WORD EQUATIONS IN SOME GEOMETRIC SEMIGROUPS

Mohan S. Putcha

Let S be a semigroup and let $w_1 = w_1(x_1, \dots, x_t), w_2 =$ $w_2(x_1, \dots, x_t)$ be two words in the variables x_1, \dots, x_t . By a solution of the word equation $\{w_1, w_2\}$ in S, we mean $a_1, \dots, a_t \in$ S such that $w_1(a_1, \dots, a_t) = w_2(a_1, \dots, a_t)$. Let \mathcal{F}_R denote the free product of t copies of positive reals under addition. In §3 and §5 we show that if Y is either the semigroup of certain paths in \mathbf{R}^n or the semigroup of designs around the unit disc, then any solution of $\{w_1, w_2\}$ in Y can be derived from a solution of $\{w_1, w_2\}$ in $\mathcal{F}_{\mathbf{R}}$. This answers affirmatively a problem posed in Word equations of paths by Putcha. Word equations in \mathcal{F}_{R} are studied in §1. Using these results, it is shown that any solution in Y of $\{w_1, w_2\}$ can be approximated by a solution which is derived from a solution in a free semigroup. There are two books by Hmelevskii and Lentin on word equations in free semigroups. We also show that if $\{w_1, w_2\}$ has only trivial solutions in any free semigroup, then it has only trivial solutions in Y.

1. **Preliminaries.** Throughout this paper, N, Z, Z^+ , \mathcal{Q} , \mathcal{Q}^+ , R, \mathbb{R}^+ will denote the sets of nonnegative integers, integers, positive integers, rationals, positive rationals, reals and positive reals, respectively. For $m, n \in Z^+$, let $\mathbb{R}^{m \times n}$, $\mathcal{Q}^{m \times n}$ denote the sets of all $m \times n$ matrices over the reals and rationals, respectively. If S is a semigroup, then $S^1 = S \cup \{1\}$ with obvious multiplication if S does not have an identity element; $S^1 = S$ otherwise. If $T \subseteq S^1$, then $T^1 = T \cup \{1\}$.

DEFINITION. Let S be a semigroup and $a, b \in S$.

(1) $a \mid b$ if b = xay for some $x, y \in S^1$.

(2) $a \mid_i b$ if b = ax for some $x \in S^1$.

(3) $a|_{t}b$ if b = ya for some $y \in S^{1}$.

If Γ is a nonempty set, then let $\mathscr{F} = \mathscr{F}(\Gamma)$ denote the free semigroup on Γ . If $w \in \mathscr{F}$, then let l(w) = length of w. If S is a semigroup and $a_1, \dots, a_n \in S$, then we say that $a \in S$ is a word in a_1, \dots, a_n if $a = w(a_1, \dots, a_n)$ for some $w(x_1, \dots, x_n) \in \mathscr{F}(x_1, \dots, x_n)$. This is the same as saying that a is an element of the semigroup generated by a_1, \dots, a_n .

Let Γ be a nonempty set. Let $\mathscr{F}_{\mathbf{R}} = \mathscr{F}_{\mathbf{R}}(\Gamma)$ denote the set of all nonempty finite sequences (also called words) of the type $w = A_1^{\alpha_1} \cdots A_n^{\alpha_n}$

where $n \in Z^+$, $\alpha_1, \dots, \alpha_n \in \mathbf{R}^+$, $A_1, \dots, A_n \in \Gamma$ and $A_i \neq A_{i+1}$ for $i, i+1 \in \{1, \dots, n\}$. We define e(w) = n and $l(w) = \alpha_1 + \dots + \alpha_n$. Let $w_1, w_2 \in \mathcal{F}_{\mathbf{R}}$. Suppose $w_1 = A_1^{\alpha_1} \cdots A_n^{\alpha_n}$, $w_2 = B_1^{\beta_1} \cdots B_m^{\beta_m}$. Then we define

$$w_1w_2 = \begin{cases} A_1^{\alpha_1} \cdots A_n^{\alpha_n+\beta_1} B_2^{\beta_2} \cdots B_m^{\beta_m} & \text{if } A_n = B_1. \\ \\ A_1^{\alpha_1} \cdots A_n^{\alpha_n} B_1^{\beta_1} \cdots B_m^{\beta_m} & \text{if } A_n \neq B_1. \end{cases}$$

Now, of course, expressions of the type $w = A_{1}^{\alpha_{1}} \cdots A_{n}^{\alpha_{n}} (\alpha_{1}, \cdots, \alpha_{n} \in \mathbf{R}^{+};$ $A_1, \dots, A_n \in \Gamma$) make sense even when $A_i = A_{i+1}$ for some $i, i+1 \in I$ $\{1, \dots, n\}$. But note that if n = e(w), then $A_i \neq A_{i+1}$ for any $i, i+1 \in \mathbb{R}$ $\{1, \dots, n\}$. In such a case we call $A_{1}^{\alpha_{1}} \cdots A_{n}^{\alpha_{n}}$, the standard form of w. $\mathscr{F}_{\mathbf{R}}(\Gamma)$ is a semigroup and is just the free product of $|\Gamma|$ copies of \mathbf{R}^+ under addition (see for example [3; p. 411]). Let $\mathcal{N} = \mathcal{N}(\Gamma) =$ $\{A^{\alpha} | A \in \Gamma, \alpha \in \mathbf{R}^+\}$. If $u, v \in \mathcal{F}_{\mathbf{R}}(\Gamma)$, then define $u \sim v$ if either u = w', v = w' for some $w \in \mathcal{F}_{\mathbf{R}}$, $i, j \in Z^+$ or if $u = A^{\alpha}$, $v = A^{\beta}$ for some $\alpha, \beta \in \mathbf{R}^+, A \in \Gamma$. Clearly, ~ is an equivalence relation on $\mathcal{N}(\Gamma)$. It will follow from Theorem 1.9 that \sim is in fact an equivalence relation on $\mathscr{F}_{\mathbf{R}}(\Gamma)$. Let $w \in \mathscr{F}_{\mathbf{R}}$, $w = A_1^{\alpha_1} \cdots A_n^{\alpha_n}$ in standard form. Let $A \in \Gamma$. Then A appears integrally in w if for each $i \in \{1, \dots, n\}, A_i = A$ implies $\alpha_i \in Z^+$. Otherwise A appears nonintegrally in w. A appears rationally in w if for each $i \in \{1, \dots, n\}$, $A_i = A$ implies $\alpha_i \in \mathcal{Q}^+$. Let $\mathscr{F}_{\mathfrak{P}}(\Gamma) = \{w \mid w \in \mathscr{F}_{\mathbf{R}}(\Gamma), A \text{ appears rationally in } w \text{ for each } A \in \mathcal{F}_{\mathbf{R}}(\Gamma)\}$ Γ . $\mathcal{F}_{\mathfrak{g}}(\Gamma)$ is a subsemigroup of $\mathcal{F}_{\mathfrak{g}}(\Gamma)$.

DEFINITION. By a word equation in variables x_1, \dots, x_n we mean $\{w_1, w_2\}$ where $w_1 = w_1(x_1, \dots, x_n)$, $w_2 = w_2(x_1, \dots, x_n) \in \mathcal{F}(x_1, \dots, x_n)$. It is not necessary that each x_i appears in w_1w_2 . Let S be a semigroup and $a_1, \dots, a_n \in S$. Then (a_1, \dots, a_n) is a solution of $\{w_1, w_2\}$ if $w_1(a_1, \dots, a_n) = w_2(a_1, \dots, a_n)$.

Let (b_1, \dots, b_n) be a solution in $\mathscr{F}(\Gamma)$ of a word equation $\{w_1, w_2\}$ in variables x_1, \dots, x_n . Let S be a semigroup and $\varphi : \mathscr{F}(\Gamma) \to S$, a homomorphism. Let $a_i = \varphi(b_i), i = 1, \dots, n$. Then (a_1, \dots, a_n) is a solution of $\{w_1, w_2\}$. We say that (a_1, \dots, a_n) follows from (b_1, \dots, b_n) .

DEFINITION. Let $\{w_1, w_2\}$ be a word equation in variables x_1, \dots, x_n and S a semigroup.

(1) Let (a_1, \dots, a_n) be a solution of $\{w_1, w_2\}$ in S. Then (a_1, \dots, a_n) is strongly resolvable if it follows from some solution of $\{w_1, w_2\}$ in $\mathcal{F}(\Gamma)$ for some nonempty set Γ . By Lentin [2] we can then choose $|\Gamma| \leq n$.

(2) $\{w_1, w_2\}$ is strongly resolvable in S if every solution of $\{w_1, w_2\}$ is strongly resolvable.

Let Γ be a nonempty set and let $\xi \colon \Gamma \to \mathcal{Q}^+$. Then clearly there exists a unique automorphism φ of $\mathcal{F}_2(\Gamma)$ such that $\varphi(A) = A^{\xi(A)}$ for all $A \in \Gamma$. Now let $a_1, \dots, a_n \in \mathcal{F}_2(\Gamma)$. Then there exists an automorphism φ of $\mathcal{F}_2(\Gamma)$ of the above type such that $b_i = \varphi(a_i) \in \mathcal{F}(\Gamma)$, $i = 1, \dots, n$. Suppose (a_1, \dots, a_n) is a solution of a word equation. Then (b_1, \dots, b_n) is also a solution of the same equation and $a_i = \varphi^{-1}(b_i), i = 1, \dots, n$. So we have the following.

THEOREM 1.1. Every word equation is strongly resolvable in $\mathcal{F}_{2}(\Gamma)$ for any nonempty set Γ .

DEFINITION. Let $w_1, w_2 \in \mathcal{F}_{\mathbf{R}}(\Gamma)$. Suppose $w_1 = A_1^{\alpha_1} \cdots A_n^{\alpha_n}, w_2 = B_1^{\beta_1} \cdots B_m^{\beta_m}$ in standard form. If m = n and $A_i = B_i$ $(i = 1, \dots, n)$, then let $d(w_1, w_2) = \sum_{i=1}^n |\alpha_i - \beta_i|$. Otherwise let $d(w_1, w_2) = \infty$.

LEMMA 1.2. Let $u_1, u_2, u_3, u_4 \in \mathcal{F}_{\mathbf{R}}(\Gamma)$. Then the following are true in the extended real line.

- (i) $e(u_1u_2) = e(u_1) + e(u_2)$ or $e(u_1) + e(u_2) 1$.
- (ii) $d(u_1, u_2) = 0$ if and only if $u_1 = u_2$.
- (iii) $d(u_1, u_3) \leq d(u_1, u_2) + d(u_2, u_3).$
- (iv) $d(u_1, u_2) = d(u_2, u_1).$
- (v) $d(u_1u_2, u_3u_4) \leq d(u_1, u_3) + d(u_2, u_4).$

Proof. (i), (ii), (iii) and (iv) are clear. So we prove (v). Let $w_1, w_2 \in \mathcal{F}_{\mathbf{R}}(\Gamma)$, $d(w_1, w_2) < \infty$. Let $w_1 = A_1^{\alpha_1} \cdots A_n^{\alpha_n}$, $w_2 = A_1^{\beta_1} \cdots A_n^{\beta_n}$ in standard form. Let $A \in \Gamma$. If $A \neq A_n$, then for any $\alpha \in \mathbf{R}^+$, $w_1 A^{\alpha} = A_1^{\alpha_1} \cdots A_n^{\alpha_n} A^{\alpha}$, $w_2 A^{\alpha} = A_1^{\beta_1} \cdots A_n^{\beta_n} A^{\alpha}$ in standard form. So $d(w_1 A^{\alpha}, w_2 A^{\alpha}) = d(w_1, w_2)$. If $A = A_n$, then $w_1 A^{\alpha} = A_1^{\alpha_1} \cdots A_n^{\alpha_n + \alpha}$, $w_2 A^{\alpha} = A_1^{\beta_1} \cdots A_n^{\beta_n + \alpha}$. So again $d(w_1 A^{\alpha}, w_2 A^{\alpha}) = d(w_1, w_2)$. So by induction $d(w_1 u, w_2 u) = d(w_1, w_2)$ for all $u \in \mathcal{F}_{\mathbf{R}}(\Gamma)$. Similarly $d(uw_1, uw_2) = d(w_1, w_2)$ for all $u \in \mathcal{F}_{\mathbf{R}}(\Gamma)$. Similarly that $d(u_1, u_3) < \infty$ and $d(u_2, u_4) < \infty$. So $d(u_1 u_2, u_3 u_4) \leq d(u_1 u_2, u_3 u_4) = d(u_1, u_3) + d(u_2, u_4)$. The same holds trivially if $d(u_1, u_3) = \infty$ or $d(u_2, u_4) = \infty$.

LEMMA 1.3. (i) Let $u \in \mathcal{F}_{\mathbf{R}}(\Gamma)$, $n \in Z^+$ such that e(u) > 1. Let $u = A_1^{\alpha_1} \cdots A_r^{\alpha_r}$, $u^n = B_1^{\beta_1} \cdots B_s^{\beta_s}$ in standard form. Then $\{\alpha_1, \cdots, \alpha_r\} \subseteq \{\beta_1, \cdots, \beta_s\}$.

(ii) Let $u, v \in \mathcal{F}_{\mathbf{R}}(\Gamma)$, $n \in Z^+$. Then $d(u, v) \leq d(u^n, v^n) \leq nd(u, v)$.

Proof. (i) $1 < r \le s$. Since $u \mid_i u^n$, $u \mid_j u^n$ we obtain $\alpha_i = \beta_i$ $(1 \le i < r)$ and $\alpha_r = \beta_s$.

(ii) That $d(u^n, v^n) \le nd(u, v)$ follows from Lemma 1.2 (v). So we

show that $d(u, v) \leq d(u^n, v^n)$. If $d(u^n, v^n) = \infty$, this is trivial. So let $d(u^n, v^n) < \infty$. If u^n or $v^n \in \mathcal{N}(\Gamma)$, then $u, v \in \mathcal{N}(\Gamma)$ and $u \sim v$. So for some $A \in \Gamma$, $\epsilon, \delta \in \mathbb{R}^+$, $u = A^{\epsilon}$, $v = A^{\delta}$. So $d(u, v) = |\epsilon - \delta| \leq |n\epsilon - n\delta| = d(u^n, v^n)$. Next assume $e(u^n), e(v^n) > 1$. Let $u^n = A_1^{\alpha_1} \cdots A_m^{\alpha_m}$, $v^n = A_1^{\beta_1} \cdots A_m^{\beta_m}$ in standard form with m > 1. Let $u = B_1^{\gamma_1} \cdots B_r^{\gamma_r}$, $v = C_1^{\delta_1} \cdots C_s^{\delta_s}$ in standard form. Then r, s > 1, $B_1 = A_1 = C_1$, $B_r = A_m = C_s$. If $A_1 \neq A_m$, then rn = m = sn. So r = s. If $A_1 = A_m$, then r - n - 1 = m = ns - n - 1. Thus in any case r = s. Also $B_i = A_i = C_i$, $1 \leq i \leq r$. For $1 \leq i \leq r - 1$, $\gamma_i = \alpha_i$ and $\delta_i = \beta_i$. Also $\gamma_r = \alpha_m$ and $\delta_s = \beta_m$. Thus $\sum_{i=1}^r |\gamma_i - \delta_i| \leq \sum_{i=1}^m |\alpha_i - \beta_i|$. This proves the lemma.

If $P \in \mathbf{R}^{m \times n}$, then let P^T denote the transpose of P.

LEMMA 1.4. Let Γ be a nonempty set and let $A_1, \dots, A_n \in \Gamma$, $\epsilon_1, \dots, \epsilon_n \in \mathbb{R}^+$, $i_1, \dots, i_n, j_1, \dots, j_s \in \{1, \dots, n\}$. Suppose that in $\mathcal{F}_{\mathbb{R}}(\Gamma)$,

$$A_{i_1}^{\epsilon_{i_1}}\cdots A_{i_r}^{\epsilon_{i_r}}=A_{i_1}^{\epsilon_{j_1}}\cdots A_{i_s}^{\epsilon_{j_s}}.$$

Then there exists $P \in \mathcal{Q}^{m \times n}$ for some $m \in Z^+$ such that for any $\alpha_1, \dots, \alpha_n \in \mathbf{R}^+$, $P(\alpha_1, \dots, \alpha_n)^T = 0$ if and only if

(1)
$$A_{l_1}^{\alpha_{l_1}}\cdots A_{l_r}^{\alpha_{l_r}} = A_{j_1}^{\alpha_{j_1}}\cdots A_{j_s}^{\alpha_{l_s}}.$$

Proof. We prove by induction on r + s. Choose p, q maximal so that $1 \le p \le r$, $1 \le q \le s$ and for any α , β with $1 \le \alpha \le p$, $1 \le \beta \le q$, we have $A_{i_1} = A_{i_{\alpha}}$ and $A_{j_1} = A_{j_{\beta}}$. Clearly $A_{i_1} = A_{j_1}$ and $\sum_{k=1}^{p} \epsilon_{i_k} = \sum_{k=1}^{q} \epsilon_{j_k}$. Now clearly p = r if and only if q = s. Also in this case, for any $\alpha_1, \dots, \alpha_n \in \mathbb{R}^+$, (1) holds if and only if $\sum_{k=1}^{r} \alpha_{i_k} = \sum_{k=1}^{s} \alpha_{j_k}$. We can then trivially choose a $1 \times n$ integer matrix P such that for any $\alpha_1, \dots, \alpha_n \in \mathbb{R}^+$, $P(\alpha_1, \dots, \alpha_n)^T = 0$ if and only if $\sum_{k=1}^{r} \alpha_{i_k} = \sum_{k=1}^{s} \alpha_{j_k}$.

Thus we may assume p < r add q < s. Then we have

$$A_{i_{p+1}}^{\epsilon_{i_{p+1}}}\cdots A_{i_r}^{\epsilon_i}=A_{j_{q+1}}^{\epsilon_{j_{q+1}}}\cdots A_{j_s}^{\epsilon_{j_s}}.$$

If $\alpha_1, \dots, \alpha_n \in \mathbf{R}^+$, then (1) holds if and only if

(2)
$$\sum_{k=1}^{p} \alpha_{i_{k}} = \sum_{k=1}^{q} \alpha_{j_{k}}$$

and

$$(3) A^{\alpha_{i_{p+1}}}_{i_{p+1}}\cdots A^{\alpha_{i_r}}_{i_r} = A^{\alpha_{j_{q+1}}}_{j_{q+1}}\cdots A^{\alpha_{j_s}}_{j_s}.$$

We can trivially choose a $1 \times n$ integer matrix P_1 such that (2) holds if and only if $P_1(\alpha_1, \dots, \alpha_n)^T = 0$. By our induction hypothesis, we can choose $P_2 \in \mathcal{Q}^{m \times n}$ for some *m* such that (3) holds if and only if $P_2(\alpha_1, \dots, \alpha_n)^T =$ 0. Let $P = {\binom{P_1}{P_2}}$. Then for any $\alpha_1, \dots, \alpha_n \in \mathbb{R}^+$, $P(\alpha_1, \dots, \alpha_n)^T = 0$ if and only if both (2) and (3) hold. This proves the lemma.

LEMMA 1.5. Let Γ be a nonempty set and let $A_1, \dots, A_n \in \Gamma$, $\epsilon_1, \dots, \epsilon_n \in \mathbb{R}^+, i_1, \dots, i_n, j_1, \dots, j_s \in \{1, \dots, n\}$. Suppose that in $\mathcal{F}_{\mathbb{R}}(\Gamma)$,

$$A_{i_1}^{\epsilon_{i_1}}\cdots A_{i_r}^{\epsilon_{i_r}}=A_{j_1}^{\epsilon_{j_1}}\cdots A_{j_s}^{\epsilon_{j_s}}$$

Let $\delta \in \mathbf{R}^+$. Then there exist $\alpha_1, \dots, \alpha_n \in \mathcal{Q}^+$ such that $\sum_{k=1}^n |\alpha_k - \epsilon_k| < \delta$ and

$$A_{i_1}^{\alpha_{i_1}}\cdots A_{i_r}^{\alpha_{i_r}} = A_{i_1}^{\alpha_{i_1}}\cdots A_{i_s}^{\alpha_{i_s}}.$$

Proof. Choose $P \in \mathcal{Q}^{m \times n}$ as in Lemma 1.4. Let $V = \{(\beta_1, \dots, \beta_n)^T | (\beta_1, \dots, \beta_n)^T \in \mathbb{R}^{n+1}, P(\beta_1, \dots, \beta_n)^T = 0\}$. $(\epsilon_1, \dots, \epsilon_n)^T \in V$ and so $V \neq \{0\}$. Let

$$W = \{ (\beta_1, \cdots, \beta_n)^T | (\beta_1, \cdots, \beta_n)^T \in \mathcal{Q}^{n \times 1}, P(\beta_1, \cdots, \beta_n)^T = 0 \}.$$

Let $\mu = n - \text{rank}$ of P. Then dim V over $\mathbf{R} = \mu = \dim W$ over \mathcal{Q} . Since $V \neq \{0\}$, we have $\mu > 0$. W has a basis H_1, \dots, H_{μ} over \mathcal{Q} . Let $H = \text{the } n \times \mu$ matrix $[H_1, \dots, H_{\mu}]$. Then rank of $H = \mu$. So H_1, \dots, H_{μ} are also linearly independent over \mathbf{R} . Hence H_1, \dots, H_{μ} form a basis of V and of course $H_1, \dots, H_{\mu} \in \mathcal{Q}^{n \times 1}$. So there exist $\delta_1, \dots, \delta_{\mu} \in \mathbf{R}$ such that $(\epsilon_1, \dots, \epsilon_n)^T = \delta_1 H_1 + \dots + \delta_{\mu} H_{\mu}$. Let $\gamma_1, \dots, \gamma_{\mu} \in \mathcal{Q}$ and set $(\alpha_1, \dots, \alpha_n)^T = \gamma_1 H_1 + \dots + \gamma_{\mu} H_{\mu}$. Then clearly $(\alpha_1, \dots, \alpha_n)^T \in W$. Also

$$\sqrt{\sum\limits_{k=1}^n |lpha_k - \epsilon_k|^2} \leqq \sum\limits_{p=1}^\mu |\delta_p - \gamma_p| \|H_p\|.$$

Thus for any $\delta \in \mathbf{R}^+$ we can choose $|\delta_p - \gamma_p|$, $p = 1, \dots, \mu$, small enough so that $|\alpha_k - \epsilon_k| < \delta/n$, $k = 1, \dots, n$. For δ small enough we then also have $\alpha_k \in \mathcal{Q}^+$, $k = 1, \dots, n$. This proves the lemma.

THEOREM 1.6. Let $\{w_1, w_2\}$ be a word equation in variables x_1, \dots, x_n . Let (a_1, \dots, a_n) be a solution of $\{w_1, w_2\}$ in $\mathcal{F}_{\mathbf{R}}(\Gamma)$. Then for each $\epsilon \in \mathbf{R}^+$, there exists a solution (b_1, \dots, b_n) of $\{w_1, w_2\}$ in $\mathcal{F}_{2}(\Gamma)$ such that $\sum_{i=1}^{n} d(a_i, b_i) < \epsilon$.

Proof. Let $a_i = A_{i1}^{\beta_{11}} \cdots A_{im_i}^{\beta_{im_i}}$ in standard form, $i = 1, \dots, n$. Let w_1 start with x_i and let w_2 start with x_i . Then correspondingly we have

$$A_{i1}^{\beta_{i1}}\cdots=A_{i1}^{\beta_{i1}}\cdots$$

Choose $\alpha_{ik} \in \mathcal{Q}^+$, $i = 1, \dots, n$, $1 \leq k \leq m_i$. Let $b_i = A_{i1}^{\alpha_{i1}} \cdots A_{im_i}^{\alpha_{im_i}}$, $i = 1, \dots, n$. Then $b_1, \dots, b_n \in \mathcal{F}_2(\Gamma)$. Also, $w_1(b_1, \dots, b_n) = w_2(b_1, \dots, b_n)$ if and only if

(4)
$$A_{t1}^{\alpha_{t1}}\cdots = A_{t1}^{\alpha_{t1}}\cdots$$

But by Lemma 1.5 we can choose α_{ik} 's so that (4) holds and $|\alpha_{ik} - \beta_{ik}| < \epsilon$ for all relevant *i* and *k*. So clearly $\sum_{i=1}^{n} d(a_i, b_i) = \sum_{i,k} |\alpha_{ik} - \beta_{ik}| \le M\epsilon$ where $M = \sum_{i=1}^{n} e(a_i)$. This proves the theorem.

LEMMA 1.7. Let $A_1, \dots, A_n \in \Gamma$, $\Lambda \subseteq \Gamma$. Suppose $\alpha_1, \dots, \alpha_n$, $\beta_1, \dots, \beta_n \in \mathbf{R}^+$, i_1, \dots, i_r , $j_1, \dots, j_s \in \{1, \dots, n\}$ such that $A_{i_1}^{\alpha_{i_1}} \dots A_{i_r}^{\alpha_{i_r}} = A_{j_1}^{\alpha_{j_1}} \dots A_{j_s}^{\beta_{j_s}}$. Let $\gamma_i = \alpha_i$ if $A_i \in \Lambda$, $\gamma_i = \beta_i$ if $A_i \notin \Lambda$, $i = 1, \dots, n$. Then $A_{i_1}^{\gamma_{i_1}} \dots A_{i_r}^{\gamma_{i_r}} = A_{j_1}^{\gamma_{j_1}} \dots A_{j_r}^{\gamma_{j_s}}$.

Proof. We prove by induction on r + s. Choose p, q maximal such that for $1 \le \mu \le p$, $1 \le \nu \le q$, $A_{i_{\mu}} = A_{i_{\mu}}$ and $A_{j_{\mu}} = A_{j_{\nu}}$. Then

$$A_{i_1}^{\alpha_{i_1}}\cdots A_{i_p}^{\alpha_{i_p}} = A_{j_1}^{\alpha_{j_1}}\cdots A_{j_q}^{\alpha_{i_q}};$$
$$A_{i_1}^{\beta_{i_1}}\cdots A_{i_p}^{\beta_{p}} = A_{j_1}^{\beta_{j_1}}\cdots A_{j_q}^{\beta_{i_q}}.$$

Since $A_{i_{\mu}} = A_{j_{\nu}}$ for $1 \le \mu \le p$, $1 \le \nu \le q$, we obtain

$$A_{i_1}^{\gamma_{i_1}}\cdots A_{i_p}^{\gamma_{i_p}}=A_{i_1}^{\gamma_{i_1}}\cdots A_{i_q}^{\gamma_{i_q}}.$$

Also, if p + q < r + s, then p < r, q < s and

$$A_{i_{p+1}}^{\alpha_{i_{p+1}}} \cdots A_{i_{r}}^{\alpha_{i}} = A_{j_{q+1}}^{\alpha_{j_{q+1}}} \cdots A_{j_{s}}^{\alpha_{j_{s}}};$$
$$A_{i_{p+1}}^{\beta_{j_{p+1}}} \cdots A_{i_{r}}^{\beta_{j_{r}}} = A_{i_{p+1}}^{\beta_{j_{q+1}}} \cdots A_{j_{s}}^{\beta_{j_{s}}}.$$

By our induction hypothesis we then also have,

$$A_{i_{p+1}}^{\gamma_{i_{p+1}}}\cdots A_{i_r}^{\gamma_{i_r}}=A_{j_{q+1}}^{\gamma_{j_{q+1}}}\cdots A_{j_s}^{\gamma_{j_s}}.$$

Hence $A_{i_1}^{\gamma_{i_1}} \cdots A_{i_r}^{\gamma_r} = A_{j_1}^{\gamma_{j_1}} \cdots A_{j_s}^{\gamma_{s_s}}$, proving the lemma.

We will need the following refinement of Theorem 1.6.

THEOREM 1.8. Let $\{w_1, w_2\}$ be a word equation in variables

248

 x_1, \dots, x_n . Let (a_1, \dots, a_n) be a solution of $\{w_1, w_2\}$ in $\mathcal{F}_{\mathbf{R}}(\Gamma)$. Then for each $\epsilon \in \mathbf{R}^+$, there exists a solution (c_1, \dots, c_n) of $\{w_1, w_2\}$ in $\mathcal{F}_2(\Gamma)$ such that $\sum_{i=1}^n d(a_i, c_i) < \epsilon$ and so that for any $A \in \Gamma$, A appears integrally in each a_i implies A appears integrally in each c_i .

Proof. Let $\Lambda = \{A \mid A \in \Gamma, A \text{ appears integrally in each } a_i\}$. Choose (b_1, \dots, b_n) as in Theorem 1.6. Let $a_i = A_{i,1}^{\alpha_{i,1}} \cdots A_{i,m_i}^{\alpha_{i,m_i}}$, $b_i = A_{i,1}^{\beta_{i,1}} \cdots A_{i,m_i}^{\beta_{i,m_i}}$, $i = 1, \dots, n$ in standard form. Let $\gamma_{ik} = \alpha_{ik}$ if $A_{ik} \in \Lambda$, $\gamma_{ik} = \beta_{ik}$ if $A_{ik} \notin \Lambda$. Set $c_i = A_{i,1}^{\gamma_{i,1}} \cdots A_{i,m_i}^{\gamma_{i,m_i}}$, $i = 1, \dots, n$. Then $c_i \in \mathscr{F}_{\mathscr{D}}(\Gamma)$, $d(a_i, c_i) \leq d(a_i, b_i)$. Let w_1 start with x_i, w_2 start with x_i . Then correspondingly we have,

$$A_{i1}^{\alpha_{i1}}\cdots = A_{j1}^{\alpha_{j1}}\cdots$$
$$A_{i1}^{\beta_{i1}}\cdots = A_{i1}^{\beta_{j1}}\cdots$$

Then by Lemma 1.7 we also have

$$A_{i1}^{\gamma_{i1}}\cdots=A_{j1}^{\gamma_{j1}}\cdots$$

So $w_1(c_1, \dots, c_n) = w_2(c_1, \dots, c_n)$. This proves the theorem.

Let $\{w_1, w_2\}$ be a word equation in variables x_1, \dots, x_n . A solution (a_1, \dots, a_n) of $\{w_1, w_2\}$ in $\mathscr{F}_{\mathbf{R}}(\Gamma)$ is *trivial* if either there exist $u \in \mathscr{F}_{\mathbf{R}}(\Gamma)$, $k_1, \dots, k_n \in \mathbb{Z}^+$ such that $u^{k_i} = a_i$, $i = 1, \dots, n$, or if there exist $A \in \Gamma$, $\alpha_1, \dots, \alpha_n \in \mathbf{R}^+$ such that $a_i = A^{\alpha_i}$, $i = 1, \dots, n$.

THEOREM 1.9. Let $\{w_1, w_2\}$ be a word equation in variables x_1, \dots, x_n . Suppose $\{w_1, w_2\}$ has only trivial solutions in any free semigroup. Then $\{w_1, w_2\}$ has only trivial solutions in any $\mathcal{F}_{R}(\Gamma)$.

Proof. Let (a_1, \dots, a_n) be a solution of $\{w_1, w_2\}$ in $\mathscr{F}_{\mathbb{R}}(\Gamma)$. By Theorem 1.6, there exist solutions $(b_1^{(m)}, \dots, b_n^{(m)})$, $m \in Z^+$ of $\{w_1, w_2\}$ in $\mathscr{F}_{2}(\Gamma)$ such that $d(a_i, b_i^{(m)}) \to 0$ as $m \to \infty$, $i = 1, \dots, n$. By Theorem 1.1 and our hypothesis, there exist, for each $m \in Z^+$, $u_m \in \mathscr{F}_{2}(\Gamma)$, $k(m, i) \in Z^+$, $i = 1, \dots, n$ such that $b_1^{(m)} = u_m^{k(m,i)}$, $i = 1, \dots, n$. Now $e(b_1^{(m)}) = e(a_i)$ for all $m \in Z^+$, $i = 1, \dots, n$. If for any $i \in \{1, \dots, n\}$, $k(m, i) \to \infty$, then by Lemma 1.2 (i), $e(u_m) = 1$ for some $m \in Z^+$. It then follows easily (since $d(a_j, b_j^{(m)}) < \infty$, $j = 1, \dots, n$) that $e(a_j) = 1$, $j = 1, \dots, n$, and $a_j \sim a_r$ for all $j, r \in \{1, \dots, n\}$. So we may assume that the k(m, i)'s are bounded for each $i = 1, \dots, n$. So $\{(k(m, 1), \dots, k(m, n)) | m \in Z^+\}$ is finite. Hence we can assume without loss of generality (going to a subsequence if necessary) that k(m, i) = k(t, i) for all $m, t \in Z^+$, i = $1, \dots, n$. Thus there exist $k_1, \dots, k_n \in Z^+$ such that for all $m \in Z^+$, $b_i^{(m)} = u_{m}^{k_i}$, $i = 1, \dots, n$. If $e(u_m) = 1$ for any m, then we are done as above. So assume $e(u_m) > 1$ for all $m \in Z^+$. Now for all $m, t \in Z^+$, $d(b_1^{(m)}, b_1^{(t)}) < \infty$. So $d(u_n^{k_1}, u_t^{k_1}) < \infty$. By Lemma 1.3 (ii), $d(u_m, u_t) < \infty$ ∞ . For $m \in Z^+$, let $u_m = A_1^{\alpha(m,1)} \cdots A_r^{\alpha(m,r)}$ in standard form. For any $\epsilon > 0, N \in Z^+$, there exist $m, t \in Z^+, m, t \ge N$ such that $d(b_1^{(m)}, b_1^{(t)}) < d(b_1^{(m)}, b_1^{(t)}) < d(b_1^{(m)}, b_1^{(t)}) < d(b_1^{(m)}, b_1^{(t)})$ ϵ . So by Lemma 1.3 (ii), $d(u_m, u_i) < \epsilon$. So for $i = 1, \dots, r, \langle \alpha(m, i) \rangle$ is a \mathbf{R}^+ . Let $\langle \alpha(m,i) \rangle \rightarrow \alpha_i$. So $\alpha_i \in \mathbf{R}$ sequence in Cauchy $(i = 1, \dots, r)$. Let $a_1 = B_1^{\delta_1} \cdots B_t^{\delta_t}$ in standard form. Then by Lemma 1.3 (i) and the fact that $d(a_1, u_m^{k_1}) \rightarrow 0$ as $m \rightarrow \infty$, we obtain that $\{\alpha_1, \cdots, \alpha_r\} \subseteq \{\delta_1, \cdots, \delta_t\}$. Hence $\alpha_1, \cdots, \alpha_r \in \mathbf{R}^+$. Let u = $A_1^{\alpha_1} \cdots A_r^{\alpha_r}$. So $u \in \mathcal{F}_{\mathbf{R}}(\Gamma)$ and clearly $d(u_m, u) \to 0$ as $m \to \infty$. Let $i \in \{1, \dots, n\}$. Then by Lemma 1.3(ii), $d(u_m^{k_i}, u_m^{k_i}) \le k_i d(u_m, u)$. So $d(u_m^{k_i}, u_m^{k_i}) \rightarrow 0$. Now $d(a_i, u_m^{k_i}) \rightarrow 0$. Also by Lemma 1.2, $d(a_i, u_m^{k_i}) \leq 0$ $d(a_i, u_m^{k_i}) + d(u_m^{k_i}, u_m^{k_i})$ for all $m \in Z^+$. So $d(a_i, u_m^{k_i}) = 0$ and thus by Lemma 1.2, $a_i = u^{k_i}$, $i = 1, \dots, n$. This proves the theorem.

PROBLEM 1.10. Generalize Lentin's theory of principal solutions in the free semigroup [2] to \mathcal{F}_{R} .

2. The semigroup of designs around the unit disc. For $\alpha, \beta \in \mathbb{R}^+$, $\alpha < \beta$, let $I_{\alpha,\beta} = \{x \mid x \in \mathbb{R}^2, \alpha < ||x|| < \beta\}$. Let $\mathfrak{D} = \{(A, \alpha) \mid \alpha \in \mathbb{R}^+, \alpha > 1, A \text{ is a closed subset of } \overline{I}_{1,\alpha}; \text{ for all } x \in A \text{ there exists a sequence } \langle x_n \rangle \text{ in } A \text{ such that } x_n \to x \text{ and } ||x_n|| \neq ||x|| \text{ for all } n\}$. For $(A, \alpha) \in \mathfrak{D}$, let $\Phi(A, \alpha) = A$. \mathfrak{D} becomes a semigroup under the following multiplication

$$(A, \alpha)(B, \beta) = (A \cup \alpha B, \alpha \beta).$$

We call \mathfrak{D} the semigroup of designs around the unit disc. The multiplication above is illustrated in Figure 1. If $(A, \alpha) \in \mathfrak{D}$, then let $l(A, \alpha) = \log \alpha$. So for all $u, v \in \mathfrak{D}$, l(uv) = l(u) + l(v) and l(u) > 0. In \mathfrak{D}^1 , set l(1) = 0.

REMARK 2.1. Let $(A, \alpha) \in \mathfrak{D}$. Then $A = \overline{A \cap I_{1,\alpha}}$.

DEFINITION. Let $1 \leq \beta < \gamma \leq \alpha$. Then for $(A, \alpha) \in \mathfrak{D}$, $(A, \alpha)_{[\beta,\gamma]} = (\overline{B}, \gamma/\beta)$ where $B = (1/\beta)(A \cap I_{\beta,\gamma})$. Note that $(A, \alpha)_{[\beta,\gamma]} \in \mathfrak{D}$ and since $A = \overline{A}, \Phi((A, \alpha)_{[\beta,\gamma]}) \subseteq (1/\beta)A$. Also we define $(A, \alpha)_{[\beta,\beta]} = 1$.

Note that $l((A, \alpha)_{[\beta,\gamma]}) = \log \gamma - \log \beta$. Also by Remark 2.1, $(A, \alpha)_{[1,\alpha]} = (A, \alpha)$.

LEMMA 2.2. (i) Let $1 \leq \beta < \gamma < \delta \leq \alpha$, $(A, \alpha) \in \mathfrak{D}$. Then $(A, \alpha)_{[\beta, \beta]} = (A, \alpha)_{[\beta, \gamma]} (A, \alpha)_{[\gamma, \delta]}$.

FIGURE 1. Multiplication in D.

(ii) Let $1 \leq \beta \leq \gamma < \delta \leq \mu \leq \alpha$, $(A, \alpha) \in \mathfrak{D}$. Then $l((A, \alpha)_{[\gamma,\delta]}) \leq l((A, \alpha)_{[\beta,\mu]})$. Also $l((A, \alpha)_{[\gamma,\delta]}) = l((A, \alpha)_{[\beta,\mu]})$ if and only if $\beta = \gamma$ and $\delta = \mu$.

Proof. (i) Let $x \in A$, $||x|| = \gamma$. Then there exists a sequence $\langle x_n \rangle$ of <u>A</u> such that $||x_n|| \neq \gamma$ for all *n* and $x_n \to x$. So $A \cap I_{\beta,\delta} \subseteq (\overline{A \cap I_{\beta,\gamma}}) \cup (\overline{A \cap I_{\gamma,\delta}})$. So if $A_1 = A \cap I_{\beta,\delta}$, $A_2 = A \cap I_{\beta,\gamma}$, $A_3 = A \cap I_{\gamma,\delta}$, then $\overline{A_1} = \overline{A_2} \cup \overline{A_3}$. Also $(A, \alpha)_{[\beta,\delta]} = ((1/\beta)\overline{A_1}, \delta/\beta)$, $(A, \alpha)_{[\beta,\gamma]} = ((1/\beta)\overline{A_2}, \gamma/\beta)$ and $(A, \alpha)_{[\gamma,\delta]} = ((1/\gamma)\overline{A_3}, \delta/\gamma)$. This yields the result. (ii) This follows by noting that by (i), $(A, \alpha)_{[\beta,\mu]} = (A, \alpha)_{[\beta,\gamma]}(A, \alpha)_{[\gamma,\delta]}(A, \alpha)_{[\delta,\mu]}$.

LEMMA 2.3. Let (A, α) , $(B, \beta) \in \mathfrak{D}$. Set $(C, \gamma) = (A, \alpha)(B, \beta)$. Then $(C, \gamma)_{[1,\alpha]} = (A, \alpha)$ and $(C, \gamma)_{[\alpha,\gamma]} = (B, \beta)$.

Proof. $C = A \cup \alpha B$. So $C \cap I_{1,\alpha} \subseteq A$. It follows that $C \cap I_{1,\alpha} = A \cap I_{1,\alpha}$. By Remark 2.1, $\Phi((C, \gamma)_{[1,\alpha]}) = \overline{C \cap I_{1,\alpha}} = \overline{A \cap I_{1,\alpha}} = A$. Thus $(C, \gamma)_{[1,\alpha]} = (A, \alpha)$. Now $C \cap I_{\alpha,\gamma} \subseteq \alpha B$. So $C \cap I_{\alpha,\gamma} = \alpha B \cap I_{\alpha,\gamma}$. Thus $\Phi((C, \gamma)_{[\alpha,\gamma]}) = (1/\alpha)(\overline{C \cap I_{\alpha,\gamma}}) = (1/\alpha)(\overline{\alpha B \cap I_{\alpha,\gamma}}) = (\overline{B \cap I_{1,\beta}}) = B$. It follows that $(C, \gamma)_{[\alpha,\gamma]} = (B, \beta)$.

LEMMA 2.4. Let $(A, \alpha) \in \mathfrak{D}$, $1 \leq \beta < \gamma \leq \alpha$ and set $(B, \gamma/\beta) = (A, \alpha)_{[\beta,\gamma]}$. Let $\chi : [1, \gamma/\beta] \rightarrow [\beta, \gamma]$ be the order preserving homeomorphism $\chi(x) = \beta x$. Then for $1 \leq \delta < \mu \leq \gamma/\beta$, $(B, \gamma/\beta)_{[\delta,\mu]} = (A, \alpha)_{[\chi(\delta),\chi(\mu)]}$.

Proof. $B = (1/\beta)(A \cap I_{\beta,\gamma}) \subseteq (1/\beta)A$. So $B \cap I_{\delta,\mu} = I_{\delta,\mu} \cap (1/\beta)A = (1/\beta)(I_{\chi(\delta),\chi(\mu)} \cap A)$. It follows that $\Phi((B, \gamma/\beta)_{[\delta,\mu]}) = \Phi((A, \alpha)_{[\chi(\delta),\chi(\mu)]})$. Also, $\chi(\mu)/\chi(\delta) = \mu/\delta$ and the result follows.

LEMMA 2.5. Let u_1, \dots, u_n , $(A, \alpha) \in \mathfrak{D}$ such that $(A, \alpha) = u_1 \dots u_n$. Then there exist $\alpha_0, \dots, \alpha_n \in \mathbb{R}^+$ such that $1 = \alpha_0 < \alpha_1 < \dots < \alpha_n = \alpha$ and $(A, \alpha)_{[\alpha_{i-1}, \alpha_i]} = u_i$, $i = 1, \dots, n$.

Proof. Clearly we can assume n > 1. By Lemma 2.3, there exists $\beta \in (1, \alpha)$ such that $(A, \alpha)_{[1,\beta]} = u_1$, $(A, \alpha)_{[\beta,\alpha]} = u_2 \cdots u_n$. We are now done by induction and Lemma 2.4.

LEMMA 2.6. \mathfrak{D} is a cancellative semigroup. Let $u_1, u_2, v_1, v_2 \in \mathfrak{D}$ such that $u_1u_2 = v_1v_2$. Then exactly one of the following occurs.

- (i) $l(u_1) < l(v_1), \ l(v_2) < l(u_2), \ u_1|_i v_1 \ and \ v_2|_f u_2.$
- (ii) $l(v_1) < l(u_1), \ l(u_2) < l(v_2), \ v_1|_i u_1 \ and \ u_2|_f v_2.$
- (iii) $u_1 = v_1 \text{ and } u_2 = v_2$.

Proof. Let $u_1, u_2, v_1, v_2 \in \mathfrak{D}$ such that $u_1u_2 = v_1v_2 = (A, \alpha)$. By Lemma 2.3, there exist $\beta, \gamma \in (1, \alpha)$ such that $(A, \alpha)_{[1,\beta]} = u_1, (A, \alpha)_{[1,\gamma]} = v_1, (A, \alpha)_{[\beta,\alpha]} = u_2$ and $(A, \alpha)_{[\gamma,\alpha]} = v_2$. Suppose $l(u_1) \leq l(v_1)$. Then by Lemma 2.2(ii), $\beta \leq \gamma$. So by Lemma 2.2(i), $u_1|_v v_1, v_2|_f u_2$. If $l(u_1) = l(v_1)$, then $\beta = \gamma$ and so $u_1 = v_1, u_2 = v_2$. We are now done by symmetry. LEMMA 2.7. Let $(A, \alpha) \in \mathfrak{D}$, $x \in A$, $||x|| = \beta$. Then, (i) If $\beta \in (1, \alpha)$, then for $1 \leq \gamma < \beta < \delta \leq \alpha$, $x \in \gamma \Phi((A, \alpha)_{[\gamma,\delta]})$. (ii) If $\beta = 1$, then $x \in \Phi((A, \alpha)_{[1,\delta]})$ for all $\delta \in (1, \alpha]$. (iii) If $\beta = \alpha$, then $x \in \gamma \Phi((A, \alpha)_{[\gamma,\alpha]})$ for all $\gamma \in [1, \alpha)$.

Proof. (i) $x \in A \cap I_{x,\delta} \subseteq \gamma \Phi((A, \alpha)_{[x,\delta]}).$

(ii) There exists a sequence $\langle x_n \rangle$ in A, $||x_n|| \neq 1$ for all n such that $x_n \to x$. So $x \in A \cap I_{1,\delta} = \Phi((A, \alpha)_{[1,\delta]})$.

(iii) There exists a sequence $\langle x_n \rangle$ in A, $||x_n|| \neq \alpha$ for all n such that $x_n \to x$. So $x \in \overline{A \cap I_{\gamma,\alpha}} = \gamma \Phi((A, \alpha)_{[\gamma,\alpha]})$.

DEFINITION. Let $U = \{x \mid x \in \mathbb{R}^2, ||x|| = 1\}.$

(1) Let $K = \overline{K} \subseteq U$. Then for $\alpha \in \mathbb{R}^+$, $\alpha > 1$, let $K^{(\alpha)} = (A, \alpha)$ where $A = \{\gamma x \mid x \in K, \quad \gamma \in [1, \alpha]\}$. Let $\mathscr{L} = \{K^{(\alpha)} \mid K = \overline{K} \subseteq U, \alpha \in \mathbb{R}^+, \alpha > 1\}$. Then $\mathscr{L} \subseteq \mathfrak{D}$. Note that $K = U \cap \Phi(K^{(\alpha)})$. So if $K^{(\alpha)}, L^{(\beta)} \in \mathscr{L}$ and $K^{(\alpha)} = L^{(\beta)}$, then K = L and $\alpha = \beta$. Examples of elements of \mathscr{L} are given in Figure 2.

(2) Let $K^{(\alpha)} \in \mathscr{L}$. Then for $\beta \in \mathbb{R}^+$, $(K^{(\alpha)})^{\beta} = K^{(\alpha^{\beta})}$. This is well defined and agrees with the semigroup definition of power if $\beta \in Z^+$.

(3) Let $u, v \in \mathfrak{D}$. Define $u \sim v$ if either there exist $a \in \mathfrak{D}$, $i, j \in Z^+$ such that $u = a^i$, $v = a^j$, or if $u, v \in \mathscr{L}$ and $v = u^{\alpha}$ for some $\alpha \in \mathbf{R}^+$.

REMARK 2.8. (i) $K^{(\alpha)}, K^{(\beta)} \in \mathcal{L}$. Then $K^{(\alpha)}K^{(\beta)} = K^{(\alpha\beta)}$.

(ii) Let $u \in \mathscr{L}$, $\beta, \gamma \in \mathbf{R}^+$. Then $(u^{\beta})^{\gamma} = u^{\beta\gamma}$, $u^{\beta+\gamma} = u^{\beta}u^{\gamma}$ and $l(u^{\beta}) = \beta l(u)$.

(iii) Let $u \in \mathcal{L}$. Then there exists unique $v \in \mathcal{L}$ such that $u \sim v$ and l(v) = 1. If $l(u) = \gamma$, then $v^{\gamma} = u$.

(iv) Let $u \in \mathfrak{D}$, $v \in \mathcal{L}$. If u | v, then $u \in \mathcal{L}$ and $u \sim v$.

(v) ~ is clearly an equivalence relation on \mathcal{L} . If $u \in \mathfrak{D}$, $v \in \mathcal{L}$, $u \sim v$, then $u \in \mathcal{L}$. It will follow from Theorem 3.16 that ~ is in fact an equivalence relation on \mathfrak{D} .

THEOREM 2.9. Let T be a nonempty finite set. For $i \in T$, $j \in Z^+$, choose $u_{i,j} \in \mathfrak{D}$ such that $u_{i,j+1} | u_{i,j}$ for all $i \in T$, $j \in Z^+$; and $l(u_{i,j}) \to 0$ as $j \to \infty$ for any fixed $i \in T$. Let $(A, \alpha) \in \mathfrak{D}$. Assume that for each $\beta \in (1, \alpha), j \in Z^+$, there exist $k \in Z^+, \gamma, \delta \in [1, \alpha]$, $i, p, q \in T$ such that $\gamma < \beta < \delta, k > j$ and so that either $(A, \alpha)_{[\gamma,\delta]} = u_{i,k}$ or else $(A, \alpha)_{[\gamma,\beta]} = u_{p,k}$ and $(A, \alpha)_{[\beta,\delta]} = u_{q,k}$. Then some $u_{i,j} \in \mathscr{L}$.

Proof. Let $U = \{x \mid x \in \mathbb{R}^2, \|x\| = 1\}$. Let |T| = n. We prove by induction on n. So assume that the theorem is true for nonempty sets of order less than n (possibly none). We assume that the conclusion of the

FIGURE 2. Examples of elements of \mathscr{L} .

theorem is false and obtain a contradiction. For $x \in U$, let $P_x = \{\gamma x \mid \gamma \in \mathbf{R}^+\}$ and $J_x = P_x \cap I_{1,\alpha}$. Then $\overline{J}_x = P_x \cap \overline{I}_{1,\alpha}$. First we claim that it suffices to show that for each $x \in U$, $J_x \subseteq A$ or $J_x \cap A = \emptyset$. In such a case, first let $J_x \subseteq A$. Then since A is closed, $\overline{J}_x \subseteq A$. Next let $J_x \cap A = \emptyset$. We claim that $\overline{J}_x \cap A = \emptyset$. For, let $y \in \overline{J}_x \cap A$. Then $\|y\| = 1$ or α . So there exists a sequence $\langle y_n \rangle$ in $A \cap I_{1,\alpha}$ such that $y_n \to y$. Let $y_n = r_n x_n, r_n \in (1, \alpha), x_n \in U$. Then $x_n \to x$. Since $y_n \in$ $J_{x_n} \cap A$, we obtain $J_{x_n} \subseteq A$. So $((\alpha + 1)/2)x_n \in A$ for all n. Since A is closed and $x_n \to x$, we get $((\alpha + 1)/2)x \in A$, contradicting the fact that $J_x \cap A = \emptyset$. We have thus shown that for all $x \in U$, $\overline{J}_x \cap A = \emptyset$ or $\overline{J}_x \subseteq A$. So letting $K = A \cap U$ we see that K is closed and that $(A, \alpha) = K^{(\alpha)} \in \mathcal{L}$. Then of course some $u_{i,j} \in \mathcal{L}$, a contradiction. This establishes our claim.

So let $x \in U$ such that $J_x \not\subseteq A$. Then $J_x \setminus A$ is nonempty and open in J_x . So there exist $\beta, \gamma \in (1, \alpha)$ such that $\beta < \gamma$ and $\overline{I}_{\beta,\gamma} \cap J_x \subseteq J_x \setminus A$. Let $\delta \in (\beta, \gamma)$ and let $j \in Z^+$. Then there exist $k \in Z^+$, $\mu, \nu \in [1, \alpha]$, $i, p, q \in T$ such that $\mu < \delta < \nu, k > j$ and so that either $(A, \alpha)_{[\mu,\nu]} =$ $u_{i,k}$ or else $(A, \alpha)_{[\mu,\delta]} = u_{p,k}$ and $(A, \alpha)_{[\delta,\nu]} = u_{q,k}$. If j is large enough (and hence $l(u_{i,k})$, $l(u_{p,k})$, $l(u_{q,k})$ small enough), we obtain that $\mu, \nu \in (\beta, \gamma)$. Hence by Lemma 2.4, $(A, \alpha)_{[\beta,\gamma]}$ satisfies the hypothesis of the theorem for the same T. We now claim that for each $i \in T$, there exists $j \in Z^+$, such that $u_{i,j} | (A, \alpha)_{[\beta,\gamma]}$. Suppose not. Then for any $j \in Z^+$, $u_{i,j}$ doesn't come into consideration in the above argument. So n > 1 and $(A, \alpha)_{[\beta,\gamma]}$ satisfies the theorem with $T \setminus \{i\}$ in place of T. So by our induction hypothesis some $u_{p,j} \in \mathcal{L}$, a contradiction. So our claim is established. Since $u_{i,j+1} | u_{i,j}$ for all relevant i, j, we see that there exists $r \in Z^+$ such that for all $i \in T$, $j \in Z^+$, j > r, $u_{i,j} | (A, \alpha)_{[\beta,\gamma]}$.

We now assume $J_x \cap A \neq \emptyset$ and obtain a contradiction. So let $a \in J_x \cap A$, $||a|| = \delta$. So $\delta \in (1, \alpha)$. There exist $k \in Z^+$, $\mu, \nu \in [1, \alpha]$, $i, p, q \in T$ such that $\mu < \delta < \nu, k > r$ and so that either $(A, \alpha)_{[\mu,\nu]} = u_{i,k}$ or else $(A, \alpha)_{[\mu,\delta]} = u_{p,k}$ and $(A, \alpha)_{[\delta,\nu]} = u_{q,k}$. But $u_{i,k}, u_{p,k}, u_{q,k} | (A, \alpha)_{[\beta,\gamma]}$ So in any case $(A, \alpha)_{[\mu,\delta]} | (A, \alpha)_{[\beta,\gamma]}$ and $(A, \alpha)_{[\delta,\nu]} | (A, \alpha)_{[\beta,\gamma]}$. By Lemma 2.5, there exist $\xi_1, \xi_2 \in \mathbb{R}^+$ such that $\xi_1 \Phi((A, \alpha)_{[\mu,\delta]}) \cup \xi_2 \Phi((A, \alpha)_{[\delta,\nu]}) \subseteq \Phi((A, \alpha)_{[\beta,\gamma]})$. By Lemma 2.7(i), $a \in \mu \Phi((A, \alpha)_{[\mu,\nu]})$. Since $(A, \alpha)_{[\mu,\nu]} = (A, \alpha)_{[\mu,\delta]} \cdot (A, \alpha)_{[\delta,\nu]}$, there exists $\xi_3 \in \mathbb{R}^+$ such that $a \in \xi_3 \Phi((A, \alpha)_{[\mu,\nu]})$ or $a \in \xi_3 \Phi((A, \alpha)_{[\delta,\nu]})$. So for some $\xi \in \mathbb{R}^+$, $\xi a \in \Phi((A, \alpha)_{[\mu,\lambda]}) = (1/\beta) (A \cap \overline{I}_{\beta,\gamma}) \subseteq (1/\beta) (A \cap \overline{I}_{\beta,\gamma})$. So $\beta \xi a \in A \cap \overline{I}_{\beta,\gamma}$. But $a \in J_x$ and so $\beta \xi a \in P_x$. But $||\beta \xi a|| \in [\beta, \gamma] \subseteq (1, \alpha)$. So $\beta \xi a \in A \cap J_x \cap \overline{I}_{\beta,\gamma}$, contradicting the fact that $\overline{I}_{\beta,\gamma} \cap J_x \subseteq J_x \setminus A$. This contradiction completes the proof of the theorem.

3. Word equations in \mathfrak{D} . Let Γ be a nonempty set. Define $\mathscr{F}_{\mathbb{R}}(\Gamma|\varnothing) = \mathscr{F}_{\mathbb{R}}(\Gamma)$ and $\mathscr{F}_{\mathbb{R}}(\Gamma|\Gamma) = \mathscr{F}(\Gamma)$. If $\Lambda \subseteq \Gamma$, $\Lambda \neq \emptyset$, $\Lambda \neq \Gamma$, then let $\mathscr{F}_{\mathbb{R}}(\Gamma|\Lambda)$ denote the subsemigroup of $\mathscr{F}_{\mathbb{R}}(\Gamma)$ generated by $\mathscr{F}_{\mathbb{R}}(\Gamma|\Lambda)$ and $\mathscr{F}(\Lambda)$. Let $w \in \mathscr{F}_{\mathbb{R}}(\Gamma)$. Then for any $\Lambda \subseteq \Gamma$, $w \in \mathscr{F}_{\mathbb{R}}(\Gamma|\Lambda)$ if and only if each $\Lambda \in \Lambda$ appears integrally in w.

Let $\varphi: \Gamma \to \mathfrak{D}$, $\Lambda \subseteq \Gamma$, such that $\varphi(\Gamma \setminus \Lambda) \subseteq \mathscr{L}$. Then φ extends naturally to a homomorphism $\hat{\varphi}: \mathscr{F}_{\mathbf{R}}(\Gamma \mid \Lambda) \to \mathfrak{D}$. In fact let $w \in \mathscr{F}_{\mathbf{R}}(\Gamma \mid \Lambda)$, $w = A_1^{\epsilon_1} \cdots A_n^{\epsilon_n}$ in standard form. So $A_i \in \Lambda$ implies $\epsilon_i \in \mathbb{Z}^+$. Define $\hat{\varphi}(w) = \varphi(A_1)^{\epsilon_1} \cdots \varphi(A_n)^{\epsilon_n}$. This makes sense, since for $u \in \mathscr{L}, \epsilon \in \mathbf{R}^+, u^{\epsilon}$ is defined. Using Remark 2.8(ii), it is easily seen that $\hat{\varphi}$ is a homomorphism. We call $\hat{\varphi}$ the natural extension of φ to $\mathscr{F}_{\mathbf{R}}(\Gamma \mid \Lambda)$.

Let (u_1, \dots, u_n) be a solution in $\mathscr{F}_{\mathbf{R}}(\Gamma)$ of a word equation $\{w_1, w_2\}$. Let $\Lambda = \{A \mid A \in \Gamma, A \text{ appears integrally in each } u_1, \dots, u_n\}$. Then $u_1, \dots, u_n \in \mathscr{F}_{\mathbf{R}}(\Gamma \mid \Lambda)$. Let $\varphi : \Gamma \to \mathfrak{D}$ such that $\varphi(\Gamma \setminus \Lambda) \subseteq \mathscr{L}$. Let $\hat{\varphi}$ be the natural extension of φ . Let $a_i = \hat{\varphi}(u_i)$, $i = 1, \dots, n$. Then (a_1, \dots, a_n) is a solution of $\{w_1, w_2\}$ in \mathfrak{D} . We say that (a_1, \dots, a_n) follows from (u_1, \dots, u_n) .

REMARK 3.1. In the above notation suppose there exists $\Lambda_1 \subseteq \Gamma$, $\psi: \Gamma \to \mathfrak{D}$ such that $\psi(\Gamma \setminus \Lambda_1) \subseteq \mathscr{L}$. Let $\hat{\psi}$ be the natural extension of ψ to $\mathscr{F}_{\mathbf{R}}(\Gamma \mid \Lambda_1)$. Suppose $u_1, \dots, u_n \in \mathscr{F}_{\mathbf{R}}(\Gamma \mid \Lambda_1)$ and $a_i = \hat{\psi}(u_i)$, $i = 1, \dots, n$. Then (a_1, \dots, a_n) follows from (u_1, \dots, u_n) . This is because the above implies that $\Lambda_1 \subseteq \Lambda$ and so $\Gamma \setminus \Lambda \subseteq \Gamma \setminus \Lambda_1 \subseteq \mathscr{L}$. Also it is clear that the natural extension of ψ to $\mathscr{F}_{\mathbf{R}}(\Gamma \mid \Lambda)$ is the restriction of $\hat{\psi}$ to $\mathscr{F}_{\mathbf{R}}(\Gamma \mid \Lambda)$.

Even though we are only interested in word equations, it will be convenient to introduce the concept of a constrained word equation.

DEFINITION. Let $w_1 = w_1(x_1, \dots, x_n)$, $w_2 = w_2(x_1, \dots, x_n) \in \mathscr{F}(x_1, \dots, x_n)$. Let T_1, \dots, T_s denote s disjoint nonempty subsets of $\{x_1, \dots, x_n\}$. Choose $\alpha_k \in \mathbb{R}^+$ corresponding to each $k \in T_j$, $j = 1, \dots, s$. Let $M_j = \{(x_k, \alpha_k) | k \in T_j\}$. We call $\mathscr{A} = \{w_1, w_2; M_1, \dots, M_s\}$ a constrained word equation in variables x_1, \dots, x_n . We allow the possibility that m = 0, in which case \mathscr{A} is the word equation $\{w_1, w_2\}$. If $1 \leq i \leq n$ and $i \notin T_j$ for every j, $1 \leq j \leq s$, then we say that x_i is a free variable of \mathscr{A} . Otherwise x_i is a constrained variable. If m = 0, then x_i is free $(1 \leq i \leq n)$. Let $a_1, \dots, a_n \in \mathfrak{D}$. Then (a_1, \dots, a_n) is a solution of \mathscr{A} if the following conditions are satisfied.

- (1) $w_1(a_1, \cdots, a_n) = w_2(a_1, \cdots, a_n).$
- (2) $(x_k, \alpha_k) \in M_j$ implies that $a_k \in \mathcal{L}$ and $l(a_k) = \alpha_k, j = 1, \dots, s$.

(3) Let $(x_i, \alpha_i) \in M_p$, $(x_j, \alpha_j) \in M_q$. Then $a_i \sim a_j$ if and only if p = q.

Similarly if $a_1, \dots, a_n \in \mathcal{F}_{\mathbf{R}}(\Gamma)$, then we say that (a_1, \dots, a_n) is a solution of \mathcal{A} if (1), (2) and (3) above are satisfied with \mathcal{L} replaced by $\mathcal{N}(\Gamma)$.

DEFINITION. Let $\mathscr{A} = \{w_1, w_2; M_1, \dots, M_s\}$ be a constrained word equation in variables x_1, \dots, x_n .

(1) Let $\mu = (a_1, \dots, a_n)$, $\nu = (b_1, \dots, b_n)$ be solutions of \mathcal{A} in \mathfrak{D} , $\mathcal{F}_{\mathbf{R}}$ respectively. (Note that then for each constrained variable x_i , $l(a_i) = l(b_i)$). Then we say that μ follows from ν (as solutions of \mathcal{A}) if μ follows from ν as solutions of the word equation $\{w_1, w_2\}$.

(2) A solution μ of \mathscr{A} in \mathfrak{D} is resolvable if it follows from a solution of \mathscr{A} in $\mathscr{F}_{\mathbb{R}}(\Gamma)$ with $|\Gamma| \leq r + s \leq n$ where r is the number of free variables of \mathscr{A} .

(3) \mathcal{A} is resolvable in \mathfrak{D} if every solution of \mathcal{A} in \mathfrak{D} is resolvable.

LEMMA 3.2. Let $w_1, w_2 \in \mathcal{F}(x_1, \dots, x_n)$. Let $a_1, \dots, a_n \in \mathcal{N}(\Gamma)$ such that $a_i \sim a_j$ for all i, j. Suppose $l(w_1(a_1, \dots, a_n)) = l(w_2(a_1, \dots, a_n))$. Then $w_1(a_1, \dots, a_n) = w_2(a_1, \dots, a_n)$.

Proof. For some $A \in \Gamma$, $a_i = A^{\alpha_i}$, $\alpha_i = l(a_i)$, $i = 1, \dots, n$. Let

 $l(w_1(a_1, \dots, a_n)) = l(w_2(a_1, \dots, a_n)) = \beta.$ Then clearly $w_1(a_1, \dots, a_n) = A^{\beta} = w_2(a_1, \dots, a_n).$

LEMMA 3.3. Let $a_1, \dots, a_n \in \mathcal{L}$, $b_1, \dots, b_n \in \mathcal{N}(\Gamma)$. Suppose that $a_i \sim a_j$ implies $b_i \sim b_j$ for $i, j \in \{1, \dots, n\}$. Assume further that $l(a_i) = l(b_i), i = 1, \dots, n$. Let $w_1, w_2 \in \mathcal{F}(x_1, \dots, x_n)$ such that $w_1(a_1, \dots, a_n) = w_2(a_1, \dots, a_n)$. Then $w_1(b_1, \dots, b_n) = w_2(b_1, \dots, b_n)$.

Proof. We prove by induction on length of w_1w_2 in $\mathcal{F}(x_1, \dots, x_n)$. We can assume without loss of generality that each x_i appears in w_1w_2 . Let $w_1 = x_{i_1} \cdots x_{i_n}$, $w_2 = x_{j_1} \cdots x_{j_n}$. So

$$a_{i_1}\cdots a_{i_s}=a_{j_1}\cdots a_{j_t}=a.$$

Choose p, q maximal so that $1 \le p \le s, 1 \le q \le t$; for $1 \le k \le p, a_{i_1} \sim a_{i_k}$ and for $1 \le k \le q, a_{j_1} \sim a_{j_k}$. Now $a_{i_1}|_i a_{j_1}$ or $a_{j_1}|_i a_{i_1}$. So by Remark 2.8(iv), $a_{i_1} \sim a_{j_1}$. Let $u = a_{i_1} \cdots a_{i_p}$ and $v = a_{j_1} \cdots a_{j_q}$. Then $u, v \in \mathcal{L}$. Also a = ub = vc for some $b, c \in \mathbb{D}^1$. First assume p = s. Then b = 1. If $q \ne t$, then $a_{j_{q+1}}|_u$ and so $a_{j_{q+1}} \sim u \sim a_{j_1}$, a contradiction. So q = t. Then $a_i \sim a_j$ for all i, j. Hence $b_i \sim b_j$ for all i, j. Since $l(b_i) = l(a_i)$ for all i,we obtain that $l(w_1(b_1, \cdots, b_n)) = l(w_1(a_1, \cdots, a_n)) = l(w_2(a_1, \cdots, a_n)) = l(w_2(b_1, \cdots, b_n))$. We are then done by Lemma 3.2. Similarly we are done if q = t. So assume p < s and q < t. We claim that u = v. Otherwise, by symmetry, let $v = uv_1, v_1 \in \mathcal{L}$. Then $b = v_1c$. Since $a_{i_{p+1}}|_i b$, we see that $a_{i_{p+1}}|_i v_1$ or $v_1|_i a_{i_{p+1}}$. So $a_{i_{p+1}} \sim v_1 \sim a_{i_1}$, a contradiction. So u = v and b = c. Thus

$$a_{i_1}\cdots a_{i_p} = a_{j_1}\cdots a_{j_q}; a_{i_{p+1}}\cdots a_{i_s} = a_{j_{q+1}}\cdots a_{j_i}.$$

By our induction hypothesis,

$$b_{i_1} \cdots b_{i_p} = b_{j_1} \cdots b_{j_q}$$
 and $b_{i_{p+1}} \cdots b_{i_n} = b_{j_{q+1}} \cdots b_{j_n}$

So $b_{i_1} \cdots b_{i_s} = b_{j_1} \cdots b_{j_t}$ and we are done.

LEMMA 3.4. Let $\mathcal{A} = \{w_1, w_2; M_1, \dots, M_s\}$ in variables x_1, \dots, x_n . Suppose for some $w_3, w_4, w_5, w_6 \in \mathcal{F}(x_1, \dots, x_n), w_1 = w_3 w_4, w_2 = w_5 w_6$ such that w_3 and w_5 involve only constrained variables. Let (a_1, \dots, a_n) be a solution of \mathcal{A} in \mathfrak{D} . Suppose $w_3(a_1, \dots, a_n) = w_5(a_1, \dots, a_n)$. Let $\mathcal{B} = \{w_4, w_6; M_1, \dots, M_s\}$ in variables x_1, \dots, x_n . Then (a_1, \dots, a_n) is a solution of \mathcal{B} . If (a_1, \dots, a_n) is resolvable as a solution of \mathcal{B} , then it is resolvable as a solution of \mathcal{A} . **Proof.** Note that the free and constrained variables of \mathscr{A} and \mathscr{B} are the same. Clearly $w_4(a_1, \dots, a_n) = w_6(a_1, \dots, a_n)$ and so (a_1, \dots, a_n) is a solution of \mathscr{B} . Let (b_1, \dots, b_n) be a solution of \mathscr{B} in $\mathscr{F}_{\mathbb{R}}(\Gamma)$ from which (a_1, \dots, a_n) follows. It suffices to show that $w_1(b_1, \dots, b_n) = w_2(b_1, \dots, b_n)$. Let x_j be a variable appearing in w_3w_5 . Then x_j is constrained and so $a_j \in \mathscr{L}$, $b_j \in \mathscr{N}(\Gamma)$ and $l(a_j) = l(b_j)$. For the same reason if x_j, x_k appear in w_3w_5 , then $a_j \sim a_k$ if and only if $b_j \sim b_k$. So by Lemma 3.3, $w_3(b_1, \dots, b_n) = w_5(b_1, \dots, b_n)$. Since (b_1, \dots, b_n) is a solution of \mathscr{B} , $w_4(b_1, \dots, b_n) = w_6(b_1, \dots, b_n)$. So $w_1(b_1, \dots, b_n) = w_2(b_1, \dots, b_n)$.

LEMMA 3.5. Let $\mathcal{A} = \{w_1, w_1; M_1, \dots, M_s\}$ in variables x_1, \dots, x_n . Then \mathcal{A} is resolvable in \mathcal{D} .

Proof. Let (a_1, \dots, a_n) be a solution of \mathscr{A} in \mathfrak{D} . Let $c_i = a_i$ if x_i is a free variable, and otherwise let $c_i \in \mathscr{L}$ such that $c_i \sim a_i$, $l(c_i) = 1$. Then for constrained x_i we have $a_i = c_1^{l(a_i)}$. Let $\Gamma = \{A_1, \dots, A_n\}$ where $A_i = A_i$ if and only if i = j or x_i , x_j are constrained and $a_i \sim a_j$. Then $|\Gamma| = r + s$ where r is the number of free variables of \mathscr{A} . Let $b_i = A_i$ if x_i is free and otherwise let $b_i = A_i^{l(a_i)}$. Then (b_1, \dots, b_n) is a solution of \mathscr{A} . Let $\Lambda = \{A_i \mid x_i \text{ is free}\}$. Then $b_i \in \mathscr{F}_{\mathbb{R}}(\Gamma \mid \Lambda)$, $i = 1, \dots, n$. Let $\varphi \colon \Gamma \to \mathfrak{D}$ be given by $\varphi(A_i) = c_i$, $i = 1, \dots, n$. Then φ is well defined and $\varphi(\Gamma \setminus \Lambda) \subseteq \mathscr{L}$. Let $\hat{\varphi}$ be the natural extension of φ to $\mathscr{F}_{\mathbb{R}}(\Gamma \mid \Lambda)$. Then $\hat{\varphi}(b_i) = a_i$, $i = 1, \dots, n$. So (a_1, \dots, a_n) follows from (b_1, \dots, b_n) .

LEMMA 3.6. Any constrained word equation without free variables is resolvable in \mathfrak{D} .

Proof. Let $\mathscr{A} = \{w_1, w_2; M_1, \dots, M_s\}$ in variables x_1, \dots, x_n with all variables being constrained. Let (a_1, \dots, a_n) be a solution of \mathscr{A} in \mathfrak{D} . So each $a_i \in \mathscr{L}$. Choose $c_i \in \mathscr{L}$ so that $c_i \sim a_i$, $l(c_i) = 1$. So $a_i = c_i^{l(a_i)}$. Let $\Gamma = \{A_1, \dots, A_n\}$ with $A_i = A_j$ if and only if $a_i \sim a_j$. So $|\Gamma| = s$. Let $b_i = A_i^{l(a_i)}$, $i = 1, \dots, n$. By Lemma 3.3, (b_1, \dots, b_n) is a solution of \mathscr{A} . Define $\varphi: \Gamma \to \mathfrak{D}$ by $\varphi(A_i) = c_i$, $i = 1, \dots, n$. Then φ is well defined and $\varphi(\Gamma) \subseteq \mathscr{L}$. Let $\hat{\varphi}$ be the natural extension of φ to $\mathscr{F}_{\mathbf{R}}(\Gamma)$. Then $\hat{\varphi}(b_i) = a_i$, $i = 1, \dots, n$. So (a_1, \dots, a_n) follows from (b_1, \dots, b_n) .

LEMMA 3.7. Let $\mathcal{A} = \{w_1, w_2; M_1, \dots, M_s\}$ in variables x_1, \dots, x_n . Let $w_3 \in \mathcal{F}(x_1, \dots, x_n)$ and let $\mathcal{B} = \{w_3w_1, w_3w_2; M_1, \dots, M_s\}$ in the same variables. Let (a_1, \dots, a_n) be a solution of \mathcal{B} . Then (a_1, \dots, a_n) is a solution of \mathcal{A} . If (a_1, \dots, a_n) is resolvable as a solution of \mathcal{B} . *Proof.* This follows by noting that in \mathfrak{D} as well as in any $\mathscr{F}_{\mathbf{R}}(\Gamma)$, the solutions of \mathscr{A} and \mathscr{B} are the same.

LEMMA 3.8. Let $\mathcal{A} = \{w_1, w_2; M_1, \dots, M_s\}$ in variables x_1, \dots, x_n . Suppose x_1 is a free variable not occuring in w_1w_2 . Let $\mathcal{B} = \{w_1, w_2; M_1, \dots, M_s\}$ in variables x_2, \dots, x_n . If \mathcal{B} is resolvable in \mathfrak{D} , then so is \mathcal{A} .

Proof. Let (a_1, \dots, a_n) be a solution of \mathscr{A} in \mathfrak{D} . Then (a_2, \dots, a_n) is a solution of \mathscr{B} in \mathfrak{D} . So (a_2, \dots, a_n) follows from some solution (b_2, \dots, b_n) of \mathscr{B} in $\mathscr{F}_{\mathbf{R}}(\Gamma)$ with $|\Gamma| \leq r + s$ where r is the number of free variables of \mathscr{B} . Correspondingly there exist $\Lambda \subseteq \Gamma$, $\varphi \colon \Gamma \to \mathfrak{D}$ such that $b_2, \dots, b_n \in \mathscr{F}_{\mathbf{R}}(\Gamma | \Lambda)$, $\varphi(\Gamma \setminus \Lambda) \subseteq \mathscr{L}$ and the natural extension $\hat{\varphi}$ of φ to $\mathscr{F}_{\mathbf{R}}(\Gamma | \Lambda)$ satisfies $\hat{\varphi}(b_i) = a_i$, $i = 2, \dots, n$. Let $b_1 \notin \mathscr{F}_{\mathbf{R}}(\Gamma)$ and set $\Gamma_1 = \Gamma \cup \{b_1\}$, $\Lambda_1 = \Lambda \cup \{b_1\}$. Then (b_1, \dots, b_n) is a solution of \mathscr{A} in $\mathscr{F}_{\mathbf{R}}(\Gamma_1)$. Extend φ to φ_1 by setting $\varphi_1(b_1) = a_1$. Then $b_1, b_2, \dots, b_n \in \mathscr{F}_{\mathbf{R}}(\Gamma_1 | \Lambda_1)$, $\varphi_1(\Gamma_1 \setminus \Lambda_1) \subseteq \mathscr{L}$ and the natural extension $\hat{\varphi}_1$ of φ_1 to $\mathscr{F}_{\mathbf{R}}(\Gamma_1 | \Lambda_1)$ satisfies $\hat{\varphi}_1(b_i) = a_i$, $i = 1, \dots, n$. So (a_1, \dots, a_n) follows from (b_1, \dots, b_n) , $|\Gamma_1| \leq r + 1 + s$ and the number of free variables of \mathscr{A} is r + 1.

LEMMA 3.9. Let $\mathscr{A} = \{w_1, w_2; M_1, \dots, M_s\}$ in variables x_1, \dots, x_n . Suppose (a_1, \dots, a_n) is a solution of \mathscr{A} in \mathfrak{D} . Assume that for some $i \neq j$, x_i and x_j are free variables and $a_i = a_j$. Let $w'_i(x_1, \dots, x_n) = w_i(x_1, \dots, x_{j-1}, x_i, x_{j+1}, \dots, x_n)$, t = 1, 2. Then x_j does not appear in $w'_1w'_2$. Let $\mathscr{B} = \{w'_1, w'_2; M_1, \dots, M_s\}$ in variables x_1, \dots, x_n . If \mathscr{B} is resolvable in \mathfrak{D} , then the solution (a_1, \dots, a_n) of \mathscr{A} is resolvable in \mathfrak{D} .

Proof. Clearly (a_1, \dots, a_n) is also a solution of \mathcal{B} . Let (b_1, \dots, b_n) be a solution of \mathcal{B} in $\mathcal{F}_{\mathsf{R}}(\Gamma)$ from which (a_1, \dots, a_n) follows. Then $\mu = (b_1, \dots, b_{j-1}, b_i, b_{j+1}, \dots, b_n)$ is also a solution of \mathcal{A} and (a_1, \dots, a_n) follows from μ .

LEMMA 3.10. Let $\mathcal{A} = \{w_1, w_2; M_1, \dots, M_s\}$ in variables x_1, \dots, x_n . Let (a_1, \dots, a_n) be a solution of \mathcal{A} in \mathfrak{D} . Suppose that for some i, x_i is free and $a_i \in \mathcal{L}$. If $a_i \sim a_j$ for some $(x_j, \alpha_j) \in M_p$, then let $M'_p =$ $M_p \cup \{(x_i, l(a_i))\}, M'_q = M_q$ for $q \neq p$ and set $\mathcal{B} = \{w_1, w_2; M'_1, \dots, M'_s\}$ in variables x_1, \dots, x_n . If $a_i \neq a_j$ for any constrained variable x_j , then set $\mathcal{B} = \{w_1, w_2; M_1, \dots, M_s, \{(x_i, l(a_i))\}\}$ in variables x_1, \dots, x_n . Then \mathcal{B} has lesser number of free variables than \mathcal{A} . If \mathcal{B} is resolvable in \mathfrak{D} then so is the solution (a_1, \dots, a_n) of \mathcal{A} .

Proof. Let r be the number of free variables of \mathscr{A} . Then \mathscr{B} has

r-1 free variables. Clearly (a_1, \dots, a_n) is also a solution of \mathcal{B} . Let (a_1, \dots, a_n) follow from a solution (b_1, \dots, b_n) of \mathcal{B} in $\mathcal{F}_{\mathbf{R}}(\Gamma)$ with $|\Gamma| \leq (r-1) + (s+1) = r+s$. Then clearly (b_1, \dots, b_n) is also a solution of \mathcal{A} and hence the result follows.

LEMMA 3.11. Let $\mathcal{A} = \{w_1, w_2; M_1, \dots, M_s\}$. Let $\mu = (a_1, \dots, a_n)$ be a solution of \mathcal{A} in \mathfrak{D} . Suppose $(x_i, \alpha_i) \in M_k$. Assume $a_i = a'_i a''_i$ for some $a'_i, a''_i \in \mathfrak{D}$. Introduce new variables x'_i, x''_i and set

$$w'_{i}(x_{1}, \cdots, x_{i-1}, x'_{i}, x''_{i}, x_{i+1}, \cdots, x_{n})$$

= $w_{i}(x_{1}, \cdots, x_{i-1}, x'_{i}x''_{i}, x_{i+1}, \cdots, x_{n})$
 $\in \mathscr{F}(x_{1}, \cdots, x_{i-1}, x'_{i}, x''_{i}, x_{i+1}, \cdots, x_{n}), \quad t = 1, 2.$

Let $M'_i = M_i$ for $j \neq k$, $M'_k = \{(x'_i, l(a'_i)), (x''_i, l(a''_i))\} \cup (M_k \setminus \{(x_i, \alpha_i)\})$. Let $\mathcal{B} = \{w'_1, w'_2; M'_1, \cdots, M'_s\}$ in variables $x_1, \cdots, x_{i-1}, x'_1, x''_i, x_{i+1}, \cdots, x_n$. Then \mathcal{B} has the same number of free variables as \mathcal{A} . Also $\nu = (a_1, \cdots, a_{i-1}, a'_i, a''_i, a_{i+1}, \cdots, a_n)$ is a solution of \mathcal{B} . If ν is resolvable in \mathfrak{D} then so is μ .

Proof. Let r be the number of free variables of \mathscr{A} (and hence \mathscr{B}). First note that since $a'_i, a''_i | a_i, a'_i \sim a''_i \sim a_i$. It is then obvious that ν is a solution of \mathscr{B} . Let ν follow from a solution $(b_1, \dots, b_{i-1}, b'_i, b''_i, b_{i+1}, \dots, b_n)$ of \mathscr{B} in $\mathscr{F}_{\mathbf{R}}(\Gamma)$ with $|\Gamma| \leq r + s$. Let $b_i = b'_i b''_i$ and let $\xi = (b_1, \dots, b_{i-1}, b_i, b_{i+1}, \dots, b_n)$. It is then clear that ξ is a solution of \mathscr{A} and that μ follows from ξ .

LEMMA 3.12. Let $\mathscr{A} = \{w_1, w_2; M_1, \dots, M_s\}$ in variables x_1, \dots, x_n . Let $\mu = (a_1, \dots, a_n)$ be a solution of \mathscr{A} in \mathfrak{D} . Suppose $i \neq j, x_j$ is a free variable and $a_j = a_i a'_j$ for some $a'_j \in \mathfrak{D}$. Introduce a new variable x'_j . Let

$$w'_{i}(x_{1}, \cdots, x_{j-1}, x'_{j}, x_{j+1}, \cdots, x_{n})$$

= $w_{i}(x_{1}, \cdots, x_{j-1}, x_{i}x'_{j}, x_{j+1}, \cdots, x_{n})$
 $\in \mathscr{F}(x_{1}, \cdots, x_{j-1}, x'_{j}, x_{j+1}, \cdots, x_{n}), \qquad t = 1, 2.$

Let $\mathscr{B} = \{w'_1, w'_2; M_1, \dots, M_s\}$ in variables $x_1, \dots, x_{j-1}, x'_j, x_{j+1}, \dots, x_n$. Then $\nu = (a_1, \dots, a_{j-1}, a'_j, a_{j+1}, \dots, a_n)$ is a solution of \mathscr{B} . If ν is resolvable then so is μ .

Proof. Let r be the number of free variables of \mathcal{A} (and hence \mathcal{B}). It is clear that ν is a solution of \mathcal{B} . Let ν follow from a solution

 $(b_1, \dots, b_{j-1}, b'_j, b_{j+1}, \dots, b_n)$ of \mathscr{B} in $\mathscr{F}_{\mathbf{R}}(\Gamma)$ with $|\Gamma| \leq r+s$. Let $b_j = b_i b'_j$. Then $\delta = (b_1, \dots, b_{j-1}, b_j, b_{j+1}, \dots, b_n)$ is a solution of \mathscr{A} and μ follows from δ .

Let $r \in \mathbf{N}$ and consider the following:

(*)
variables (possibly none) is resolvable in D.

LEMMA 3.13. Assume (*). Let $\mathcal{A} = \{w_1, w_2; \dots\}$ in variables x_1, \dots, x_n . Assume \mathcal{A} has exactly r free variables and that w_1 and w_2 start with different variables, at least one of which is free. Then \mathcal{A} is resolvable in \mathfrak{D} .

Proof. Let (a_1, \dots, a_n) be a solution of \mathscr{A} in \mathfrak{D} . Assume (a_1, \dots, a_n) is not resolvable. We will obtain a contradiction. Let $T = \{i \mid x_i \text{ is a constrained variable}\}$. So by (*) and Lemma 3.8, each free variable occurs in w_1w_2 . Let x_i appear $m_i^{(1)}$ times in w_1w_2 , $i = 1, \dots, n$. Then $m_i^{(1)} \in \mathbb{N}$ for $i \in T$ and $m_i^{(1)} \in Z^+$ for $i \notin T$. Let $u = w_1w_2(a_1, \dots, a_n)$. So u is a word in a_1, \dots, a_n with a_i appearing $m_i^{(1)}$ times, $i = 1, \dots, n$. Now let $\mathscr{A}^{(1)} = \mathscr{A}$, $w_1^{(1)} = w_1$, $w_2^{(1)} = w_2$, $x_i^{(1)} = x_i$, $a_i^{(1)} = a_i$, $i = 1, \dots, n$. We will construct a sequence of constrained word equations $\mathscr{A}^{(k)} = \{w_1^{(k)}, w_2^{(k)}; \dots\}$ in variables $x_1^{(k)}, \dots, x_n^{(k)}$ with solutions $(a_1^{(k)}, \dots, a_n^{(k)})$ in \mathfrak{D} such that the following properties are true for all $k \in Z^+$.

(I) The constrained variables of $\mathscr{A}^{(k)}$ are exactly $x_i^{(k)}$, $i \in T$. Also for $i \in T$, $a_i^{(k)} = a_i^{(1)}$.

(II) *u* is a word in $a_1^{(k)}, \dots, a_n^{(k)}$ with $a_i^{(k)}$ appearing $m_i^{(k)}$ times. If k > 1, then $m_i^{(k)} \ge m_i^{(k-1)}$, $i = 1, \dots, n$ and $\sum_{i=1}^n m_i^{(k)} > \sum_{i=1}^n m_i^{(k-1)}$.

(III) If k > 1, then $a_{1}^{(k-1)}$ is a word in $a_{1}^{(k)}, \dots, a_{n}^{(k)}, i = 1, \dots, n$.

(IV) If k > 1, then $a_i^{(k)}|_f a_i^{(k-1)}$, $i = 1, \dots, n$.

(V) $w_1^{(k)}$ and $w_2^{(k)}$ start with different variables, at least one of which is free.

(VI) $(a_1^{(k)}, \dots, a_n^{(k)})$ is not resolvable.

Clearly $\mathscr{A}^{(1)}$ satisfies (I) to (VI). We proceed by induction. So having constructed $\mathscr{A}^{(i)}$, $1 \leq j \leq k$, satisfying (I) to (VI), we proceed to construct $\mathscr{A}^{(k+1)}$. Let $w_1^{(k)} = x_p^{(k)} \cdots, w_2^{(k)} = x_q^{(k)} \cdots$. So $p \neq q$ and either x_p or x_q is free. We have correspondingly

(5)
$$a_p^{(k)}\cdots = a_q^{(k)}\cdots.$$

First consider the case that $a_p^{(k)} = a_q^{(k)}$. If both $x_p^{(k)}$ and $x_q^{(k)}$ are free, then by applying first Lemma 3.9, and then Lemma 3.8 and (*), we see that

 $(a_1^{(k)}, \dots, a_n^{(k)})$ is resolvable, a contradiction. Next assume $x_q^{(k)}$ is constrained. Then $x_p^{(k)}$ is free and $a_p^{(k)} \in \mathscr{L}$. Then by Lemma 3.10 and $(*), (a_1^{(k)}, \dots, a_n^{(k)})$ is resolvable, a contradiction. So $l(a_p^{(k)}) \neq l(a_q^{(k)})$. By symmetry, assume $l(a_p^{(k)}) < l(a_q^{(k)})$. Then $a_p^{(k)}|_i a_q^{(k)}$. First suppose $x_q^{(k)}$ is constrained. Then $x_p^{(k)}$ is free and $a_p^{(k)} \in \mathscr{L}$. We then get a contradiction as above. So $x_q^{(k)}$ is free. Now $a_q^{(k)} = a_p^{(k)} a_q^{(k+1)}$ for some $a_q^{(k+1)} \in \mathfrak{D}$. Set $a_i^{(k+1)} = a_i^{(k)}$ for $i \neq q$. Clearly $a_i^{(k+1)}|_f a_i^{(k)}$, $i = 1, \dots, n$. Also since $q \notin T$, $a_i^{(k)} = a_i^{(k+1)}$ for $i \in T$. Trivially, each $a_i^{(k)}$ is a word in $a_1^{(k+1)}, \dots, a_n^{(k+1)}$. So u is a word in $a_1^{(k+1)}$ times in this word. Then $m_i^{(k+1)} = m_i^{(k)}$ for $i \neq p$ and $m_p^{(k+1)} = m_p^{(k)} + m_q^{(k)} \ge m_p^{(k)} + m_q^{(1)} > m_p^{(k)}$. So $\sum_{i=1}^n m_i^{(k+1)} > \sum_{i=1}^n m_i^{(k)}$. Now the left hand side of (5) must include more than just $a_p^{(k)}$ (as $l(a_p^{(k)}) < l(a_q^{(k)})$). So let the left side of (5) be $a_p^{(k)} a_q^{(k)} \cdots$. If $t \neq q$, then (5) becomes

(6)
$$a_1^{(k+1)}\cdots = a_q^{(k+1)}\cdots, \quad t \neq q.$$

If t = q, then (5) becomes

(7)
$$a_p^{(k+1)}a_q^{(k+1)}\cdots = a_q^{(k+1)}\cdots, \quad p \neq q.$$

Now introduce a new variable $x_q^{(k+1)}$ and set $x_i^{(k+1)} = x_i^{(k)}$ for $i \neq q$. If (6) holds, then correspondingly let $w_1^{(k+1)} = x_i^{(k+1)} \cdots$, $w_2^{(k+1)} = x_q^{(k+1)} \cdots$. If (7) holds, then correspondingly let $w_1^{(k+1)} = x_p^{(k+1)} x_q^{(k+1)} \cdots$, $w_2^{(k+1)} = x_q^{(k+1)} \cdots$. Now applying Lemma 3.12 and then Lemma 3.7 we can construct a constrained word equation $\mathscr{A}^{(k+1)} = \{w_1^{(k+1)}, w_2^{(k+1)}; \cdots\}$ in variables $x_1^{(k+1)}, \cdots, x_n^{(k+1)}$ such that $(a_1^{(k+1)}, \cdots, a_n^{(k+1)})$ is an unresolvable solution of $\mathscr{A}^{(k+1)}$. Also a close examination of the construction shows that the constrained variables of $\mathscr{A}^{(k+1)}$ are exactly $x_1^{(k+1)}$, $i \in T$. This completes the induction step of our construction.

Now by (II), $\sum_{i=1}^{n} m_i^{(k)} \to \infty$ as $k \to \infty$. So at least one $m_i^{(k)} \to \infty$. So $l(a_i^{(k)}) \to 0$. Let $K = \{i \mid l(a_i^{(k)}) \to 0\}$. By (I), $T \cap K = \emptyset$. There exists $\epsilon \in \mathbb{R}^+$ such that for $i \notin K$, $l(a_i^{(k)}) > \epsilon$ for all $k \in Z^+$. Choose k large enough so that $l(a_i^{(k)}) < \epsilon$. Let $a = a_i^{(k)}$. Then by (III), for all $\alpha \in Z^+$, $\alpha > k$, a is a word in $a_i^{(\alpha)}$, $i \in K$. Let $P_\alpha = \{a_i^{(\alpha)} \mid i \in K\}$. Let $a = (A, \xi)$. Then by Lemma 2.5, for each $\alpha \in Z^+$, $\alpha > k$, there exist ξ_{0}, \dots, ξ_m such that $1 = \xi_0 < \xi_1 < \dots < \xi_m = \xi$ and for $j = 1, \dots, m$, $(A, \xi)_{|\xi_{j-1},\xi_j|} \in P_\alpha$. So we see that the hypothesis of Theorem 2.9 is satisfied. So $a_i^{(\alpha)} \in \mathscr{L}$ for some $i \in K$, $\alpha \in Z^+$. Then since $T \cap K = \emptyset$, $x_i^{(\alpha)}$ is a free variable of $\mathscr{A}_i^{(\alpha)}$. So by Lemma 3.10 and $(*), (a_1^{(\alpha)}, \dots, a_n^{(\alpha)})$ is resolvable, contradicting (VI). This completes the proof of Lemma 3.13.

THEOREM 3.14. Every constrained word equation is resolvable in \mathfrak{D} .

Proof. Let $r \in \mathbb{N}$ and assume (*). We must show that every constrained word equation with r free variables is resolvable. Let $\mathcal{A} = \{w_1, w_2; \cdots\}$ in variables x_1, \cdots, x_n with r free variables. We prove by induction on length of w_1w_2 in $\mathcal{F}(x_1, \dots, x_n)$ that \mathcal{A} is resolvable. Let $T = \{i \mid x_i \text{ is constrained}\}$. Let (a_1, \dots, a_n) be a solution of \mathscr{A} in \mathfrak{D} . If w_1 and w_2 start with the same variable, then by our induction hypotheses, Lemma 3.7 and Lemma 3.5, we are done. So let w_1 , w_2 start with different variables. If some free variable does not appear in w_1w_2 then since (*) holds, we are done by Lemma 3.8. So assume that each free variable occurs in w_1w_2 . If either w_1 or w_2 starts with a free variable, then we are done by Lemma 3.13. So assume that both w_1 and w_2 start variables. Let $w_1 = x_{i_1} \cdots x_{i_m}$ and with constrained $w_2 =$ $x_{1} \cdots x_{n}$. Choose p, q maximal so that $1 \le p \le m$, $1 \le q \le t$ and for $1 \leq \alpha \leq p, 1 \leq \beta \leq q$ we have $i_{\alpha}, j_{\beta} \in T$. Clearly,

$$(8) a_{i_1}\cdots a_{i_m} = a_{j_1}\cdots a_{j_l}.$$

By symmetry assume that $l(a_{i_1} \cdots a_{i_p}) \leq l(a_{j_1} \cdots a_{j_q})$. Choose α minimal such that $1 \leq \alpha \leq q$ and $l(a_{i_1} \cdots a_{i_p}) \leq l(a_{j_1} \cdots a_{j_n})$. Then $a_{j_\alpha} = a'_{j_\alpha} a''_{j_\alpha}$ for some $a'_{j_\alpha} \in \mathcal{L}$, $a''_{j_\alpha} \in \mathcal{L}^1$ such that

(9)
$$a_{i_1}\cdots a_{i_p} = \begin{cases} a_{j_1}\cdots a_{j_{\alpha-1}}a'_{j_{\alpha}} & \text{if } \alpha > 1 \\ a'_{j_1} & \text{if } \alpha = 1. \end{cases}$$

First consider the case $a''_{j_{\alpha}} = 1$. Then $a'_{j_{\alpha}} = a_{j_{\alpha}}$ and $a_{i_1} \cdots a_{i_p} = a_{j_1} \cdots a_{j_{\alpha}}$. Now by (8), p = m if and only if $\alpha = t$ and in such a case we are done by Lemma 3.6. So let p < m, $\alpha < t$. But now we are done by Lemma 3.4 and our induction hypothesis on $l(w_1w_2)$ in $\mathcal{F}(x_1, \cdots, x_n)$.

So we are left with the case $a_{j_{\alpha}}^{"} \neq 1$. Then p < m and $x_{i_{p+1}}$ is free. Also by (8), (9) we have

$$(10) a_{l_{p+1}}\cdots = a_{l_{\alpha}}^{"}\cdots.$$

Now as in Lemma 3.11 introduce new variables $x'_{j_{\alpha}}$, $x''_{j_{\alpha}}$. Corresponding to (10), let $w'_1 = x_{i_{p+1}} \cdots$ and $w'_2 = x''_{j_{\alpha}} \cdots$. Now an application of Lemma 3.11 followed by Lemma 3.4 (because of (9)) yields a constrained word equation $\mathcal{B} = \{w'_1, w'_2, \cdots\}$ with same free variables as \mathcal{A} (though the total number of variables is n + 1) such that (10) represents a solution of \mathcal{B} and the resolvability of \mathcal{B} implies the resolvability of (a_1, \cdots, a_n) . Also in this construction, $x_{i_{p+1}}$ is free and $x''_{j_{\alpha}}$ is constrained. So by Lemma 3.13, \mathcal{B} is resolvable. So (a_1, \cdots, a_n) is resolvable and our proof of Theorem 3.14 is complete.

MOHAN S. PUTCHA

COROLLARY 3.15. Every word equation is resolvable in \mathfrak{D} .

Let $\{w_1, w_2\}$ be a word equation in variables x_1, \dots, x_n . A solution (a_1, \dots, a_n) in \mathfrak{D} of $\{w_1, w_2\}$ is *trivial* if either there exist $u \in \mathfrak{D}$, $k_1, \dots, k_n \in \mathbb{Z}^+$ such that $a_i = u^{k_i}$, $i = 1, \dots, n$ or if there exist $a \in \mathcal{L}$, $\alpha_1, \dots, \alpha_n \in \mathbb{R}^+$ such that $a^{\alpha_i} = a_i$, $i = 1, \dots, n$. Then Theorem 1.9 and Corollary 3.15 imply the following.

THEOREM 3.16. Let $\{w_1, w_2\}$ be a word equation in variables x_1, \dots, x_n having only trivial solutions is any free semigroup. Then $\{w_1, w_2\}$ has only trivial solutions in \mathfrak{D} .

4. An approximation theorem for \mathfrak{D} . For the definition of a pseudo-metric, see for example [5; p. 129]. Consider the following properties for a function $\varphi : \mathfrak{D} \times \mathfrak{D} \rightarrow \mathbf{R}^+ \cup \{0\}$.

(a) φ is a pseudo-metric on \mathfrak{D} .

(b) For any $u_1, u_2 \in \mathfrak{D}$, $\epsilon \in \mathbb{R}^+$, there exists $\delta \in \mathbb{R}^+$ such that for all $v_1, v_2 \in \mathfrak{D}$, $\varphi(u_i, v_i) < \delta$, i = 1, 2, implies $\varphi(u_1u_2, v_1v_2) < \epsilon$.

(c) For any $u \in \mathcal{L}$, $\varphi(u, u^{\delta}) \to 0$ as $\delta \to 1$.

If the above hold, then it is easy to see that for all $u_1, \dots, u_m \in \mathfrak{D}$, $\epsilon \in \mathbf{R}^+$, there exists $\delta \in \mathbf{R}^+$ such that for any $v_1, \dots, v_n \in \mathfrak{D}$, $\varphi(u_i, v_i) < \delta$, $i = 1, \dots, m$ implies $\varphi(u_1 \dots u_m, v_1 \dots v_m) < \epsilon$.

Using Corollary 3.15, Theorems 1.1 and 1.8, we obtain the following

THEOREM 4.1. Let φ satisfy (a), (b) and (c) above. Let (a_1, \dots, a_n) be a solution in \mathfrak{D} of a word equation $\{w_1, w_2\}$. Then for every $\epsilon \in \mathbb{R}^+$, there exists a strongly resolvable solution (b_1, \dots, b_n) of $\{w_1, w_2\}$ in \mathfrak{D} such that $\varphi(a_i, b_i) < \epsilon$, $i = 1, \dots, n$.

DEFINITION. Let ρ be the pseudo-metric on compact subsets of \mathbb{R}^2 given by $\rho(A, B) = m(A \setminus B \cup B \setminus A)$ where *m* denotes the Lebesgue measure. Let λ be pseudo-metric on \mathfrak{D} given by $\lambda((A, \alpha), (B, \beta)) = \rho(A, B) + |\alpha - \beta|$.

THEOREM 4.2. Let (a_1, \dots, a_n) be a solution in \mathfrak{D} of a word equation $\{w_1, w_2\}$. Then for every $\epsilon \in \mathbb{R}^+$, there exists a strongly resolvable solution (b_1, \dots, b_n) of $\{w_1, w_2\}$ in \mathfrak{D} such that $\lambda(a_1, b_i) < \epsilon$, $i = 1, \dots, n$.

Proof. By Theorem 4.1 we must show that λ satisfies (a), (b) and (c). First note that ρ satisfies the following.

1. $\rho(A \cup B, C \cup D) \leq \rho(A, C) + \rho(B, D).$

2. $\rho(\alpha A, A) \rightarrow 0$ as $\alpha \rightarrow 1$ and A is fixed.

Now let $(A_1, \alpha_1), (A_2, \alpha_2), (B_1, \beta_1), (B_2, \beta_2) \in \mathfrak{D}$. Then $(A_1, \alpha_1)(A_2, \alpha_2) =$

 $(A_1 \cup \alpha_1 A_2, \alpha_1 \alpha_2)$ and $(B_1, \beta_1)(B_2, \beta_2) = (B_1 \cup \beta_1 B_2, \beta_1 \beta_2)$. So

 $\rho(A_1\cup\alpha_1A_2,B_1\cup\beta_1B_2) \leq \rho(A_1,B_1) + \rho(\alpha_1A_2,\beta_1A_2) + \rho(\beta_1A_2,\beta_1B_2).$

Let (A_1, α_1) , (A_2, α_2) be fixed and suppose $\lambda((A_1, \alpha_1), (B_1, \beta_1)) \rightarrow 0$, $\lambda((A_2, \alpha_2), (B_2, \beta_2)) \rightarrow 0$. Then $\rho(A_1, B_1) \rightarrow 0$, $\beta_1 \rightarrow \alpha_1$, $\beta_2 \rightarrow \alpha_2$, $\rho(A_2, B_2) \rightarrow 0$. So $\rho(A_1 \cup \alpha_1 A_2, B_1 \cup \beta_1 B_2) \rightarrow 0$ and $\beta_1 \beta_2 \rightarrow \alpha_1 \alpha_2$. Thus $\lambda((A_1, \alpha_1)(A_2, \alpha_2), (B_1, \beta_1)(B_2, \beta_2)) \rightarrow 0$. This establishes (b). Next let $K = \overline{K} \subseteq U = \{x \mid x \in \mathbb{R}^2, \|x\| = 1\}, \quad \alpha, \beta \in \mathbb{R}^+, \quad 1 < \alpha < \beta$. Then $\Phi(K^{(\beta)}) \setminus \Phi(K^{(\alpha)}) \subseteq \overline{I}_{\alpha,\beta}$. So for α fixed, $\lambda(K^{(\alpha)}, K^{(\beta)}) \rightarrow 0$ as $\beta \rightarrow \alpha$. This establishes (c). (a) is of course trivial and the theorem is proved.

5. Word equations of paths. In this section let $n \in Z^+$ be fixed and let \mathcal{D}_1 denote the groupoid of paths in \mathbb{R}^n mentioned in the problem at the end of [4]. Also let $*, \equiv, f_{[\alpha,\beta]}$ have the same meaning as in [4]. Let \mathcal{L}_1 denote the set of lines in \mathcal{D}_1 . Let $\mathcal{L}_1^* = \{f * | f \in \mathcal{L}_1\}$ and let $\mathcal{D}_1^* = \{f * | f \in \mathcal{D}_1\}$. So \mathcal{D}_1^* is a semigroup. We start off with an analogue of Theorem 2.9.

THEOREM 5.1. Let T be a nonempty finite set. For $i \in T$, $j \in Z^+$, choose $f_{i,j} \in \mathcal{D}_1$ such that $f_{i,j+1}|_f f_{i,j}$ for all $i \in T$, $j \in Z^+$ and $l(f_{i,j}) \to 0$ as $j \to \infty$ for any fixed $i \in T$. Let $f \in \mathcal{D}_1$. Assume that for each $\beta \in [0, 1]$, $j \in Z^+$, there exist $\alpha, \gamma \in [0, 1]$, $i \in T$ such that $\alpha < \gamma$, $\beta \in [\alpha, \gamma]$ and $f_{[\alpha, \gamma]} \equiv f_{i,j}$. Then some $f_{p,q} \in \mathcal{L}_1$.

Proof. The second part of the proof of [4; Theorem 2.1] shows that there exist $\mu, \nu \in [0, 1]$, $\mu < \nu$ such that $f_{[\mu,\nu]} \in \mathcal{L}_1$. Choose $\beta \in (\mu, \nu)$. For any $j \in Z^+$, there exist $\alpha, \gamma \in [0, 1]$, $i \in T$ such that $\alpha < \gamma$, $\beta \in [\alpha, \gamma]$ and $f_{[\alpha, \gamma]} \equiv f_{i,j}$. We can choose j big enough (and hence $l(f_{i,j})$ small enough) so that we must have $\alpha > \mu, \gamma < \nu$. Then $f_{i,j} \equiv f_{[\alpha, \gamma]} \in \mathcal{L}_1$.

For $a \in \mathcal{L}_{1}^{*}$, $\alpha \in \mathbb{R}^{+}$, let a^{α} denote the line in \mathcal{L}_{1}^{*} in the same direction as a but with length $\alpha l(a)$. Let $u, v \in \mathcal{D}_{1}^{*}$. Then define $u \sim v$ if either there exist $a \in \mathcal{D}_{1}^{*}$, $i, j \in \mathbb{Z}^{+}$ such that $u = a^{i}$, $v = a^{i}$ or if $u, v \in \mathcal{L}_{1}^{*}$ and $v = u^{\alpha}$ for some $\alpha \in \mathbb{R}^{+}$. Because of Theorem 5.1, we can repeat §3 (including all the definitions) with \mathfrak{D} replaced by \mathcal{D}_{1}^{*} and \mathcal{L} replaced by \mathcal{L}_{1}^{*} . We then obtain the following theorem which answers affirmatively a problem posed at the end of [4].

THEOREM 5.2. Every word equation is resolvable in \mathcal{D}_{1}^{*} .

Using Theorem 1.9, we now obtain,

THEOREM 5.3. Let $\{w_1, w_2\}$ be a word equation which has only

trivial solutions in any free semigroup. Then $\{w_1, w_2\}$ has only trivial solutions in \mathcal{D}_1^* .

For continuous $f: [0, 1] \rightarrow \mathbf{R}^n$, let $||f|| = \sup_{t \in [0, 1]} ||f(t)||$.

DEFINITION. For $u, v \in \mathcal{D}_1^*$, let $\eta(u, v) = \inf\{||f - g|| | f, g \in \mathcal{D}_1, f \equiv u, g \equiv v\}$.

Then η can be shown to have the following properties:

(a) η is a pseudo-metric on \mathcal{D}_1^* .

(b) For any $u_1, u_2 \in \mathcal{D}_1^*$, $\epsilon \in \mathbb{R}^+$, there exists $\delta \in \mathbb{R}^+$ such that for all $v_1, v_2 \in \mathcal{D}_1^*$, $\eta(u_i, v_i) < \delta$, i = 1, 2 implies $\eta(u_1u_2, v_1v_2) < \epsilon$.

(c) For any $u \in \mathcal{L}_{1}^{*}$, $\eta(u, u^{\delta}) \rightarrow 0$ as $\delta \rightarrow 1$.

As in \$4, Theorems 1.1, 1.8 and 5.2 easily imply the following.

THEOREM 5.4. Let (a_1, \dots, a_m) be a solution in \mathcal{D}_1^* of a word equation $\{w_1, w_2\}$. Then for every $\epsilon \in \mathbb{R}^+$, there exists a strongly resolvable solution (b_1, \dots, b_m) of $\{w_1, w_2\}$ in \mathcal{D}_1^* such that $\eta(a_i, b_i) < \epsilon$, $i = 1, \dots, m$.

Note added in the proof. Problem 1.10 has recently been solved by the author.

REFERENCES

- 1. Ju. I. Hmelevskii, Equations in free semigroups, Proc. Steklov Inst. Math., 107 (1971), 270.
- 2. A. Lentin, Équations dans les monoides libres, Mouton/Gauthier-Villars, 1972.
- 3. E. S. Ljapin, Semigroups, Amer. Math. Soc. Transl., (1963). Translation of Polugruppy (1960).
- 4. M. S. Putcha, Word equations of paths, J. Algebra, (to appear).
- 5. H. L. Royden, Real Analysis, Second Edition, MacMillan, New York, 1968.

Received December 28, 1976. The author was partially supported by NSF grant MCS 76-05784.

North Carolina State University Raleigh, NC 27607