this result when C is an arc, a θ-curve, or a disk.

Introduction. To appreciate where the results in this paper fit into the literature, it is useful to be aware of the following examples which were described in [1, Example 4.1].

Example 1. This example is a triangulated 1-complex (C, S) linearly embedded in E^{2} consisting of a simple closed curve J with two disjoint spanning arcs in its interior. The complex C is homeomorphic to \mathbb{D}. There is a homeomorphism $g: E^{2} \rightarrow E^{2}$ fixed on J such that $f=g \mid C$ is linear with respect to S but there is no linear isotopy $h_{t}:(C, S) \rightarrow E^{2}(t \in[0,1])$ with $h_{0}=i d$ and $h_{1}=f$ which keeps J fixed.

Example 2. Example 1 can be modified by incorporating (C, S) into the 1 -skeleton of a triangulated disk (P, T) with boundary J to produce an example of a disk with properties similar to those of (C, S). Namely, the triangulated disk (P, T) is linearly embedded in E^{2} and admits a linear homoemorphism k fixed on $\mathrm{Bd} P$ for which there is no linear isotopy $h_{t}:(P, T) \rightarrow E^{2}(t \in[0,1])$ with $h_{0}=\mathrm{id}$ and $h_{1}=k$ which leaves the boundary fixed throughout.

It is known that no such example can be found where P is convex [1, Corollary 4.4] nor could P be star-like if T has no spanning edge [1, Theorem 4.1].

In this paper it is shown (Theorem 2.4) that no 1-complex homeomorphic to a θ-curve can have the properties of Example 1. Then in Theorem 4.2 it is proved that Example 2 can not retain its properties under all subdivisions. In fact each triangulation T of a disk P has a subdivision $T^{\prime \prime}$ which is a super triangulation of P. A super triangulation $T^{\prime \prime}$ of a disk P is one which is as flexible as possible. Namely, any linear embedding of $\mathrm{Bd} P$ into E^{2} extends to a linear embedding of (P, T^{\prime}) and for any two linear homeomorphisms f, g of $\left(P, T^{\prime \prime}\right)$ into E^{2} with $f|\operatorname{Bd} P=g| \mathrm{Bd} P$, there is a linear isotopy
$h_{t}:\left(P, T^{\prime}\right) \rightarrow E^{2}(t \in[0,1])$ with $h_{0}=f$ and $h_{1}=g$ which agrees with f and g on $\mathrm{Bd} P$ throughout. (The formal definition of super triangulation appears in §3.)

Definition. Let (C, T) be a finite complex C with triangulation T. A linear embedding of C (or ($C, T)$) into E^{n} is an embedding which is linear on each simplex of T. A linear isotopy $h_{t}:(C, T) \rightarrow$ $E^{n}(t \in[0,1])$ is a continuous family of linear embeddings of (C, T) into E^{n}. A simple push is a linear isotopy which is fixed except on the open star of one vertex. A push is a sequence of simple pushes each one performed after the preceding one.
2. Linear isotopies of arcs and θ-curves. This section begins with a theorem which states that two triangulated arcs linearly embedded in E^{2} with the same endpoints can be linearly isotoped to a common arc in E^{2} keeping the endpoints fixed where the movement takes place only in the closure of the unbounded component of the complement of the union of the two arcs.

Theorem 2.1. Let $\left(A, T_{A}\right)$ and $\left(B, T_{B}\right)$ be two triangulated arcs linearly embedded in E^{2} which share common endpoints v and w. Then there are linear isotopies $g_{t}:\left(A, T_{A}\right) \rightarrow E^{2}(t \in[0,1])$ and $h_{t}:\left(B, T_{B}\right) \rightarrow$ $E^{2}(t \in[0,1])$ such that
(1) $g_{0}=\mathrm{id}$ and $h_{0}=\mathrm{id}$,
(2) $g_{1}(A)=h_{1}(B)$ as subsets of E^{2},
(3) for all $t \in[0,1]$ both h_{t} and g_{t} leave both v and w fixed, and
(4) for $0 \leqq s \leqq u \leqq 1, g_{u}(A) \cup h_{u}(B)$ misses the unbounded component of $E^{2}-\left(g_{s}(A) \cup h_{s}(B)\right)$.

The proof of Theorem 2.1 uses the following lemma to reduce bends.

Lemma 2.2. Let $\left(A, T_{A}\right)$ be a triangulated arc linearly embedded in E^{2} from v to w, a be a vertex of A, and x be another point of A such that
(1) the segment ax meets A only at its ends and
(2) the disk $D_{a x}$ bounded by ax $\cup A_{a x}$ (where $A_{a x}$ denotes the subarc of A from a to x) contains neither v nor w in its interior. Then there is a push $h_{t}:\left(A, T_{A}\right) \rightarrow E^{2}(t \in[0,1])$ so that
(1) $h=\mathrm{id}$,
(2) each h_{t} is fixed on each of a, v, and w,
(3) for $0 \leqq s<u \leqq 1, h_{u}(A) \subset\left(A-A_{a x}\right) \cup D_{a x}^{s}$ where $D_{a x}^{s}$ is the disk bounded by ax $\cup h_{s}(A)_{a x}$, and
(4) $h_{1}(A)=\left(A-A_{a x}\right) \cup a x$.

Proof of lemma. Hypotheses 1 and 2 imply that $D_{a x} \cap A=A_{a x}$. If $A_{a x}$ contains only one vertex a_{j} of A other than a, push a_{j} straight to x, shortening the edge of A containing x. If x were a vertex of A and the open arc $\left(A_{a x}\right)$ contains only one vertex a_{j}, a_{j} could be pushed to the center of $a x$. If the open arc ($A_{a x}$) contains more than one vertex of A, triangulate $D_{a x}$ without adding interior vertices. Find a shelling of the triangulation which leaves the 2 -simplex containing $a x$ until last. Let the shelling guide a desired push of A.

The proof of Theorem 2.1 uses the following lemma to reduce the number of components of $A \cap B$.

Lemma 2.3. Suppose that $\left(A, T_{A}\right)$ and $\left(B, T_{B}\right)$ are triangulated arcs linearly embedded in E^{2} from v to w such that each of v and w is accossible from the unbounded component of $E^{2}-(A \cup B)$. Then there is a linear isotopy $h_{t}:\left(A, T_{A}\right) \rightarrow E^{2}(t \in[0,1])$ such that
(1) $h_{0}=\mathrm{id}$,
(2) each h_{t} is fixed on v and w,
(8) for $0 \leqq s \leqq u \leqq 1, h_{u}(A)$ misses the unbounded component of $E^{2}-\left(B \cup h_{\mathrm{s}}(A)\right)$, and
(4) for each edge $b_{j} b_{j+1}$ of $B, b_{j} b_{j+1} \cap h_{1}(A)$ is either empty, connected, or consists of exactly two points x and y so that x and y are interior points of two consecutive edges of A.

Proof of lemma. Let $b_{j} b_{j+1}$ be an edge of B.
Case 1. If $b_{j} b_{j+1} \cap A$ contains a vertex of A, then by repeated applications of Lemma 2.2, A can be pushed to make $b_{j} b_{j+1} \cap A$ connected.

Case 2. Suppose that $\left(b_{j} b_{j+1} \cap A\right)=\left\{x_{1}, x_{2}, \cdots, x_{r}\right\}$ where each x_{i} is an interior point of an edge of A and $x_{1}<x_{2}<x_{3}<\cdots<x_{r}$ on $b_{j} b_{j+1}$.

If, for some $i, A_{x_{i} x_{i+1}}$ contains two or more vertices of A, triangulate $D_{x_{i} x_{i+1}}$ without adding interior vertices. As in the proof of Lemma 2.2, follow a shelling that leaves the 2 -simplex containing $x_{i} x_{i+1}$ until last to push A to $\left(A-A_{x_{i} x_{i+1}}\right) \cup x_{i} x_{i+1}$. Now apply Case 1.

Suppose each $A_{x_{i} x_{i+1}}$ contains one vertex of A and $b_{j} b_{j+1} \cap A$ contains at least three points x_{1}, x_{2}, and x_{3}. Let α_{i} and α_{i+1} be respectively the vertex of A between x_{1} and x_{2} and the vertex of A between x_{2} and x_{3}. By moving a_{i} toward x_{1} and a_{i+1} toward x_{3}, pivoting about x_{2}, a_{i} and a_{i+1} can be linearly isotoped down to x_{1} and x_{3} respectively and Case 1 can again be applied to make the image of A intersect $b_{j} b_{j+1}$ in a connected set.

The movements we used did not complicate the intersection of the image of A and the other edges of B so we can finish Lemma 2.3 by considering the edges of B one at a time.

Example 6.1. We note that Lemma 2.3 cannot be strengthened to require a push rather than a linear isotopy as demonstrated by Figure 2.1.

Figure 2.1
Note that no interior vertex of A or B can be pushed at all without moving A or B partially into the unbounded component of $E^{2}-(A \cup B)$.

Proof of Theorem 2.1. The proof uses induction on n, the sum of the number of bends in A and the number in B. If $n=0, A$ and B coincide already.

We assume the theorem for k less than n and suppose that the sum of the bends in A and B is n. Let $\left\{a_{i}\right\}_{i=0}^{m}$ and $\left\{b_{i}\right\}_{i=0}^{p}$ be vertices of A and B in order so that $a_{0}=b_{0}=v, a_{m}=b_{p}=w$, and $(m-1)+$ $(p-1)=n$.

Case 1. Suppose v or w (say v) is not accessible from the unbounded component of $E^{2}-(A \cap B)$. In this case find a point x on A or B (say A) such that $v x \cap a_{1} \alpha_{2}=\varnothing, v x \cap b_{1} b_{2}=\varnothing$, and $v x$ meets $A \cup B$ only at its ends.

If $w \notin$ Int $D_{v x}$, apply Lemma 2.2 to push A onto $v x \cup A_{x w}$ thereby reducing the number of bends in A.

If $w \in \operatorname{Int} D_{v x}$, find a point y on $\operatorname{Bd} D_{v x}$ so that $w y \cap v x=\varnothing$ and $w y \cap a_{m-2} \alpha_{m-1}=\varnothing$. Let y^{\prime} be the nearest point of $w y \cap A_{v a_{m-2}}$ to w. Since $\left(A_{x w} \cup w y^{\prime}\right) \subset D_{v x}$, then $D_{w y}$, is a subset of $D_{v x}$ and hence does not intersect $v x$. Since w is not in Int $D_{w y^{\prime}}$ either, apply Lemma 2.2 to push A to $\left(A-A_{y^{\prime} w}\right) \cup y^{\prime} w$ and thereby reduce the number of bends in A. One can use the facts that the movement occurs in $D_{w y^{\prime}}$, $D_{w y}^{\prime} \subset D_{v x}$, and $D_{v x}$ misses the unbounded component of $E^{2}-\left(A_{v x} \cup B\right)$ to show that Condition 4 of Theorem 2.1 is satisfied.

Case 2. Suppose v and w are both accessible from the unbounded component of $E^{2}-A \cup B$. By isotoping A according to Lemma 2.3 and then changing the roles of A and B and isotoping B according
to the lemma, we can linearly isotope A and B to a position where the conclusion of Lemma 2.3 is satisfied by both A and B. If this adjustment reduced the number of bends in $A \cup B$, then Theorem 2.1 follows by induction. We assume that it did not and proceed to consider five subcases of Case 2.

Subcase 2a. Suppose $a_{1}=b_{1}$. We apply induction to the two $\operatorname{arcs} A_{a_{1} w}$ and $B_{b_{1} w}$.

Subcase 2b. Suppose $v a_{1} \subset v b_{1}$ and $a_{1} a_{2} \cap B=\left\{a_{1}\right\}$. Then push a_{1} toward b_{1}, pivoting on α_{2}, until the moved $a_{1} a_{2}$ hits a point of $A_{a_{3} w} \cup$ $B_{b_{1} \omega}$. Let a_{1}^{\prime} be the position of a_{1} at that moment. If $a_{1}^{\prime} a_{2} \cap A_{a_{3} w}$ contains a vertex a_{j}, push A to $v a_{1} \cup a_{1} a_{j} \cup A_{a_{j w}}$ by an application of Lemma 2.2 and thereby reduce the number of bends in A.

If $a_{1}^{\prime} a_{2}$ contains a vertex b_{j} of $B_{b_{2} w}$, push B to $v a_{1} \cup a_{1} b_{j} \cup B_{b_{j w}}$. This push moves the vertex b_{1} to the point a_{1} and, therefore, throws us into Subcase $2 a$ which was already considered.

If $a_{1}^{\prime}=b_{1}$ and $a_{1}^{\prime} a_{2} \cap\left(A_{a_{3} w} \cup B_{b_{2} w}\right)=\varnothing$, then push a_{1} to b_{1} which puts us into Subcase 2a.

Subcase 2c. Suppose $v a_{1} \subset v b_{1}$ and $a_{1} a_{2} \cap B \neq\left\{a_{1}\right\}$. By Lemma 2.3, $a_{1} a_{2} \cap B=\left\{a_{1}\right\} \cup\{y\}$ where y is an interior point of $b_{1} b_{2}$.

Several things could happen. First, if $b_{1} b_{2}$ intersects A in a point z other than y, then z is an interior point of $a_{2} a_{3}$ by conclusion 4 of Lemma 2.3. Furthermore $z \in y b_{2}$. This is true because $A_{a_{2} w}$ cannot intersect the triangle $a_{1} b_{1} w$ since such an intersection would violate either Lemma 2.3 or the fact that w is accessible from the unbounded component of $E^{2}-(A \cup B)$. We move a_{1} to b_{1} and a_{2} to z, pivoting about y. This procedure takes us to Subcase 2 a which has already been considered.

Second, if $b_{1} b_{2}$ misses $A_{a_{2} w}$, it may be that the segment $b_{1} b_{2}$ can be extended slightly beyond b_{2} without meeting the unbounded domain of $E^{2}-(A \cup B)$. In this case, we let x be the first point at which this extension of $b_{1} b_{2}$ intersects $A \cup B$. If $x \in B$, apply Lemma 2.2 to push B to $\left(B-B_{b_{2} x}\right) \cup b_{2} x$ and thereby reduce the bends in B. If x is a vertex of A push A to $\left(A-A_{y x}\right) \cup y x$ and then to $\left(A-A_{v y}\right) \cup$ $v b_{1} \cup b_{1} y$ to reduce the number of bends in A. If x is not a vertex of A but $x \in a_{2} a_{3}$, move a_{2} to x and a_{1} to b_{1} while pivoting about y. This puts us in Subcase 2a. If $x \in A_{a_{3} w}$, triangulate disk bounded by $A_{y x} \cup y x$ without adding interior vertices. As in the proof of Lemma 2.2 , find a shelling of this disk which leaves the 2 -simplex containing $y x$ until last. Let this shelling guide a linear isotopy of A onto the set $v a_{1} \cup a_{1} y \cup y x \cup A_{x w}$. Now a_{1} can be moved to b_{1} putting us in Case 2a.

Third, and last, if $b_{1} b_{2} \cap A_{a_{2} w}=\varnothing$ and $b_{1} b_{2}$ cannot be extended beyond b_{2} without intersecting the unbounded component of $E^{2}-$ $(A \cup B)$ then move b_{2} toward b_{3} as you move b_{1} toward a_{1}, pivoting about y. If the pivoting segment $b_{1} b_{2}$ never meets a point of $A_{a_{5} w}$ nor $B_{b_{3} w}$ while b_{1} is moved onto a_{1}, then this linear isotopy puts us in Subcase 2a. If not, then the first moment at which $b_{1} b_{2}$ meets $A_{a_{3} w}$ or $B_{b_{3} w}$ locates a vertex a_{j} or $b_{j}(j \geqq 3)$ such that the segment $y a_{j}$ or $y b_{j}$ satisfies the hypotheses of Lemma 2.2. An application of Lemma 2.2 would then reduce the bends in A or B.

Subcase 2d. Suppose $v b_{1} \subset v a_{1}$. This case is identical to Subcase 2 b and 2 c with the roles of A and B exchanged.

Subcase 2e. Suppose $v a_{1} \cap B=v$,
Perhaps the segment from v through a_{1} can be extended beyond a_{1} without going into the unbounded domain of $E^{2}-(A \cup B)$. If it can, extend it until the extension hits a point x of $A \cup B$. If $x \in A$, use Lemma 2.2 to push A to $v x \cup A_{x v}$, reducing the number of bends in A. If $x \in B$, use Lemma 2.2 to push B to $v x \cup B_{x w}$. This either reduces the number of bends in B or carries us to a previous case.

If $v a_{1}$ cannot be extended as considered in the last paragraph, examine the segment $v x$ as x moves from a_{1} to a_{2} and find the first x_{0} at which $v x_{0}$ meets $B \cup A_{a_{2} w}$ in a point other than v.

If $v x_{0}$ meets $A_{a_{2} w}$, let α_{j} be the point of $v x_{0} \cap A_{a_{2} w}$ nearest v. Lemma 2.2 implies that A can be pushed to $v a_{j} \cup A_{a_{j} w}$, thereby reducing the number of bends in A.

If $v x_{0}$ misses $A_{a_{1} w}$, use Lemma 2.2 to push A to $v x_{0} \cup A_{x_{0} w}$. The first edge $v x_{0}$ of $v x_{0} \cup A_{x_{0} w}$ contains a point of B other than v and we are in a previous subcase.

The following theorem is used in the proof of Theorem 4.2.
ThEOREM 2.4. Let $(J \cup A, T)$ be a triangulated θ-curve linearly embedded in E^{2} so that A is a spanning arc of the disk bounded by the simple closed curve J. Let k be a homeomorphism of E^{2} such that $k \mid J=$ id and $k \mid A$ is a linear embedding of $(A, T \mid A)$. Then there is a linear isotopy $h_{t}:(J \cup A, T) \rightarrow E^{2}(t \in[0,1])$ such that $h_{0}=$ $\mathrm{id}, h_{1}=k \mid J \cup A$, and for each t in $[0,1], h_{t} \mid J=\mathrm{id}$.

Proof. Let $(A, T \mid A)$ and $(k(A), k(T \mid A))$ be the two arcs in the hypothesis of Theorem 2.1. Let $f_{t}^{\prime}:(A, T \mid A) \rightarrow E^{2}(t \in[0,1])$ and $g_{t}:(k(A), k(T \mid A)) \rightarrow E^{2}(t \in[0,1])$ be linear isotopies satisfying the conclusion of Theorem 2.1. Each of these linear isotopies can be extended to J by the identity. We do so and abuse the notation
slightly by letting f_{t}^{\prime} and g_{t} now denote those linear isotopies of $(J \cup A, T)$ and ($k(J \cup A), k(T))$ respectively.

Now $f_{1}^{\prime}(A)=g_{1} \circ k(A)$ as sets; however, it may not be the case that $f_{1}^{\prime} \mid A$ equals $g_{1} \circ k \mid A$. (See Figure 2.2.) In order to rectify this situation find a linear isotopy $f_{t}^{\prime \prime}:(J \cup A, T) \rightarrow E^{2}(t \in[0,1])$ such that $f_{0}^{\prime \prime}=f_{1}^{\prime}, f_{1}^{\prime \prime}\left|A=g_{1} \circ k\right| A$, and for each t in $[0,1], f_{t}^{\prime \prime} \mid J=\mathrm{id}$. The linear isotopy $f_{t}^{\prime \prime}$ simply moves the vertices of $f_{1}^{\prime}(A)$ until they are in the position to which they are mapped by $k \circ g_{1}$. Note that for any $\varepsilon>0 f_{t}^{\prime \prime}$ can be chosen so that for each t in $[0,1], f_{t}^{\prime \prime}(A)$ lies in the ε-neighborhood of $f_{1}^{\prime}(A)$; however, as illustrated in Figure 2.2, it may not be possible to have $f_{t}^{\prime \prime}(A)=f_{1}^{\prime}(A)$ for each t.

A linear isotopy h_{t} satisfying the conclusion of Theorem 2.4 can now be obtained by performing three linear isotopies in succession. First perform $f_{t}^{\prime}(t \in[0,1])$, second perform $f_{t}^{\prime \prime}(t \in[0,1])$, and finally perform $g_{1-t} \circ k(t \in[0,1])$.

Note that for any $\varepsilon>0, h_{t}$ could be chosen so that for $t, h_{t}(A)$ almost misses the unbounded component C of $E^{2}-(A \cup k(A))$ where "almost" means that $h_{t}(A)$ misses C except for an ε-neighborhood of $f_{1}^{\prime}(A)$.

Figure 2.2
3. Super triangulations. A triangulation T of a disk P is super if and only if it has the following three properties.
(1) Every linear embedding of $\mathrm{Bd} P$ in E^{2} can be extended to a linear embedding of (P, T).
(2) If f and g are two linear embeddings of (P, T) which agree on $\mathrm{Bd} P$, then there is a linear isotopy $h_{t}:(P, T) \rightarrow E^{2}(t \in[0,1])$ such that $h_{0}=f, h_{1}=g$, and for all $t \in[0,1], h_{t}|\operatorname{Bd} P=f| \operatorname{Bd} P=$ $g \mid \operatorname{Bd} P$.
(3) If h_{0} and h_{1} are two linear embeddings of (P, T) into E^{2} and f_{t} is a linear isotopy of $\mathrm{Bd} P$ into E^{2} from $h_{0} \mid \operatorname{Bd} P$ to $h_{1} \mid \operatorname{Bd} P$, then f_{t} can be extended to a linear isotopy of P from h_{0} to h_{1}.

It may be noted that Properties 1 and 2 imply Property 3. To see that this is true one could use Property 1 and the compactness of $[0,1]$ to cover $[0,1]$ with subintervals $\left[t_{0}, t_{1}\right],\left[t_{1}, t_{2}\right], \cdots,\left[t_{n-1}, t_{n}\right]$ such
that for each i there is a linear isotopy $h_{t}^{i}:(P, T) \rightarrow E^{2}, t \in\left[t_{i}, t_{i+1}\right]$ with $h_{t}^{i}\left|\operatorname{Bd} P=f_{t}\right| \operatorname{Bd} P$. Although $h_{t_{i+1}}^{i}$ and $h_{t_{i+1}}^{i+1}$ need not agree on interior vertices of T, Property 2 can be used to adjust them so they do.

In this section we produce (in Theorem 3.4) for each integer $n(n \geqq 3)$ a super triangulation T_{n} of a disk P_{n} which has n 1-simplexes on the boundary. For $n=3, T_{3}$ could be chosen to be a single 2simplex. For $n=4$ or $5, T_{n}$ could be chosen to be obtained by coning from an interior point to $\mathrm{Bd} P_{n}$. This T_{n} is super since any linear embedding of $\operatorname{Bd} P_{n}(n=4,5)$ would bound a star-like disk. To produce T_{6}, we add an annulus A to P_{5} so that A has five 1simplexes in the boundary component which is $\mathrm{Bd} P_{5}$, but six in the other. This annulus is given a specific, simple triangulation. It is shown in Theorem 3.3 that if one begins with a super triangulation of a disk with n sides and enlarges the disk and triangulation by the addition of an annulus which is triangulated as specified in Theorem 3.3, then the new triangulation of the new disk is also super. Thus to produce T_{7} another annulus is added on to P_{6}. This process is continued to produce triangulations T_{n} where each T_{n} has a bull's-eye pattern.

Theorems 3.1 and 3.2 have the same general form as Theorem 3.3 except where different triangulations of the added annulus are considered. They are included in this section because their proofs contain techniques used in the proof of Theorem 3.3. They are used explicitly in the next section.

Definition. Let J be a PL simple closed curve in E^{2}. A point x in Int J can see J if and only if for each point y in J the segment $x y$ meets J only at y.

Theorem 3.1. Suppose (P, T) is a triangulated disk, A is a subcomplex of T which is an annulus containing $\mathrm{Bd} P$, the closure of $P-A$ is a disk D, and A has the following triangulation. Namely, A is the union of $n 4$-sided disks $v_{i} v_{i+1} w_{i+1} w_{i}(i=1,2, \cdots, n$, counting is $\bmod n$) where for each $i, v_{i} \in \operatorname{Bd} P$ and $w_{i} \in \operatorname{Bd} D$ and the 2-simplexes of T in A are precisely those of the form $v_{i} w_{i} v_{i+1}$ or $w_{i} v_{i+1} w_{i+1}$. Then T super if T is restricted to D is super.

Proof. Let h be a linear embedding of $\operatorname{Bd} P$ in E^{2} with $h\left(v_{i}\right)=v_{i}^{\prime}$. To show that (P, T) has Property 1 we can pick the image of w_{i} to be w_{i}^{\prime}, a point in $\operatorname{Int} h(\operatorname{Bd} P)$ near v_{i}^{\prime} on the bisection of angle $v_{i-1}^{\prime} v_{i}^{\prime} v_{i+1}^{\prime}$. This linearly embeds A. The fact that T restricted to D is super ensures that the embedding can be extended.

Next, we show that (P, T) has Property 2. For convenience we suppose that f is the identity and $g\left(w_{i}\right)=w_{i}^{\prime}$ is as described in the
preceding paragraph. Our plan is to push each w_{i} to w_{i}^{\prime} and use the fact that D has Property 3 to show that (P, T) has Property 2.

Special Case. If $v_{i} v_{i+1} w_{i+1} w_{i}$ is convex we could push w_{i} to a point near v_{i} along $w_{i} v_{i}$ and then push it to a point near v_{i} so that if $w_{i}^{\prime \prime}$ is the new w_{i}, both $v_{i-1} v_{i} w_{i}^{\prime \prime} w_{i-1}$ and $v_{i} v_{i+1} w_{i+1} w_{i}^{\prime \prime}$ are convex. Similarly, w_{i-1} can be pushed to $w_{i-1}^{\prime \prime}$, a point near v_{i-1} so that both $v_{i-2} v_{i-1} w_{i-1}^{\prime \prime} w_{i-2}$ and $v_{i-1} v_{i} w_{i}^{\prime \prime} w_{i-1}^{\prime \prime}$ are convex. Continuing back through the $w_{i}^{\prime} \mathrm{s}$ (and counting $\bmod n$) each w_{i} can be pushed to $w_{i}^{\prime \prime}$ a point near v_{i} so that each quadrilateral $v_{j} v_{j+1} w_{j+1}^{\prime \prime} w_{j}^{\prime \prime}$ is convex. Now we can push each $w_{i}^{\prime \prime}$ onto the bisector of $v_{i-1} v_{i} v_{i+1}$ and then to w_{i}^{\prime}.

General Case. Finally we show that some w_{i+1} can be pushed to $w_{i+1}^{\prime \prime \prime}$ so that the resulting $v_{i} v_{i+1} w_{i+1}^{\prime \prime \prime} w_{i}$ is convex. To do this, we pick an i so that $w_{i} w_{i+2}$ is a spanning arc of D. (If $n=3$ there is no spanning arc and we use $w_{1} w_{3}$ for $w_{i} w_{i+2}$.) We note that w_{i+1} can see $\mathrm{Bd} v_{i+1} v_{i+2} w_{i+2} w_{i}$ so it can be pushed in a straight line to a point $w_{i+1}^{\prime \prime \prime}$ near the side $w_{i} v_{i+1}$ so that $w_{i+1}^{\prime \prime \prime}$ can see $\mathrm{Bd} v_{i} v_{i+1} v_{i+2} w_{i+2} w_{i}$. The resulting $v_{i} v_{i+1} w_{i+1}^{\prime \prime \prime} w_{i}$ is convex and we proceed as in the Special Case.

Theorem 3.2. Suppose (P, T) is a triangulated disk and A is a subcomplex of (P, T) such that A is an annulus containing $\operatorname{Bd} P$, the closure of $P-A$ is a disk D, and A has the following triangulation. Namely, A is the union of $n 4$-sided disks $v_{i} v_{i+1} w_{i+1} w_{i}$ ($i=1,2, \cdots, n$, counting is $\bmod n$) where for each $j, v_{j} \in \operatorname{Bd} P$ and $w_{j} \in \operatorname{Bd} D$, and T restricted to A is determined by coning over the boundary of each of these 4 -sided disks from an interior point. (See Figure 3.1.) Then T is super if T restricted to D is super.

Figure 3.1
Proof. To show that (P, T) has Property 1 we let h be a linear embedding of $\mathrm{Bd} P$ in the plane and place the image of w_{i} near $h\left(v_{i}\right)$
in Int $h(\mathrm{Bd} P)$ and on the bisector of angle $h\left(v_{i-1}\right) h\left(v_{i}\right) h\left(v_{i+1}\right)$. The linear embedding of P can be completed since T restricted to D is super.

To show that (P, T) has Property 2 we suppose that f is the identity and $g\left(w_{i}\right)=w_{i}^{\prime}$ is near v_{i} and on the bisector of angle $v_{i-1} v_{i} v_{i+1}$. We wish to push w_{i} to w_{i}^{\prime}.

Let X_{i} be an interior diagonal of the disk $v_{i} v_{i+1} w_{i+1} w_{i}$. If the disk is convex, there are two choices of X_{i}, but if it is concave, there is only one choice.

If the X 's can be chosen so that some w_{j} is not the end of any X, push this w_{j} along $w_{j} v_{j}$ to a point near v_{j}. Then push it to a point $w_{j}^{\prime \prime}$ near v_{j} so that $v_{j-1} v_{j} w_{j}^{\prime \prime} w_{j-1}$ and $v_{j} v_{j+1} w_{j+1} w_{j}^{\prime \prime}$ are convex. Now their diagonals can be chosen in two ways. We pick them to contain $w_{j}^{\prime \prime}$ and find that there is another w_{k} with no X containing it. It in turn is moved into a position $w_{k}^{\prime \prime}$ analogous to $w_{j}^{\prime \prime}$ above. Continuing, we find that if we can get started and can move one w_{i} to a good position, the others can be pushed into position also. Once each w_{j} has been moved to a point $w_{j}^{\prime \prime}$ near v_{j} so that each quadrilateral $v_{j} v_{j+1} w_{j+1}^{\prime \prime} w_{j}^{\prime \prime}$ is convex, each $w_{j}^{\prime \prime}$ is pushed to a point on the bisector of angle $v_{j-1} v_{j} v_{j+1}$. Finally, each w_{j} is moved along the bisector to w_{j}^{\prime}. As the boundary of each quadrilateral disk $v_{i} v_{i+1} w_{i+1} v_{i}$ is moved it is a minor matter to move the vertex that is on the interior of the quadrilateral.

If the X 's are chosen so that each w_{j} is the end of an X then each w_{j} is the end of precisely one X since there are the same number of X 's as w 's. By considering a new triangulation T^{\prime} of A whose 2 -simplexes are those into which the X 's divide the quadrilaterals, we note that the new triangulation of A makes it satisfy the hypothesis of Theorem 3.1. The result then follows from Theorem 3.1.

The next theorem is a generalization of Theorem 3.2 in which we allow the annulus to have a slightly different triangulation.

Theorem 3.3. Suppose $(P, T), A, D$, are as in Theorem 3.2 except that $\mathrm{Bd} P$ has an extra vertex v_{n+1}, counting is $\bmod n$ in subscripting the w 's but $\bmod n+1$ in subscripting the v 's and T restricted to A has an additional 2-simplex $v_{n+1} v_{1} w_{1}$. Then T is super if T restricted to D is super.

Figure 3.2 gives a schematic view of the quadrilaterals in A. It does not show the vertices of T in the interiors of these quadrilaterals since these interior vertices can be dragged along as the boundaries of the quadrilaterals are moved.

Figure 3.2
Proof that (P, T) has Property 1. Let H be a linear embedding of $\operatorname{Bd} P$ in E^{2}. For convenience we denote $h\left(v_{i}\right)$ by v_{i} and the disk bounded by $h(\operatorname{Bd} P)$ by P. We cannot hope to put the images of the w 's near the corresponding v 's if $v_{n} v_{1}$ is not a spaninng arc of P.

Let k be the largest of $1,2, \cdots, n+1$ for which $v_{k-1} v_{k+1}$ is a spanning arc of P. The image of w_{i} is denoted by w_{i}^{\prime} and is located as follows: w_{i}^{\prime} is in Int P near v_{i} and on the bisector of angle $v_{i-1} v_{i} v_{i+1}$ if $i=1,2, \cdots, k-1$; w_{i}^{\prime} is near v_{i+1} and on the bisector of angle $v_{i} v_{i+1} v_{i+2}$ if $i=k, \cdots, n$.

Proof that (P, T) has Property 2. We suppose f is the identity map and $g\left(w_{i}\right)=w_{i}^{\prime}$ is as described in the preceding paragraph. The cases where $n=3$, 4 need a slightly different approach so we do not include them.

We start by retriangulating A as was done in the proof of Theorem 3.2. This is done by removing the vertex inside each quadrilateral $v_{i} v_{i+1} w_{i+1} w_{i}$ and using a diagonal X_{i} to divide the quadrilateral into two 2 -simplexes. If the quadrilateral is convex there two choices for X but if it is concave there is only one choice. Note that with the new triangulation $T^{\prime \prime}$ of A, the sum of the orders of the vertices on $\mathrm{Bd} D$ is $4 n+1$.

The proof is now broken into steps with Steps a, b, and c being used to push certain w 's near their corresponding v 's, Steps d and e to push all w 's near $\mathrm{Bd} P$, and Step f to push the w 's to the $w^{\prime \prime}$ s.

Step a. Pushing one w. If some $w_{i}(i \neq 1)$ is not on any X, it is of order 3 in T^{\prime} and we push w_{i} along $w_{i} v_{i}$ to a point near v_{i} and then to a point $w_{i}^{\prime \prime}$ near v_{i} so that both $v_{i-1} v_{i} w_{i}^{\prime \prime} w_{i-1}$ and $v_{i} v_{i+1} w_{i+1} w_{i}^{\prime \prime}$
are convex. We do not claim that $w_{i}^{\prime \prime}$ is near w_{i}^{\prime} since w_{i}^{\prime} may be near v_{i+1} rather than near v_{i}.

If no w_{i} is of order 3 , then one w is of order 5 and the others are of order 4. In this case we pick a w_{j} of order 4 such that $w_{j-1} w_{j+1}$ is a spanning arc of D. Figure 3.3 shows one possibility where $j \neq 1$ and dotted

Figure 3.3
X 's lean one way. For any spanning segment ($w_{j+1} v_{j}$) of a 5 -sided planar disk $\left(w_{j-1} w_{j+1} v_{j+1} v_{j} v_{j-1}\right)$ one end or the other is in the closure of the points which can see the whole boundary. Let x be a point which can see the boundaries of both $w_{j-1} w_{j+1} v_{j} v_{j-1}$ and $w_{j-1} w_{j+1} v_{j+1} v_{j} v_{j-1}$ and push w_{j} to x. For convenience suppose that $x=w_{j}$. Note that $w_{j} w_{j+1} v_{j+1} v_{j}$ is convex and its triangulation can be changed by replacing X_{j} by the other diagonal. This makes w_{j} of order 5 in the new triangulation and causes some other w_{i} to be of order 3. While the above argument is based on Figure 3.3 the argument is similar if the X 's lean the other way or if $j=1$.

Since the new triangulation made w_{i} of order 3 , it can be pushed near v_{i} as previously described. We say that w_{i} was crushed. Since each of the quadrilaterals containing this crushed w_{i} is convex, we suppose that the triangulation of the adjusted A is such that the crushed w_{i} is of order 5.

Step b. Pushing another w. By considering another spanning segment $w_{i} w_{i+2}$ of D, it can be shown that we can move other w^{\prime} s
(leaving the one fixed considered in Step a) and get a new triangulation of the resulting A such that another w_{j} is of order 3 in the new triangulation. This w_{j} is pushed to a point $w_{j}^{\prime \prime}$ near v_{j} so that the quadrilaterals of A containing $w_{j}^{\prime \prime}$ are both convex.

Step c. Pushing a string of w's. We continue pushing the w_{i} 's $(i \neq 1)$ to points near their corresponding v_{i} 's as long as this can be done. It can be shown that if both w_{i} and w_{j} have been crushed with $i \neq j$ then all w 's between them have been crushed. Hence a string of adjacent w 's have been crushed and the string has at least two crushed w 's. Figure 3.4 shows the situation. The diagonals in the quadrilaterals with a crushed vertex are not shown since they are convex and the X 's can lean either way. The quadrilaterals which do not have a crushed vertex are concave and have their X 's as drawn. (Figure 3.4 is schematic and shows them as convex rather than as concave.) Let w_{f} and w_{l} be the first and last w 's respectively that are crushed.

Figure 3.4 (Schematic)
Step d. Leaning w's. Let $w_{j-1} w_{j+1}$ be a spanning segment of D. Since w_{j} can be adjusted and the triangulation adjusted to make w_{j} of order 5 , we note that $j \in\{f-1, f, \cdots, l, l+1\}$. We suppose j was selected to be minimal. It is not l or $l+1$.

If $j=f-1$, we consider the 5 -sided disk $w_{f-2} w_{f} v_{f} v_{f-1} v_{f-2}$ and note that w_{f-1} can either be pushed to a point near w_{f} or to a point near v_{f-1}. Since we are assuming that $v_{f-1} w_{f-1} w_{f-2} v_{f-2}$ is not convex,
we know that w_{f-1} cannot be pushed to a point near v_{f-1}. Therefore we push w_{f-1} to a point near w_{f} and say that w_{f-1} leans forward.

After w_{f-1} is moved to a point near w_{f}, w_{f} is moved to a point near v_{f+1}, w_{f+1} to a point near v_{f+2}, \cdots, w_{n} to a point near v_{n+1}, w_{1} to a point near v_{1}, \cdots, and w_{f-2} to a point near v_{f-2}. In this case we have pushed all the w 's near the v 's but not necessarily to the corresponding $v^{\prime \prime}$ s.

Similarly, if $j=f+1, \cdots, l-1$ we can lean certain w 's forward and send others near their corresponding v 's.

If $j=f$, we are faced with a different situation. See Figure 3.5. Although $w_{f-1} w_{f+1}$ is a spanning arc of $D, v_{f-1} v_{f+1}$ need not be a spanning arc of P. However, we push w_{f} along $w_{f} w_{f+1}$ to a point

Figure 3.5

Figure 3.6
near w_{f+1}, which is close to v_{f+1}. This move may destroy the convexity of $v_{f} w_{f} w_{f-1} v_{f-1}$. However we push w_{f+1} to a point near v_{f+2}, \cdots, w_{n} to a point near v_{n+1}, w_{1} to a point near v_{1}, \cdots, and w_{f-2} to a point near v_{f-2}. Figure 3.6 shows the difficulty of proceeding to push w_{f-1} down to a point near v_{f-1}.

Step e. Pushing the last w close to $\operatorname{Bd} P$. If $w_{f} w_{f-1} v_{f-1} v_{f}$ were convex we could push w_{f-1} to a point near v_{f-1}, but if it is concave, v_{f} may block the edge $w_{f-1} w_{f}$. We suppose this is the case and push w_{f-1} toward v_{f-1} but stop before $w_{f-1} w_{f}$ hits v_{f}. Now there is a point x on $w_{f-1} w_{f}$ very close to v_{f} so that x can see v_{f-1} and v_{f+1}.

Let $w_{j-1} w_{j+1}$ be a spanning arc of the new D such that $j \neq f-2$ or $f-1$. If $j=f$, consider $w_{f+1} v_{f+1} v_{f} w_{f-1}$ and push w_{f} to x. Now w_{f} is near v_{f} and w_{f-1} can be pushed along $w_{f-1} v_{f-1}$ until it is near v_{f-1}.

If $j=f+1, \cdots, n$, we push w_{j} to a point near v_{j}, then w_{j-1} to a point near v_{j-1}, \cdots, w_{f} to a point near v_{f} and w_{f-1} to a point near v_{f-1}. If $j=1,2, \cdots, f-3$ we push w_{j} to a point near w_{j+1}, then w_{j+1} to a point near v_{j+2}, \cdots, and finally w_{f-1} to a point near v_{f}. It is to be noted that each w_{i} is now near either v_{i} or v_{i+1}, that a string (perhaps null) of w 's lean forward and the rest are near their corresponding v 's.

Step f. The final moves. We recall that k is the largest of $1,2, \cdots, n+1$ for which $v_{k-1} v_{k}$ is a spanning arc of P. Hence it is not 1 or 2 .

If there is no w near v_{k}, the w 's are now in their standard position.

Suppose some w is near v_{k}. This w is either w_{k-1} or w_{k}. We let v_{r} be the v with no w near it.

We now show that w_{k} is not near v_{k}. If it were, $w_{1}, w_{2}, \cdots, w_{k}$ would be near $v_{1}, v_{2}, \cdots, v_{k}$ respectively and $r=k+1, k+2, \cdots$, or $n+1$. But then there would be a spanning arc $v_{r-1} v_{r}$ of P and this violates the definition of k.

If w_{k-1} is near v_{k}, we push w_{k-1} to a point near v_{k-1}, w_{k-2} to a point near v_{k-2}, \cdots, and w_{r} to a point near v_{r}. Each w is now near the correct v and only a small adjustment is necessary to move each vertex w to standard position.

THEOREM 3.4. For each integer $n \geqq 3$, there is a triangulated disk $\left(P_{n}, T_{n}\right)$ such that P_{n} has n sides and T_{n} is super.

Proof. For $n=4$ or 5 we can produce T_{n} by coning over $\operatorname{Bd} P_{n}$.

Once a (P_{n-1}, T_{n-1}) is obtained, one can construct a (P_{n}, T_{n}) by putting an annulus A as described in Theorem 3.3 about P_{n-1}.

Question 3.1. It may be noted that for $n>4$, the T_{n} we described has $2 n^{n}-n-402$-simplexes. How low could one go?

Question 3.2. Let T be a triangulation of a disk which satisfies Property 1 of a super triangulation. Is T super?
4. Super subdivisions. In this section we prove (Theorem 4.2) that every triangulation of a disk has a subdivision which is super and does not subdivide the boundary. Theorem 4.1 is the principal tool used in the proof of Theorem 4.2 and is of the same type as Theorems 3.1, 3.2, and 3.3.

THEOREM 4.1. Suppose (P, T) is a triangulated disk and A is a subcomplex of (P, T) such that A is an annulus containing $\operatorname{Bd} P$, the closure of $P-A$ is a disk D, and A has the following triangulation. Namely, A is the union of $n 4$-sided disks $v_{i} v_{i+1} w_{i+1,1} w_{i, k_{i}}$ ($i=1,2, \cdots, \dot{n}$, counting is $\bmod n$, and for each j and $k, v_{j} \in \operatorname{Bd} P$ and $\left.w_{j, k} \in \operatorname{Bd} D\right)$ together with 2-simplexes $v_{i} w_{i, j} w_{i, j+1}(j=1,2, \cdots$, $\left.k_{i}-1\right)$ where T restricted to A contains the 2 -simplexes $v_{i} w_{i, j} w_{i, j+1}$ together with those determined by coning over the boundary of each 4 -sided disk from an interior point. (See Figure 4.1.)

Then T is super if T restricted to D is super.

Figure 4.1
Proof. Theorem 3.2 is a special case of this theorem and is actually the most difficult case.

The proof that (P, T) has Property 1 is essentially identical to that in Theorem 3.2 so we do not do it.

If $k_{i}=1$ for each i, then (P, T) satisfies the hypotheses of Theorem 3.2 and, therefore, T is super.

We assume that there is a j for which $k_{j} \neq 1$ and proceed to prove that T has Property 2. We assume that f is the identity and that for each i and $j, g\left(w_{i, j}\right)$ is a point near v_{i} and near the bisector of angle $v_{i-1} v_{i} v_{i+1}$.

For each j where $1<j<k_{i}$, push $w_{i, j}$ straight along $v_{i} w_{i, j}$ to a point near v_{i}.

In each quadrilateral $v_{i} v_{i+1} w_{i+1,1} w_{i, k_{i}}$ draw a diagonal X_{i}. We have added n diagonals. Since for some $j, k_{j} \neq 1$, there is a vertex $w_{i, 1}$ or $w_{i, k_{i}}$ which is not met by any X. Suppose $w_{i, 1}$ is not met. (The other case is analogous.) That vertex $w_{i, 1}$ can be pushed straight along $v_{i} w_{i, 1}$ to a point near v_{i} and then to a point $w_{i, 1}^{\prime}$ so that $v_{i-1} v_{i} w_{i, 1}^{\prime} w_{i-1, k_{i-1}}$ is convex. Replace its diagonal by the one that contains $w_{i, 1}^{\prime}$. This change guarantees the existence of another vertex $w_{j, 1}$ or $w_{j, k_{j}}$ which is not met by any diagonal. This vertex can now be pushed toward v_{j} as was done before. Continuing in this fashion, all the vertices $w_{i, j}$ can be pushed near their corresponding vertices v_{i}. An additional slight adjustment will bring each $w_{i, j}$ to the desired location $g\left(w_{i, j}\right)$.

Theorem 4.2. Every triangulation T of a disk P has a super subdivision which does not subdivide the boundary.

Proof. The proof is by induction on n, the number of interior vertices of T.

Case $n=0$. Suppose T is a triangulation of a disk P which contains no interior vertices. Suppose Bd P has k sides.

Let $\left\{A_{i}\right\}_{i=1}^{k-3}$ be the 1 -simplexes of T which hit Int P. Subdivide each A_{i} by adding k interior vertices. The super subdivision $T^{\prime \prime}$ of T is now obtained by examining each 2 -simplex σ of T, noting that Bd σ has been subdivided and giving σ a super triangulation without further subdivision of Bd σ using Theorem 3.4.

We now claim that T^{\prime} is super. First notice that any linear embedding of $\mathrm{Bd} P$ can be extended to a linear embedding of the A_{i} 's since they each have so many bends that they can be laid along the embedded Bd P. Since each subdisk has a super triangulation, this embedding of $\operatorname{Bd} P \cup\left(\bigcup_{i=1}^{k-3} A_{i}\right)$ can be extended over each subdisk into which the A_{i} 's divide P.

Next we show that $T^{\prime \prime}$ has Property 2. Suppose $g, h:\left(P, T^{\prime}\right) \rightarrow E^{2}$ are two linear embeddings which agree on $\mathrm{Bd} P$. The plan is to push
both $g\left(A_{i}\right)$ and $h\left(A_{i}\right)$ to a common arc for each i and then use the properties of the super triangulations of each subdisk of P into which the A_{i} 's divide P to complete the proof.

Suppose $A_{1}=v_{1} v_{3}$ is a 1 -simplex of T belonging to a shellable 2 -simplex $v_{1} v_{2} v_{3}$ of T. Use Theorem 2.4 to push $g\left(A_{1}\right)$ to an arc $g^{\prime}\left(A_{1}\right)$ with a push that leaves $g\left(\operatorname{Bd} P \cup\left(\bigcup_{i=2}^{k-3} A_{i}\right)\right)$ fixed and makes $g^{\prime}\left(A_{1}\right)$ lie smoothly near $g\left(v_{1} v_{2} \cup v_{2} v_{3}\right)$ so that $g^{\prime}\left(A_{1}\right) \cap h\left(v_{1} v_{2} v_{3}\right)=g\left(v_{1}\right) \cup g\left(v_{3}\right)$.

Next use Theorem 2.4 to push $h\left(A_{1}\right)$ to the arc $h^{\prime}\left(A_{1}\right)$ with a push that leaves $h\left(\operatorname{Bd} P \cup\left(\bigcup_{i=2}^{k-3} A_{i}\right)\right)$ fixed and makes $h^{\prime}\left(A_{1}\right)=g^{\prime}\left(A_{1}\right)$. Following a shelling of T and repeating the above process of moving $g\left(A_{i}\right)$ first and then moving $h\left(A_{i}\right)$ to agree, the $g\left(A_{i}\right)$'s can be made to agree with the $h\left(A_{i}\right)$'s.

Using the fact that each subdisk into which the A_{i} 's divide P has a super triangulation, these pushes of arcs can be extended to make the pushed g agree with the pushed h.

The inductive step. Suppose T has n interior vertices and the theorem is true for triangulations with fewer than n interior vertices.

Let w be an interior vertex of T so that $\mathrm{Lk}(w) \cap \mathrm{Bd} P$ contains a vertex v. Let A be a tight annular neighborhood of $\mathrm{Bd} P$ which contains no interior vertices of P. Let $D=\mathrm{Cl}(P-A)$. Let $z=$ $v w \cap \operatorname{Bd} D$. Let z^{\prime} and $z^{\prime \prime}$ be two points on $\operatorname{Bd} D$ on either side of z and very close to z. Let A^{+}be the larger annulus whose inner boundary component contains $z^{\prime} w$ and $z^{\prime \prime} w$ rather than $z^{\prime} z$ and $z^{\prime \prime} z$. Find a triangulation $T\left(A^{+}\right)$of A^{+}which is a subdivision of T and makes A^{+}into an annulus as described in Theorem 4.1. Now $\mathrm{Cl}\left(P-A^{+}\right)$can be given a triangulation $T\left(\mathrm{Cl}\left(P-A^{+}\right)\right)$which is a subdivision of T, which has no additional interior vertices, and so that $T\left(A^{+}\right) \mid \mathrm{Bd}\left(\mathrm{Cl}\left(P-A^{+}\right)\right)$is a subcomplex. By induction $T\left(\mathrm{Cl}\left(P-A^{+}\right)\right)$ has a super subdivision T^{\prime} which does not subdivide $\mathrm{Bd}\left(\mathrm{Cl}\left(P-A^{+}\right)\right)$. By Theorem 4.1, $T^{\prime} \cup T\left(A^{+}\right)$is a super triangulation of P.

The following result is an immediate corollary of Theorem 4.2. It appears with a different proof in [1, Theorem 5.2].

Corollary 4.3. Let f be a PL homeomorphism of a PL disk P in E^{2} which is fixed on $\mathrm{Bd} P$. Then there is a triangulation T of P and a push of (P, T) which takes the identity to f and leaves Bd P fixed throughout.

Question 4.1. Let T be a super triangulation of a disk P. Is every subdivision of T which does not subdivide $\operatorname{Bd} P$ also super?

Note. Example 2 in the introduction can be constructed with
only three interior vertices. No such example could have only one interior vertex. In a preprint of this paper we posed the question of whether such an example could be constructed with only two interior vertices. C. W. Ho has recently answered this question in the negative by proving that the space of all linear homeomorphisms of an n-cell (C, T) which agree on $\mathrm{Bd} C$ and where T has only two interior vertices is a contractible space given the compact-open topology [3, p. 2].

References

1. R. H. Bing and M. Starbird, Linear isotopies in E^{2}, (to appear in Trans. Amer. Math. Soc.).
2. S. S. Cairns, Isotopic deformations of geodesic complexes on the 2-sphere and plane, Ann. of Math., 45 (1944), 207-217.
3. C. W. Ho, On the space of the linear homeomorphisms of an n-cell with two interior vertices, (preprint).

Received April 13, 1977. This work was supported by NSF Grant MCS 76-07242.
University of Texas
Austin, TX 78712

