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SPECTRAL SYNTHESIS IN SOME SPACES OF BOUNDED
CONTINUOUS FUNCTIONS

AHARON ATZMON

Spectral synthesis in the topology of bounded uniform
convergence on compact sets is proved for some spaces of
bounded continuous functions on the real line R. These
spaces include among others the space of continuous functions
of bounded variation on R and the space of bounded func-
tions on the real line which are linear combinations of convex
functions which satisfy Lipshitz condition of order one uni-
formly on R.

0. Introduction* In the extensive and varied literature which
appeared on the subject of spectral synthesis in L°°(R), mainly after
Malliavin's disproof of spectral synthesis in general [7] the main
emphasis was stressed on the study of sets which obey and sets
which disobey spectral synthesis. On the other hand, relatively little
attention was paid to the investigation of classes of L°°(R) functions
which admit spectral synthesis. A discussion of the main results
which exist in this direction can be found in [1].

The purpose of this paper is to prove for some classes of bounded
continuous functions on the real line, that spectral synthesis holds
in the topology of bounded uniform convergence on compact sets.

In order to state our main result we need first some notations.
For every positive integer n let A71 denote the wth difference operator
defined inductively on two sided sequences {ak)t=-ooby: Δλak = ak — ak_lf

k = 0, ±1, ±2, , and for n^l, Anak = A\An~ιak), k = 0, ± 1 , ±2,
The convention A°ak = ak, k = 0, ± 1 , ± 2 , ••, will also be adopted.

Our main result is the following:

THEOREM 1. Let φ be a bounded continuous function on R such
that for some nonnegative integer n and some real number 1 ̂  p 5* 2,
the condition

(1.1) suplΈΓ Σ
fc \k\ύN/h

is satisfied. Then φ admits spectral synthesis in the topology of
bounded uniform convergence on compact sets.

Since the continuous functions on R which satisfy condition (1.1)
for n = p = 1 are exactly the continuous functions of bounded varia-
tion on R, it follows from this theorem that in the conclusion of
Theorem 1 in [1] the w*-topology can be replaced by the stronger
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topology of bounded uniform convergence on compact sets if con-
tinuity is added to its hypotheses. Another concrete application of
this theorem is in the case n = 2 and p = 1. It will follow from
the general characterization given in § 2 of the bounded continuous
functions on R, which satisfy condition (1.1) for some n and p, that
a bounded continuous function φ on R satisfies condition (1.1) for
n = 2 and p = 1 if and only if φ is a linear combination of four
convex functions which satisfy Lipshitz condition of order one uni-
formly on R. Hence by Theorem 1 such functions admit bounded
spectral synthesis in the topology of bounded uniform convergence
on compact sets.

1* Basic definitions* We recall now some basic definitions con-
cerning spectral synthesis of bounded functions. For further details
on spectral synthesis we refer to [3, p. 547], [5, p. 170] and [8,
p. 183].

Let φ be a bounded continuous complex function on the real line
R. For every real number y, the ^/-translate of φ is the function
φy defined by φy(x) = φ(x — y), xeR. The w*-spectrum of φ is the
set sp φ of real numbers λ such that the function eUx is in the w*
closed subspace of L°°(R) which is spanned by the translates of φ.

Let M(R) denote the space of bounded complex Borel measures
on R. For every measure μ in M{R) let μ denote its Fourier Stieltjes

transform defined by μ(x) = I eixtdμ(t), xeR.
JR

One says that the bounded continuous function φ on R, admits
spectral synthesis in the w*-topology, if there exists a net (μr)rer in
M(R) such that: sp/ϊ rcsp^, ΎeΓ and limr/ϊ = φ in the w*-topology
of L%R).

One says that φ admits bounded spectral synthesis in the topology
of uniform convergence on compacta, if there exists a sequence
(μn)n==ί in M{R) such that: sp/^csp^, n = 1, 2, •••, supΛ||//Λ||00<oo,
and lim βn(x) = φ{x) uniformly on compact subsets of R.

Spectral synthesis in the topology of bounded uniform conver-
gence on compact sets clearly implies spectral synthesis in the w*-
topology. That the converse is not true for all bounded continuous
functions, follows from [10, Thm. 3].

2* The spaces BΛlP. For a bounded continuous function φ on
Ry a nonnegative integer n and a real number p >̂ 1, we denote by

and by Bn>p the space of bounded continuous functions φ on R such
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that | |^ | |n >, is finite. It can be shown that with norm II^IU + \\Φ\\n,P

the spaces BΛtP are Banach spaces. This fact will not be used in
the sequel.

Theorem 1 can now be stated in the following equivalent form:

THEOREM 1'. If n is a nonnegative integer and 1 ^ p ^ 2 then
every function φ in Bn,p admits spectral synthesis in the topology
of bounded uniform convergence on compact sets.

It is obvious that BQ)P consists of all bounded continuous func-
tions which are in LP(R) and B1Λ is the space of continuous func-
tions which are of bounded variation on R. Also B2Λ consists of
all bounded continuous functions on R which are linear combinations
of four convex functions which satisfy Lipshitz condition of order
1 uniformly on R. This follows easily from the characterization of
the spaces Bn,p given in Lemma 1 below. This lemma is needed for
the proof of Theorem 1, and is also of some interest in itself.

LEMMA 1. Let φ be a bounded continuous function on (—^, <*>).
For a nonnegative integer n let φ{n) denote the nth derivative of φ
in the sense of distributions. Then:

(a) φ is in BnΛ, for n Ξ> 1, if and only if φ[n) is a bounded
Borel measure on R. (As already remarked, φ is in Bo>1 if and
only if φ is in L\R).)

(b) // 1 < p < oo then φ is in Bn>p (n = 0, 1, 2, •) if and only
if φ{n) is in LP{R).

Proof (a). Let D denote the space of infinitely differentiable
functions on R with compact support. Consider φ in Bnl and ψ in
D. Let N be a positive integer such that the support of ψ is con-
tained in the interval [-N, N]. Since φ is continuous and ψ is in
D, an elementary argument implies that

(2.1) lim Σ J^kh_+ nK) φ(kh) -
h->0+ \k\^N/h h n

where ψ{n) denotes of course the wth derivative of ψ in the ordinary
sense.

Summation by parts yields:

( 2 < 2 ) Σ rψjkh + nh)

and therefore by (2.1)
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(2.3) ^ \\Φ\U\ψ\U

S oo

φ(x)ψw(x)dx,
ψeD, is bounded in the sup-norm. Consequently (cf. 9, p. 25) there
exists a bounded Borel measure μ on R such that

I φ{x)ψ{n)(x)dx = (—1)H ψ(x)dμ(x) , for every ψ in D

and therefore ^(%) = μ in the sense of distributions.
To prove the converse, assume that φ{n) = μ for some bounded

Borel measure μ on R. Consider the Fejer Kernel

1 1 Δ ! , i = l ,2 , - . . , (see 5, p. 124),

and the sequence of bounded continuous functions φά — Kj*φ, (i = l, 2, •)

that is φj(x) = \ Kj(x — y)Φ(y)dy, — ̂ o < x < oo ). Since Z"̂  is a C°°

function all whose derivatives are in L\R) it follows that φs is also

a (7°° function and φ^ = (Z 5 *^) ( w ) = J S Γ / * ^ = iΓ,-*^, where φf] de-

notes the ^ t h derivative of φό in the usual sense and φ{n) the wth

derivative of φ in the sense of distributions.

Therefore, MΠl ^ WKjMμW = \\μ\\ 3 = 1, 2, •••, where | |μ | |
denotes the total variation of μ. Hence for every positive integer N,

(2.4) lim Σ M>Xfcfe)l = Γ \φ?χχ)\dx£\\μ\\ j = 1, 2, . .
A-0+ \k\^N/h h l J-JV

Since ^ is continuous, it follows from the well known properties of
the Fejer Kernel that lim^oo φό{x) = ^(x) uniformly on compact sets
on R (cf. 5, p. 130 Ex. 9), and therefore (2.4) implies that

for all positive integers JV. This completes the proof of (a).

Proof (b). The proof of (b) is similar to that of (a). Let 1 <
p < oo and q = p/(p — 1). Consider φ in Bn>p and ψ in D with sup-
port in [ — N, N]. Using (2.2) and Holder's inequality we infer that

Σ

Hence passing to lim as h—>0+ we obtain as in (2.1) t h a t
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(2,5) φ{x)f{n){x)dx \\Φ\LP\\f\\q

Since (2.5) holds for every f in ΰ , a standard duality argument (as
in the proof of (a)) implies that there exists a function geLp(R)
such that

Γ φ(x)ψ{n)(x)dx = (- l) Γ φ{x)g(x)dx
J—oo J—oo

for every ψ in D. Consequently ψ{n) = g in the sense of distributions.
To prove the converse of (b) the same argument as in the cor-

responding part of (a) is used, and we omit the details. This com-
pletes the proof of the lemma.

The next lemma gives more insight into the structure of the
spaces B^)V for n ;> 2, and in particular implies the characterization
of the spaces B2Λ already mentioned in §0 aad at the beginning of
this section.

LEMMA 2. Let n ^ 2 be an integer. Then

(I) φ is in BnΛ if and only if φ has n — 2 continuous deriva-
tives on R, φ{n~2) is absolutely continuous and φ{n~l) is a function
of bounded variation on R.

(II) If 1 < p < oo then φ is in B%)Ί> if and only if φ has n — 1
continuous derivatives on R, ^(ro"υ is absolutely continuous and φ{n)

is in LP{R).

This lemma follows easily from Lemma 1 (see also 9, p. 53 and
p. 54), and since it is not used in the sequel we omit the proof.

We are now in position to give the

Proof of Theorem 1. Let φ be in Bn)P for some nonnegative
integer n and some 1 ^ p <: 2. We show first that the proof of the
theorem can be reduced to the case in which sp^ is compact. This
can be seen as follows:

Lemma 1 implies that for every K in &{R) the function K*φ
is in Bn>p. Hence, denoting as before by Kd, j — 1, 2, — , the Fejer
Kernel, it follows that the sequence Kd*φ, j = 1, 2, •••, is in Bn>p.
Since \\Krf\U ^ \\Kj\\, \\φ\U = IWU i = 1, 2, , and l i m ^ Kd*φ(x) =
φ(x} uniformly on compact sets, we infer that if for every jΓ=l, 2, *,
the function K^φ admits spectral synthesis in the topology of
bounded uniform convergence on compact sets, the same will be true
for φ. But the fact that the support of the Fourier transform of
K3 is compact implies [5, p. 170] that 8j*(Kj*φ) is compact. Con-
sequently, we may assume, as we shall do in the sequel, that sp φ
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is compact.
For every positive integer j let Vs denote the function in L\R)

whose Fourier transform V3 is 1 on [—j, j], 0 outside [—2j,2j],
and linear elsewhere. It is known [5, p. 136] that HFylli^δ, j =
1, 2, . Let Wj be the function defined by

It follows easily from the properties of Vd that HTFyll^β and that
Wά(x) = 0 for I x I ^ 1/2 j and | x | ^ 2i, and Wd(x) = 1 for l/2i ^ |g| ^ i .
L e t t ; = ^ W , i = l, 2, .-•; then | | t;IL ^ ilT^IU^IU ^ 6||0|U. We
claim now that the sequence (ψv)£=i *s equicontinuous. In fact, let
K be in L^i?) such that K = 1 on a neighborhood of sp ^ (which
we assume to be compact). Since sp(jK^*0) £ s p ^ [5, p. 152 and p.
170] we obtain [5, p. 152] that K*ψj = ψj9 j = 1, 2, •••. For every
real number τ, let K7 denote the function defined by Kτ(x) = iί(x — τ),
— c>o < aj < oo. Then for every real x and h we have:

\ - \K*ψi(% - h) - JBΓ*fy(a?)|
^ IIJB:Λ - JBΓiui^iu ^ s\\Φ\\Λκh - KW, , j - 1,2,

and since limΛ^0 ||ίΓλ — K\\x = 0, the sequence (ψj)f=ί is equicontinuous.
Since also sup^ ||ψvll°° < °°> ^ e theorem of Arzela-Ascoli implies that
there exists a subsequence (ψv^ ELi which converges uniformly on
compact sets to some bounded continuous function ψ. Since Wj(x) = 1
for 1/i ^ I x I ̂  i and ψβ = T^ ^ (the Fourier transforms are in the
sense of distributions) it follows [5, p. 170] that sp (φ — ψ) £ {0},
(that is, sp (φ — ψ) is empty or consists of the single point 0).
Therefore by a well known result on the structure of bounded func-
tions with one point spectrum [5, p. 136] it follows that φ = ψ + c
where c is a constant, (which is zero if sp (φ — ψ) empty). There-
fore denoting by φk = ψj]e + c9 k=l, 2, -, we have that: supfc ||^||oo<c>o

and lim^oo ψk{x) = φ(x) uniformly on compact sets. Moreover, from
the fact that sp ψ3- £ sp φ, j = 1, 2, « , it follows that sp ψ £ sp φ,
and this implies that sp φk Q sp φ, k = 1, 2, . This is clear if c — 0,
and if c Φ 0 then 0 e sp (φ—ψ)£sp φ, and therefore sp ^A=sp (ψdk+c)Q
sp φ, k — 1, 2, . Consequently, the proof of the theorem will be
accomplished by showing that for every k = 1, 2, « -, the function
φk is a Fourier Stieltjes transform of a bounded Borel measure.
This fact will be proved by showing that for every j=l,2, •••, ψ3-
is a Fourier transform of an U(R) function.

By Lemma 1, φ{n) = v where v is a bounded Borel measure if
p = 1 and an Lφ(R) function if 1 < p ^ 2. Therefore, taking Fourier
transforms in the sense of distributions we get [9, p. 253] that
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φ(x) — v(χ)/(ίx)n, where v is a Fourier Stieltjes transform if p = 1,
and if p > 1, v is an Lq(R) function where q = p/(p — 1), by the
Hausdorff-Young theorem. Hence remembering that W^x) = 0 for
I x I ̂  1/2j and | x | ^ 2i, and that ψy = Tί̂  φ, it follows that $d is
in Lι(22) in both cases (p = 1 and 1 < p ^ 2). Therefore by the
inversion theorem ψs is a Fourier transform of an L\R) function
and the theorem is proved.

4* Extensions and sharpness of results* The proof of Theorem
1 can be clearly extended to include functions which are linear com-
binations of functions in the spaces Bn,p for n = 0,1, 2, •••, and
1 ^ P ^ 2. More precisely the following generalization of Theorem
1 holds:

THEOREM 2. Let M be the linear span in L°°(R) of the union
of the spaces Bn>p, n — 0,1, 2, , 1 <; p <; 2. Then every function
φ in M, admits spectral synthesis in the topology of bounded uni-
form convergence on compact sets.

It is perhaps worthwhile to remark here that it is not true in
general that the sum of two functions each of which admits spectral
synthesis in the topology of bounded uniform convergence on com-
pact sets, admits spectral synthesis even in the w*-topology. Such
an example can be constructed by using the existence of a bounded
continuous function φ on R which does not admit spectral synthesis
in the w*-topology (Malliavin's theorem) and a result of C. Herz [4,
p. 229 Thm. 6.5] which implies (cf. 6, p. 124 Thm. V) that for every
compact set E in R there exists a countable set F such that every
bounded continuous function φ on R such that sp φ — E U F admits
spectral synthesis in the topology of bounded uniform convergence
on compact sets. We omit the details.

Finally we show that the condition 1 <; p <; 2 in Theorem 1,
cannot be replaced by 1 <; p < oo. That is the following holds

PROPOSITION. For every nonnegative integer n and every p>2,
there exists a function φ in Bn,p, which does not admit spectral
synthesis even in the w*-topology.

Proof. It is known that for every p > 2 there exists a bounded
continuous function φ in LP(R) such that sp φ is compact, which does
not admit spectral synthesis in the w*-topology. This result does
not appear explicitly in the literature but follows easily from [6,
p. 121] where the corresponding result for the group of integers is
proved. The passage to R, and in fact to general locally compact
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abelian groups which are not compact, is outlined in [2, p. 247] in
a different context. Henee for p > 2, there exists a function φ in
B0)P with compact spectrum, which does not admit spectral synthesis
in the w*-topology. We claim that this function is in BΛtP for every
positive integer n. In fact, let K be a C°° function in L\R) such
that K{n) is also in L\R) and such that K — 1 on a neighborhood
of sp^. Then φ = K*φ and therefore φ{%) = Km*φ is also in LP(R),
as a convolution of an L\R) function with an LP(R) function. Hence
φ is in BnP and the proposition is proved.
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