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PEAK-INTERPOLATION SETS OF CLASS C1

WALTER R U D I N

Let D be a bounded strictly pseudoconvex domain in Cn,
with C2-boundary 3D. Let A(D) be the algebra of all / 6
C(D) that are holomorphic in D. Let M be a C-submanifoId
of 3D whose tangent space TW(M) lies in the maximal complex
subspace of Tw(dD), for every w G M.

The principal result of the present paper is that every
compact subset of M is then a peak-interpolation set for A (D).

This will be stated again, in slightly different form, as Theorem
3.1. It should be stressed that the smoothness assumptions made on 3D
and on M are quite weak. Under stronger regularity assumptions, the
same conclusion has been reached earlier by Henkin [6] and, independ-
ently, by Nagel [9] (if 3D and M are of class C3), as well as by Burns and
Stout [3] who dealt with a real-analytic interpolation problem. These
three proofs are quite different from each other. The basic idea of
[9]—to exhibit appropriate functions in A(D) by means of integrals—is
used in the present paper, but in a way that is simpler and requires less
differentiability. In part, this simplicity is achieved by establishing the
theorem first for strictly convex domains. The general case follows then
from Fornaess' embedding theorem [4].

I thank Alexander Nagel for many interesting conversations on this
subject. My proof was originally designed for C^manifolds in the
boundary of the unit ball of C", and it was his prodding that made me
push it to its present generality.

I. Definitions and terminology.
1.1 Throughout this paper, n will be a fixed positive integer and Cn

will be the vector space of n complex variables, with the usual inner
product (z,w) = ΣϊZjW, and norm | z \ = (z, z )K For 1 ̂  j' ̂  n, we write

(1) D, = dldzh Dj = d/dzj.

1.2. Throughout this paper, W will be an open set in Cn, and
p: W-»R will be a function of class C2, i.e., a function all of whose
second-order derivatives are continuous. For each p, and for each
w E W, we define

(2) N(w) = ((Dφ)(W), -;φnP)(w)),

267



268

(3)

(4)

and

(5)

PΛί) =

(Hwζ,η) =

(
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Σ(DlDkP)(w)ζiζk

Σ(DiDkp)(w)ζjηk

Qw(ζ) = Pw(ζ) + {Hwζ,

(ζeσ ),

C"),

The vector N(w) is perpendicular to the level surface of p through w
(see §1.7). Pw is a homogeneous polynomial of degree 2, Hw is a
hermitian operator on Cn (the so-called complex Hessian of p at w), and
the Taylor expansion of p, about any w E W, can be written in the form

p(z) = p(w) + 2Re(z - w, JV(w)} + R e Q ^ z - w)

( 6 ) + |z-w| 2 e(z,>v)

where e: Wx W-»R is continuous, and e(w, w) = 0.

1.3. A bounded open set D CCn is said to be strictly pseudoconvex,
with C2-boundary 3D, if there is an open set W D D and a C2Λunction
p: W->R, as in §1.2, such that

(i) D={zEW:p(z)<0},
(ii) N(w)έ 0 for all w G dD, and
(iii) there is a constant β > 0 which makes the inequality

(7) <Jfw£f>^j8|f|2

true for all w E W and for all £ E Cn.

REMARK. Strict pseudoconvexity is often defined locally. See, for
instance, pp. 262-263 of [5]. However, if the local definition is satisfied,
then there exists a global p with the above properties. This is proved on
p. 169 of [8].

1.4. An open set D CCn is said to be strictly convex if there is a
function p: C"-»R, as in §1.2, such that

(i) D = { z E C " : p ( z ) < 0 } ,
(ii) p(z)^>oo as Iz |—>«, and
(iii) there is a constant a > 0 which makes the inequality

(8)

true for all w EC and all ζ E C.
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1.5. Let D be a bounded open set in_Cn. As usual, A (D) denotes
the algebra of all continuous functions /: D —> C that are holomorphic in
D. A compact set EC 3D is said to be a peak-interpolation set for
A(D)—or simply a PJ-set—if every g G C(E) extends to an f E A(D)
that satisfies

(9) |/(z) |<max{ |g(w)| :wGE}

for all z ED\E.

(The function g = 0 must of course be excluded in (9).)

If μ is a complex Borel measure on 3D such that I fdμ = 0 for every

/GA(D), we shall write: μ ±A(D).

The following well-known theorem of Bishop [1] will be used:

A compact set E C 3D is a (PΙ)-set for A(D) if and only if
μ(E0) = 0 for every μ ±A(D) and for every compact
E0CE.

1.6. Throughout this paper, Ω will be an open set in Rm and
Φ: Ω—>C" will be a mapping of class C 1 . This means that to every
x G Ω corresponds an R-linear operator Φ'(JC): Rm ->C n ( = R2n), the
so-called Frechet derivative of Φ at JC, which gives the Taylor expansion

(10) Φ(y) = Φ(x) + Φ'(x)(y - x)+\y - x\η(x,y) (x, y G Ω).

Here τ / : Ω x Ω - » C n is continuous, and 77(x,x) = 0.
We say that Φ is nonsingular if the rank of Φ'(JC) is m for every

x G Ω. In that case, every x G Ω has a neighborhood in which Φ is one-
to-one.

1.7. Suppose now that D and p are related as in §1.3 (except that
(iii) is not needed at present), so that 3D is the level surface of p given by
ρ(z) = 0. Let Ω CRm be open, and consider a C !-maρ Φ: Ω-» 3D. For
x G Ω and v G Rm, differentiation of

with respect to the real variable t, at t = 0, gives

(11) Re<Φ'(x)ι;,N(Φ(jc))> = 0,

where N is defined by (2).

Setting w = Φ(x), it follows that the equation
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(12) Re<£ΛΓ(w)> = 0

describes the vectors ζ ECn that form the real tangent space Tw{dD)\ its
R-dimension is In - 1. The equation

(13) (ζ,N(w)) = 0

defines the maximal complex subspace of Tw(dD)\ its C-dimension is

n-1.
We shall be concerned with mappings Φ: Ω-»dD that satisfy, in

place of (11), the more stringent analogue of (13), namely

(14) <Φ'(x )υ, N(Φ(JC ))) = 0 (JC G Ω, v E Rm).

This orthogonality condition (14) is an analytic reformulation of the
geometric requirement (stated in the opening paragraph) that the tangent
vectors Φ'(x)v should lie in the maximal complex subspace of Tw(dD).

I I . S o m e l e m m a s .
2.1. LEMMA. // D is strictly convex and if a is the constant that

occurs in (8), then

(15) 2Re(w - z, N(w)) ^ a\ w - z \2

for all w EdD,z ED.

Proof Put h(t) = p((l-t)w + tz)9tER. Then h(0) = p(w) =
= ρ(z)S0; by the chain rule,

ft'(0) = 2Re<z-w,N(w)>

and

(16) h"(t) = 2ReQu(z-w)^2a\z-w\2

where u = (1 - t)w + tz. If these data are inserted into the Taylor
formula

which holds for some t E (0,1), the result is (15).

Note. By (16), h is a convex function. This shows that "strictly
convex" domains are indeed geometrically convex. Also, (15) implies
that N(w)/0 if w EdD.
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2.2. LEMMA. Suppose
(a) p: W-+R is of class C\
(b) Φ: a-^W is of class C\
(c) Ψ(x ) = JV(Φ(x ))forxEίl. Then

(17) (Φ'(x)v, Ψ'(x)v) = QΦ ( I )(Φ'(jφ)

for all xESl,vE Rm.

Proof. Fix x and υ, put y(ί) = Φ{x + tυ), Γ(ί) = N(γ(t)), for those
real t for which x + tυ E Ω. Then Γ(ί) = Ψ(x + tv), so that the left side
of (17)is<γ'(0),Γ(0)>.

The chain rule shows that the /th component Γy of Γ' is

j - (Ap)(y(O) = 2 Φ A P ) yί + (AA) y ί

Hence, referring to §1.2,

7=1

which, by (5), is equal to the right side of (17).
Our next lemma is crucial for the main theorem. It is here—and

only here—that the orthogonality condition (14) is used.

2.3. LEMMA. Assume, in addition to the hypotheses of Lemma 2.2,
that Φ satisfies (14). Then the inner products

(18)

converge to

(19)

asδ-»0,foryE[l,ue Rm, v E Rm.

Note that the denominator in (18) is δ2, not δ!

Proof Fix y, w, v. Fix δ > 0 for the moment, small enough to
ensure that convex combinations of y + δu and y + δv are in Ω. For
O ^ ί S l , define
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(20) x(t) = y+(l-t)δu+tδυ

and put y(t) = Φ(x(t% Γ(t) = N(Φ(x(t))) = Ψ(x(t)), where Ψ = N oφ, as
in Lemma 2.2. Note that

(21) γ'(0 = Φ'(x(0M0=

Thus (14) implies the relation

(22) (γ'(t),Γ(t)) = O (Osί

which is used in the following computation:

(Φ(y + δv)-Φ(y + 8u),N(Φ(y + δv))) =

fr'(0,Γ(1)-Γ(0>Λ
o

= fdt!\y'(t),Γ'(s))ds
JO Jt

= 62 Γdt Γ<Φ'(x(0)(» - u),Ψ'(x(s))(v - u)}ds.
Jo Jt

As δ ~> 0, (20) shows that jc(ί)—> y, uniformly for / E [0,1]. Since
p G C2, we have N E C\ hence Ψ E C\ The last integrand converges
therefore uniformly to

(23) (Φ'(y)(v - u),Ψ'(y)(Ό - u))

as δ --> 0. Since the double integral extends over one half of the unit
square in the (5, ί)-plane, the desired conclusion folows from (23) and
Lemma 2.2.

2.4. LEMMA. If F: Rm -> C is a homogeneous polynomial of degree
2, such that ReF( jc)>0, unless x = 0, then

( 2 4 )

Here, and later, dx denotes Lebesgue measure.

Proof The hypotheses imply that R e F ( x ) g c|x |2 for some c >
0. The integrand in (24) is thus in L 1(Rm). Writing F(x) in the form
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m

(25) F(x)= X

with c)k EC,c]k = ckp we associate a matrix (cjk) to each F. Put a]k =
Recy/c. Our hypothesis is then that the symmetric real matrix (ajk) is
strictly positive-definite, i.e., that all of its eigenvalues λ 1 ? ,λm are
positive.

= ί [l + \x\2Ymdx.
jRm

Put/

We claim that

(26) d e t ( c i k ) \ \ \l + ΣWfc \ " d x Y = J

whenever (a]k) is strictly positive-definite.
Since / > 0, (26) implies (24).
To prove (26), suppose first that cjk E R, i.e., that cjk = a)k. An

orthogonal transformation of Rm will diagonalize (a]k) and will transform
the integrand to [1 +Σλ ;x*]~m. Since the determinant is Πλy, (26) fol-
lows, for real c/k, by replacing λfx, by yy.

To prove (26) in general, regard the symmetric matrices (cjk) as
points in CN, where N = m(m -f l)/2. Let T CC N be the tube domain
that consists of all (cjk) for which (ajk) is strictly positive-definite. We
just proved that (26) holds if (cjk)G T Π RN. Since the integral in (26) is
a holomorphic function of (cjk) in T, (26) holds for all (cjk)£. T.

III. The main theorem.
3.1. THEOREM. Let D be a bounded strictly pseudoconvex domain

in Cn, with C2~boundary.
Let Ω be an open set in Rm and let Φ: Ω—> 3D be a nonsingular

Cx-mapping that satisfies the orthogonality condition

(27) (Φ'(X)Ό,N(Φ(X))) = 0

for all JC E Ω, i; E Rm.
Let K be a compact subset of Ω.
Then Φ(K) is a peak-interpolation set for A{D).

REMARKS, (i) Theorem 3.1 implies the one stated in the Introduc-
tion, if we think of M as being parametrized by Φ. Note, however, that
Φ is not assumed to be globally one-to-one in Ω. Thus Φ(Ω) need not be
a manifold.

(ii) Theorem 3.1 has a converse: If Φ: Ω—> 3D is of class C\ if Φ'
satisfies a Lipschitz condition of some positive order, and if Φ(K) is a
(PΙ)-set for A(D\ for every compact K CΩ, then (27) holds.
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This is contained in [10]. Whether the Lipschitz condition can be
removed from the converse is an unanswered question.

3.2. Proof for strictly convex D.

We shall prove that every p E Ω has a neighborhood Ωp such that
μ(Φ(K)) = 0 for all compact K CΩP and for all μ 1A (D).

By Bishop's theorem, quoted in §1.5, this gives the conclusion of
Theorem 3.1.

Fix p E Ω. Since Φ'(x) has rank m for all x E Ω and since Φ' is
continuous, we can find a constant c > 0 and a ball B, centered at /?, with
B CΩ, so that

(28) \Φ'(x)v \^c\v\ (xEB,vERm)

and

(29) \Φ(x)-Φ(y)\^c\x-y\ (x,yEB).

We shall prove the above statement with Ωp = B.

Choose a > 0 so that (8) holds. Then (28) implies

(30) R e Q Φ ( y ) ( Φ ' ( y ) v ) ^ a c 2 \ v \ 2 ( y E B , v E R " ) .

The absolute values of the integrands in

(31) g(y)= f {l + \Qφ{y){Φ'{y)v)Ymdv (yEB)

are thus dominated by {1 + \ac2\ v |2}"m, which is in L\Rm). Moreover,
g(y)τ^0, by (30) and Lemma 2.4.

Now let /: Rm -»C be continuous, with support in B. For δ >0,
define

(32) h s ( z ) = ί
JB (Φ(x)-z,N(Φ(x)))}m

By Lemma 2.1, the real part of the inner product in (32) is nonnegative if
z ED. For each δ > 0, the integrand is thus bounded, and we see that
HδEA(D).

We claim that {/is} has the following properties:
(I) {hδ} is uniformly bounded on_D.
(II) lims^ohs(z) = 0 for all z E D\Φ(B).

(III) limδ_oMΦ(y)) = /(y) for all yEB.



PEAK-INTERPOLATION SETS OF CLASS O 275

Proof of (I). Fix z G Dy choose y 6 B so that | Φ ( x ) - z | g
| Φ ( y ) - z | for all x G B. Then

(33) 2 | Φ ( x ) - z I ̂  | Φ ( J C ) - Φ(y) | (x G B).

Define the integrand in (32) to be 0 when x&B. Then B can be
replaced by Rm in (32), and we can rewrite (32) in the form

(34) /».(*) = £, (f/χ)(y
δ~2(Φ(y + δv) - z, N(Φ(y + δv)))}

by the change of variable x = y + δv. If y + δv G J3, it follows from
Lemma 2.1, (33), and (29) that

Re(Φ(y + δv)-z,N(Φ(y + δu)))g c,δ2|i; |2,

where 8ci = αc2. The integrands in (34) are thus dominated in absolute
value by

(35) llZ/glWl + c^l2}-"1

which is in L ι(Rm). Since the bound (35) is the same for all z G D, δ > 0,
we have (I).

Proof of (II). Fix z G D\Φ(B), and choose y G 2? as in the proof of
(I). If y + δv G B, it follows from Lemma 2.1 and the minimizing
property of y that

2Re<Φ(y + δυ) - z, N(Φ(y + δv))) S α | Φ(y) - z |2 > 0.

Thus, (II) follows from the dominated convergence theorem, applied
to (34).

Proof of (III). Replace z by Φ(y) in (34), and use the dominated
convergence theorem once more. The numerator of the integrand tends
to /(y)/g(y), as δ-»0. Apply Lemma 2.3 (with u = 0) to the de-
nominator, and compare with (31), the definition of g (y). (Ill) follows.

Having proved (I), (II), and (III), pick a compact KCB, pick
μ ±A(D). There are continuous functions /,: Rm—>[0,1], with com-
pact supports KiCKi-tCB, so that K = Π K> and ft(x)=l for
x G K. Since Φ is one-to-one on B, there are continuous functions Ft on
E = Φ(B) given by Fi(Φ(x)) = f(x),x E B. Construct {hδ} as above,

with f in place of /. Since I hδdμ - 0 for every δ > 0, properties (I), (II),
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(III) imply that \ Fxάμ = 0. Since Fi(w)=ίiίw E Φ(K) and F / ( w ) - > 0
J E

if w E E\Φ(K), as i -»°°, another passage to the limit gives μ (Φ(K)) = 0.
This completes the proof for strictly convex D.

3.3 Proof of the general case. Let D be a bounded strictly
pseudoconvex domain, with defining function p, as in §1.3. For suffi-
ciently small e > 0, the domain

(36) D€={zEW:p(z)<e}

has compact closure D€ C W, and De is also strictly pseudoconvex. To
apply Fornaess' embedding theorem [4] we need two facts about D
and D€:

(i) There is a biholomorphic mapping of De onto a closed sub-
manifold oί some Ck.

(ii) D is holomorphically convex in De.

The first of these is true because De is a domain of holomorphy ([7],
Theorem 4.2.8), hence a Stein manifold ([7], p. 105), and thus Bishop's
embedding theorem ([12], or Theorem 5.3.9 of [7]) gives (i) with
k =2n + l.

As regards (ii), note that p is plurisubharmonic, by (7) and (4), so
that D is equal to its F(De)-hull (see Definition 2.6.6 in [7]). Thus (ii)
follows from Theorem 4.3.4 in [7].

Since D is strictly pseudoconvex, Fornaess' Theorem 9 asserts the
existence of a positive integer p, of a biholomorphic map φ taking D€

onto a closed submanifold of Cp, and of a strictly convex domain D in Cp,
such that ψ(D)CD,ψ(dD)CdD, and ψ(D€\D) lies outside the closure
of D.

Now let Φ: Ω—» 3D be as in the statement of Theorem 3.1. Then
φ = φ © φ is a nonsingular C^-map of Ω into 3D. Fix JC E Ω, v G Rm, put

By (27), both ζ. and ΐ£ are in Tw{dD). Since φ{dD)CdD,φ'{w) maps
Tw(dD) into T*(#D). Since ψ is holomorphic, <A'(M>) is C-linear. Thus
both ζ and /£ = iφ(w)ζ = φ\w)(iζ) lie in T«(dD). This shows that Φ
and D satisfy the hypotheses of Theorem 3.1.

Let K CΩ be compact. By §3.2, Φ(K) is a (P/)-set for A (D). If
gEC(Φ(K)) then there exists GeC(Φ(K)) given by G(φ(w)) =
g(w),w E K, and G has a peak-interpolation extension F G A ( D ) .
Finally, the function f = F°φ E A(D) is an extension of g with the
properties required in §1.5.

This completes the proof.
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IV. The dimension of (PΙ)-sets.

4.1. Suppose that the hypotheses of Theorem 3.1 hold. Associate
to each x E ίl the real vector space

(37) Vx = {Φ'(x)u: uERm}.

Since Φ'(JC) has rank m, dimR Vx = m. It will be shown, in Theorem 4.2,
that Vx Π (iVx) = {0}, i.e., that Vx contains no complex subspace of
positive dimension. (Such vector spaces are said to be totally real. A
different proof, using stronger smoothness assumptions, appears in [3].)

By (27), both Vx and iVx lie in the maximal complex subspace of
Tφ{x){dD), whose real dimension in In - 2. This leads to the (perhaps
surprising) conclusion that the hypotheses of Theorem 3.1 can only hold
when m ̂  n - 1.

It seems thus reasonable to conjecture that the topological dimen-
sion of no (PΙ)-set in 3D exceeds n - 1, if D is any bounded strictly
pseudoconvex domain in Cn.

The conjecture is open even when D is a ball.

4.2. THEOREM. // the hypotheses of Theorem 3.1 hold and if Vx is
defined by (37), then

(38)

Proof. Take x = 0, without loss of generality, and write V in place

of Vo.
Choose ζ<ΞV,η <ΞV. Then ζ = Φ'(0)w and η = Φχθ)ι;, for some

w, v G Rm. Put Ψ = N o φ, as in Lemma 2.2, and define rj = Ψ'(0)υ. Then

ir ΓΛ ΐ ; m

(ζ, η) - hm

= lim [Lδ (M, 0) + Lδ (0, ϋ) - Lδ (II, i;)]
o —* U

where Lδ(u, v) = δ'2(Φ(δv)-Φ(8u),Ψ(δv)).
Hence it follows from Lemma 2.3 (with y = 0) that

2(ζ,ή)=Q(ζ)+Q(η)-Q(ζ-η)

= P(ζ)+ P(η)- P(ζ - η) + 2Rc(Hζ,η)

where we have written Q, P, H in place of <?Φ(0), PΦφ), Hφ(0). (See § 1.2.)
Suppose now that η generates a complex subspace of V. We can
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then replace ζ by λη in the preceding calculation, for any λ EC. Since
P is homogeneous, of degree 2, and since λ 2 + 1 - (λ - I)2 = 2λ, it follows
that

(39) λ(η,ή)= λP(η) + Re{λ(Hη,η)}

for every A E C . Thus λ[{η,rj)- P(η)] is real, for all A; this forces
(η,rj) = P(η), and hence (39), with A = 1, gives (Hη,η) = 0. But
(Hη,η)^ β\η\2 for some β > 0, since D is strictly pseudoconvex (see
§1.3). Thus η = 0. This implies (38).

4.3. We conclude with examples of Theorem 3.1 for the case
D = Bn, the unit ball of C", and Ω = R""1.

Let a = (ax , , αn) be a nonsingular C2-map of R π l onto a hyper-
surface in R" whose normal has all components positive. This implies
that there are positive functions F y : R n l - > R that satisfy

(40) Σ ^X* ) ! ? ( * ) = 0 ( l S k S n » l )

and are of class C1. Moreover, one can adjust them so that

Now put Φ = (φλ , , φn), where

(42) φ,(x) = Fy(x)exp{/α7^)} (1 ^ / ^ n).

Then Φ is a nonsingular C^map of R""1 into dBn that satisfies

(43) Σf?(*M0O = 0 (l^kSn-1),

because of (40) and (41).
Since D = Bn, we can take ρ(z) = \z | 2 - 1, hence N ( w ) = w. Thus

(43) gives the orthogonality condition (27).
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