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WORD EQUATIONS IN SOME
GEOMETRIC SEMIGROUPS

MOHAN S. PUTCHA

Let 5 be a semigroup and let HΊ = w}(xu ,Jt,), w2 =
w2(xu'm',Xt) be two words in the variables xu ,xt. By a
solution of the word equation {wu w2} in 5, we mean au , at E
S such that wλ{au , at) = w2(au , at). Let ^ R denote the
free product of t copies of positive reals under addition. In §3
and §5 we show that if Y is either the semigroup of certain paths
in R" or the semigroup of designs around the unit disc, then any
solution of {wi,w2} in Y can be derived from a solution of
{wi, w2} in ^ R . This answers affirmatively a problem posed in
Word equations of paths by Putcha. Word equations in 3*R are
studied in §1. Using these results, it is shown that any solution
in Y of {wi, w2} can be approximated by a solution which is
derived from a solution in a free semigroup. There are two
books by Hmelevskii and Lentin on word equations in free
semigroups. We also show that if {HΊ, W2} has only trivial
solutions in any free semigroup, then it has only trivial solutions
in Y.

1. Pre l iminar ies . Throughout this paper, N, Z, Z + , Ά, <2+, R,
R+ will denote the sets of nonnegative integers, integers, positive
integers, rationals, positive rationals, reals and positive reals,
respectively. For m,nE Z + , let Rm x n, Άmxn denote the sets of all m x n
matrices over the reals and rationals, respectively. If 5 is a semigroup,
then S 1 = S U { 1 } with obvious multiplication if 5 does not have an
identity element; S1 = S otherwise. If T C S\ then V = T U {1}.

DEFINITION. Let S be a semigroup and a,bE.S.

(1) a I b if b = xay for some JC, y E 5 1 .

(2) a \ib if b = ax for some x E S1.

(3) a \fb if b = ya for some y E S\

If Γ is a nonempty set, then let & = £F(Γ) denote the free semigroup

on Γ. If w E 2F, then let /(w) = length of w. If 5 is a semigroup and

4i, , an E 5, then we say that a E S is a word in au - - , an if a =

w(au - - , an) for some W(JC!, , JCΠ)E ^(JCI, , xn). This is the same as

saying ίhat a is an element of the semigroup generated by au - - , αM.

Let Γ be a nonempty set. Let ^ R = ^ R (Γ) denote the set of all

nonempty finite sequences (also called words) of the type w = A "ι A a

n
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where n E Z + , au , an E R+, A b , An E Γ and A, 7̂  AJ+1 for /, i + l E
{l, ,n}. We define e(w)=n and /(w)= α,+ • + α n . Let
wuw2E3^R. Suppose i v ^ Λ f ' Λ;-, w2 = Bf1 β^m. Then we
define

r

Now, of course, expressions of the type w = A ?' A a

n

n (ah , an E R+;
Ai, , An E Γ) make sense even when A, = Ai+ι for some i, / + 1 E
{1, , n}. But note that if n = e(w), then A , ^ A, +1 for any i, i 4-1 E
{1, , n}. In such a case we call A ί1 A a

n% the standard form of
w. ^ R ( Γ ) is a semigroup and is just the free product of |Γ | copies of R+

under addition (see for example [3; p. 411]). Let Jf = Jf(Γ) =
{Aa IA E Γ, a E R+}. If w, v E ^ R (Γ), then define w ~ ϋ if either u = w',
t; = w7 for some w E ^ R , ij G Z+ or if w = Aα, v = Aβ for some
α, jβ E R+, A E Γ. Clearly, ~ is an equivalence relation on ^V(Γ). It
will follow from Theorem 1.9 that ~ is in fact an equivalence relation on
^ R (Γ). Let w G ^ R , w=AV-Άa

n» in standard form. Let A E Γ.
Then A appears integrally in w if for each i G {1, , n}, A, = A implies
α, E Z + . Otherwise A appears nonintegrally in w. A appears ration-
ally in w if for each ι'G{l, , n}, At = A implies α I E c 2 + . Let
^ ( Γ ) = {w I w E ^ R ( Γ ) , A appears rationally in w for each A G
Γ}. &st (Γ) is a subsemigroup of ^ R (Γ).

DEFINITION. By a word equation in variables xu ••-,*„ we mean
{wb w2} where w, = W^JCI, , xn), w2 = w2(xu , xn) E ^ ( x b , xn). It
is not necessary that each JC, appears in WiW2. Let & be a semigroup and
au' - , an E S. Then (αi, ,α n ) is a solution of {wbw2} if
wx(au- , α n ) = w2(au •• , α n ) .

Let (ϋ?i, , fen) be a solution in £F(Γ) of a word equation {wb w2} in
variables x b * ,jcn. Let 5 be a semigroup and φ:SF(Γ)-+S, a
homomorphism. Let α, = φ(Z?ί), ί = l, ,n. Then (au * ,β n ) is a
solution of {wi, vv2}. We say that (au , an) follows from (bu , 6n).

DEFINITION. Let {vvb vv2} be a word equation in variables xu , JCΛ

and 5 a semigroup.
(1) Let (αi, , an) be a solution of {wu w2} in 5. Then (au - , an)

is strongly resolvable if it follows from some solution of {wu w2} in ^(Γ)
for some nonempty set Γ. By Lentin [2] we can then choose | Γ | ^ n.

(2) {wu w2} is strongly resolvable in S if every solution of {wu w2} is
strongly resolvable.
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Let Γ be a nonempty set and let ξ: Γ-»<2+. Then clearly there
exists a unique automorphism φ of ^ ( Γ ) such that φ(A) = Aξ(A) for all
A E Γ . NOW let α b , an E ^ ( Γ ) . Then there exists an automor-
phism φ of ^ 2 ( Γ ) of the above type such that bx = φ (a,) E ^(Γ),
i = 1, " , n. Suppose ( α b ,α n ) is a solution of a word
equation. Then (bu , ί>n) is also a solution of the same equation and
α, = φ~ι{bi), / = 1, , rc. So we have the following.

THEOREM 1.1. Every word equation is strongly resolvable in ^,(Γ)
for any nonempty set Γ.

DEFINITION. Let wu w2E SFR(Γ). Suppose wλ = A"x - Aa

n% w2 =
βf1 Bt in standard form. If m = n and A, = β, (i = 1, , n), then
let d(w b w2) = Σ?=11 a{ - βx |. Otherwise let d(wu w2) = °°.

LEMMA 1.2. Lei wh w2, w3, w4 E ^ R (Γ). Γ/ien the following are true
in the extended real line.

(i) e{uxu2) = e{uλ) + e(u2) or e{uλ) + e{u2)- 1.
(ii) d ( « b M2) = 0 if and only if uλ- u2.
(iii) d(uu u3) ^ d(κ l 5 w2) + ^(w2, w3).
(iv) d(uuu2)= d{u2,uλ).
(v) dίMjMz, W3W4) ^ έί(Mi, M3) -H d ( M 2 , M4).

/. (i), (ii), (iii) and (iv) are clear. So we prove (v). Let
w b w 2 E ^ R ( Γ ) , d(wuw2)<*>. Let w ^ Λ f A;", w2 = Af' Ag-in
standard form. Let A E Γ . If A ^ Am then for any a E R+, M " =
AV"ΆnnA\ w2A

a = Af' A£-Aα in standard form. So
d(w!Aα, w 2 A α ) = d ( w 1 ? w2). If A = A n , then M β = A ? A«-+",
w2^« = Af' A^-+α. S o a g a i n ^ i w ^ " , w 2 A α ) = d ( w b w2). So by in-
duction d(wλu, w2u) = d(wu w2) for all u E ^ R (Γ). Similarly
d(wwb uw2) = d ( w b w2) for all u E ^ R (Γ). Let wb w2, M3, "4 E ^R(Γ) such
that d(wbw3)<oo and d(u2, w4)<°°. So d{uλu2,u3uA)^
d(uιU2,u3u2)+ d(u3u2,u3u4)= d(uuu3)+ d(u2,u4). The same holds tri-
vially if d ( u b M3) = °° or d(u2, u4) = °°.

LEMMA 1.3. (i) Lei « e f R ( Γ ) , n E Z +
 SMCΛ ίΛαί e ( w ) > l . Lei

M = A f 1 A?-, wn =Bξt"'Bf- in standard form. Then {au -,ar}C
{j8i, ,A}

(ii) Leίw, ϋ E ^R(Γ),n EZ\ Then d(u, v) ^ d(un, vn) ^ nd(u, v).

Proof, (i) 1 < r ^ 5. Since w|,w", M^M" we obtain aι = βι

(1 ^ i < r) and αr = βs.
(ii) That d(un, i;n) ^ nd (w, u) follows from Lemma 1.2 (v). So we
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show that d(u,v)^d(un,vn). If d(un, υn) = oo, this is trivial. So let
d{u\ vn)<oo. If u

n or vn EN(Γ), then w, υ G JV(Γ) and u ~ v. So for
some A 6 Γ , e, δ G R+, w = A e , ι? = A δ. So d(κ, u) = \e - δ | ^
\ne - nδ\ = d(un,vn). Next assume e(w") ,β( f n )> 1. Let un =
Aΐ — Άΐr, vn = Af1 A£* in standard form with m > 1 . Let u =
BV' BΊ', v = Cf1 CJ in standard form. Then r, s > 1, B! = A, =
Ci, Br = Am = Cs. It Aijί Aw, then rn = m = sn. So r = s. If Ai =
Am, then > - n - l = m = ns - n - 1. Thus in any case r = s. Also
Bi = Λ, = ς l ^ i g r . For l ^ i ^ r - 1, γ, = α, and δ, = j8f . Also
γ r = α m and δ s = βm. Thus Σ'= 11 γf - δ, | ̂  ΣΓ=i | αf - j8, |. This proves the
lemma.

If F G R m x n , then let Pτ denote the transpose of P.

L E M M A 1.4. Lei Γ be a nonempty set and let A b , A n G Γ ,
eu - , en G R+, iu , in j u -,/, G {1, , n}. Suppose that in ^ R ( Γ ) ,

Γ/zen ί/ierβ exists P G QmXn for some m G Z + suc/z that for any au , αn G
R+, P(α,, , α n ) τ = 0 i/

(1) AΓ;I A J . =

/. We prove by induction on r + s. Choose /?, q maximal so
that l ^ p ^ r , ί^q ^ s and for any α, β with l ^ α ^ p , 1 ̂  j8 ̂  ^, we
have An = Ala and A;, = A]β. Clearly Ah = A;i and Σ£=1£/k =
Σΐ=i 67k. Now clearly /? = r if and only if q = s. Also in this case, for any
au -,an E R+, (1) holds if and only if ΣUi otlk = Σ5

k=ι ajk. We can then
trivially choose a 1 x n integer matrix P such that for any α b ,an G R+,
P ( α b , an)

τ = 0 if and only if ΣUi α,k = ΣUi <*jk.
Thus we may assume p < r adn ̂  < s. Then we have

If α b , an G R+, then (1) holds if and only if

(2) Σ a,t = Σ ajk

k=\ k=\

and

(3) A >;• A l*r = A Λ;1 A
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We can trivially choose a l x n integer matrix Pi such that (2) holds if and
only if Pλ(au , an)

τ = 0. By our induction hypothesis, we can choose
P2 E Άmxn for some m such that (3) holds if and only if P2{au , an)

τ =

0. Let P = (ζι\ Then for any au ••-,«„£ R+, P(au - , α n ) Γ = 0 if and

only if both (2) and (3) hold. This proves the lemma.

L E M M A 1.5. Let Γ be a nonempty set and let A u •• , Λ n G Γ ,
β!, •••,€„£ R+, ii, , in j u '' 'Js E {1, , n}. Suppose that in ^R(Γ),

Lei δ G R+. TTien tfiere exi5ί α l 5 , αn E 5 + sucΛ that ΣJJ=11 αk - ek | < δ

Proof. Choose P E ΆmXn as in Lemma 1.4. Let V =
{(/8i, ,j8ll)

τ|(/8i, , i8 l ι )
Γ eR- + 1 , F ^ s β J ^ O } . (€lf ;en)

τ E V
and so V-έ {0}. Let

Let μ = n - rank of P. Then dim V over R = μ = dim W over
Ά. Since VV {0}, we have μ > 0 . W has a basis Hu ,Hμ over
a. Let H = the n x μ matrix [ H b , Hμ]. Then rank oί H = μ. So
Hu —,Hμ are also linearly independent over R. Hence Hu-—,Hμ

form a basis of V and of course Hu ,ffμ E Άnxl. So there exist
δ,, , δ μ 6 R such that (eu , en)

τ = δi/Zj + + 8μHμ. Let
γ,, •• j μ 6 , 2 and set ( α b , α n ) Γ = γ,//, + + γμ/ίμ. Then clearly
(α,, , α « ) τ e W. Also

p = \

Thus for any δ E R+ we can choose 18P - γp |, p = 1, , μ, small enough
so that \ak - ek\< δ/n, k = 1, , n. For δ small enough we then also
have ak E <2+, fe = 1, , n. This proves the lemma.

THEOREM 1.6. Lei {wu vv2} έe α worrf equation in variables
xu , xn. Lβί ( α b ,an) be a solution of {wu w2} in ^ R ( Γ ) . Then for

each e E R+, there exists a solution (bu •••,&„) of {wu w2} in ^ ( Γ ) 5wc/ι
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Proof. Let ax - Afϊ A f^ in standard form, i = 1, , n. Let wλ

start with xt and let w2 start with JC7. Then correspondingly we have

A βn - - - = A β'x

Choose α l k G .2+, i = 1, , n, l^k^m,. Let ft = A fi1 A SSΓ , I =
l, ,n. Then 6,, • , & „ £ % ( Γ ) , Also, w1(bl9 , 6 , )= w2(fc1? , ft,)
if and only if

(4) AΓΓ - A - .

But by Lemma 1.5 we can choose aιk 's so that (4) holds and | aιk - βιk \ < e
for all relevant i and k. So clearly Σt

n

=1 d(ah ft) = Σ α | α / f c - /3Ifc | ̂  Me
where M = ΣΓ=i^(α t). This proves the theorem.

LEMMA 1.7. Let Λ b " , Λ n E Γ , Λ C Γ . Suppose au , α w

βι, - ,βne'R+, ib sir, /i, •••,/, e { l , ,n} 5wc/ι that A%* - At>r =

// At £ Λ, i = 1, , n. T^βn A fr A J r= A//i A £..

Proof. We prove by induction on r + s. Choose /?, q maximal such
that for 1 ̂  μ ^ p, l i ^ q , A , , = Ai |t and Ayi = A]v. Then

Since AiίΛ = A/v for 1 g μ ^ p, 1 ̂  v ^ q, we obtain

Also, if p + q < r -f 5, then p < r, q < s and

By our induction hypothesis we then also have,

Hence Aj y A Jv = A//i A Js proving the lemma.
We will need the following refinement of Theorem 1.6.

THEOREM 1.8. Let {wuw2} be a word equation in variables
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xu , xn. Let (au , an) be a solution of {wu w2} in ^ R (Γ). Then for
each € E R+, there exists a solution (cu * , cn) of {wu w2} in &Ά(Γ) such
that Σ"=1 d(ah c,-) <e and so that for any A E Γ, A appears integrally in
each ax implies A appears integrally in each ch

Proof Let Λ = {A | A E Γ, A appears integrally in each
αt}. Choose (bu — ,bn) as in Theorem 1.6. Let at = An

iX A ^ ,
k = A ff1 A &?., i = 1, , n in standard form. Let yιk = aik if Aik E Λ,
γιk = βik if Aιk <£ Λ. Set cf = A 7j< A &., i = 1, , n. Then
d E ^ ( Γ ) , έί(αl9c( ) = d(ahbi). Let Wj start with jcf, w2 start with
JC7 . Then correspondingly we have,

Λ,Γ = Λ7 l

J I .

Then by Lemma 1.7 we also have

An "' = A .['"'.

So HΊ(CI, , cn) = ^2^ ! , , cn). This proves the! theorem.
Let {wu w2} be a word equation in variables xu , jcn. A solution

(α l 5 , an) of {wu w2} in ^ R (Γ) is m't ία/ if either there exist u E ^R(Γ),
fcl5 " s f c n G Z ' such that uκ = αI? ί = 1, , n, or if there exist A E Γ,
αi, , αn E R+ such that at = A % i = 1, , n.

THEOREM 1.9. Lei {wu w2) be a word equation in variables
*i, •••,*„. Suppose {wu w2} has only trivial solutions in any free
semigroup. Then {whw2} has only trivial solutions in any ^R(Γ).

Proof Let (au-—,an) be a solution of {wuw2} in ^R(Γ). By
Theorem 1.6, there exist solutions (Mw), * * , fe(nm))» m E Z + of {wu w2} in
S^(Γ)such that d{an b\m))^0 a s m - ^ ^ i = l, ,n. By Theorem 1.1
and our hypothesis, there exist, for each m E Z + , um E ^ ( Γ ) , k(m, ί ) E
Z + , i = l, ,n such that b\m)= uk

m

{m>ι\ i = 1, , n. N o w e ( i ί m ) ) = e ( α , )
for all m G Z + , i = 1, ,n. If for any i E{1, ,n}, fc(m,/)-»<», then
by Lemma 1.2 (i), e(wm)= 1 for some m E Z + . It then follows easily
(since d(ahbfι))<<χ>, j = 1, ,n) that e(α y )= 1, / = 1, ,n, and α; - αr

for all /, r E {1, , n). So we may assume that the k(m, i)'s are
bounded for each / = l, ,n. So {(/c(m, 1), , /c(m, n)) |m E Z+} is
finite. Hence we can assume without loss of generality (going to a
subsequence if necessary) that k(m,i)= k(t,i) for all m,tEZ+, i =
1, •••, n. Thus there exist ku , /cn E Z + such that for all m E Z + ,
^ ( m ) = w ^ ? / = !,••-, n. If e ( w m ) = l for any m, then we are done as
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above. So assume e{um)>l for all m EZ+. Now for all m,tEZ+,
d(b[m\b[t))<™. So d(uki,uk

t*)«*>. By Lemma 1.3 (ii), d(um,ut)<
oo. For m G Z\ let um = A f (m'υ A fmj) in standard form. For any
6 > 0, N G Z + , there exist m, ί G Z + , ra, ί ^ ΛΓ such that d(fe(Γ}, M°) <
6. So by Lemma 1.3 (ii), d(um, ut)< e. So for i = 1, , r, (α(m, /)) is a
Cauchy sequence in R+. Let (α(m,/))-»α, . So α , 6 R
(/ = 1, , r). Let αj = βf1 βf' in standard form. Then by Lemma
1.3 (i) and the fact that d(auu

k

m

l)-+0 as m->oo, W e obtain that
{<xι, " ,αr}C{δ l 5 - - s δ j . Hence α l 5 , ar G R+. Let M =
AV'-A"\ So w G ^ R ( Γ ) and clearly d(um, u)-*0 as m-*oc. Let
/G{l, ,n}. Then by Lemma 1.3(ii), d{uk^ukι)^k4{um,u). So
d(MΪi,uk )-^0 N o w rf(β,,Mίi)->0. Also by Lemma 1.2, d(α f ,u k ) =
^(Λ, , MΪί)+d(«ί;, «fc ) for all m<ΞZ+. So d(flf,κ* ) = 0 and thus by
Lemma 1.2, α, = w\ / = 1, , n. This proves the theorem.

PROBLEM 1.10. Generalize Lentin's theory of principal solutions in
the free semigroup [2] to 8FR.

2. The semigroup of designs around the unit disc. For
α,/3GR+, a<β, let Iaφ = {x \x G R2, a < ||JC || < β}. Let ® =
{(A, a)\a GR + , α > 1, A is a closed subset of / l α ; for all x G A there
exists a sequence <jcπ) in A such that xn -» x and ||jcn | | ^ ||JC || for all
n}. For (A, a) G S), let Φ(A, α) = A. ® becomes a semigroup under
the following multiplication

(A, α)(J5, β) = (A U aB, aβ).

We call S) the semigroup of designs around the unit disc. The multipli-
cation above is illustrated in Figure 1. If (A, a) G S), then let /(A, α) =
logα. So for all u,vE^), l(uv)= l(u)+l(υ) and l(u)>0. In Φ1, set
/(!).= 0.

REMARK 2.1. Let (A, α) G ®. Then A = A Π Ila.

DEFINITION. Let 1 ̂  β < y ^ α. Then for ( A , α ) 6 S ) , (A, a)[M =
(B,γ/β) where B =(1//3)(A Π/β,γ). Note that (A,α) [ β , γ ] G® and since
A = Λ , Φ((A,α) [ f t r l)C(l/i8)A. Also we define (A,a)ιm= 1.

Note that /((A, α) [ β γ ] ) = log γ - log β. Also by Remark 2.1,

LEMMA 2.2. (i) Lei l ^ / 3 < γ < δ ^ α , ( A , α ) 6 ® . Then
(A, α) [ f t δ ] = (A, α) [ f t γ ](A, α) [ γ,δ ].
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I

FIGURE 1. Multiplication in φ .

(ii) Let ί^β^ ^μ^a, (A, a) G 2). Then l((A, α ) M ) ) ^
) ^ ) '/ and only if β = γ and

Proof, (i) Let x E A, ||jc || = γ. Then there exists a sequence (xn) of
A such that ||xπ || φ y for all n and xn —* x. So A ΓΊ /Aί C

(A n /Aγ) u (A n 4_δ). So if A, = A n /ftfc ^ ^ n /A7, A 3 = A n /rA

then _A, = A 2 UA 3 . Also (A,α) [ A δ ) = ((l/β)Au 8/β), (A,a\M =
((l/jβ)A2, γ//8) and (A, α)[γ,«, = ((l/γ)A3, δ/y). This yields the result.



252 MOHAN S. PUTCHA

(ii) This follows by noting that by (i), (A, a)[M =
(A, a)[β,Ύ](A, a)[Ύtδ](A9 a)[Stμ].

LEMMA 2.3. Let (Λ,α), (B,/3)E®. Set (C, y) = (A, a)(B,β).
Then (C,y)[1>β] = (A,α) and (C, y)lβ,y] = (B,j8).

Proof. C = AUaB. So C Π Iha CA. It follows that C Π /1>β =
A Π J l α . By Remark 2.1, Φ((C, γ)[ l i β ]) = C Π / l f β = A Π / l i β = A. Thus
(C,γ) ίi,βJ = (A,α). Now C Π I α > C αB. So C Π Iaγ = aB Π Iaγ. Thus
φ((αyy = (i/α)(cng = (i/α)(αBng = (Bng = B! it fol-
lows that (Qy)[ay] = (B,β).

LEMMA 2.4. Lei ( A , α ) ε ® , 1 ̂  j8 < γ ̂  α and 5eί (B,γ/β) =
(A, a)[ f t rj. Le/^: [1, γ//3] —> [β, y] be the order preserving homeomorphism
χ(x)= βx. Then for 1 ̂  8 < μ ̂  y/β9 (B, y/jS)^, = (A, a

Froo/. B = (1//3)(A Π IA y) C (lfβ)A. So B Π /δ,μ = /δ,μ Π (l/j8)A =
(l/β)(Ixis),x(μ)ΓιA). It follows that Φ((B, ylβ)M) = Φ((A, «
Also, χ(μ)/χ(δ) = μ/δ and the result follows.

LEMMA 2.5. L^/ wb , un, (A, ^ ) G 3) swc/z //zα/ (A, a) =
u1 - - - un. Then there exist aθ9 , αn E R+ such that 1 = a0 < OL\ < * <
an = a and (A, a)[aι_uaι] = MI5 i = 1, , n.

Froo/. Clearly we can assume n > 1. By Lemma 2.3, there exists
β E (1, α) such that (A, α ) [ l β ] = ιιl5 (A, a)[β,a] = u2--un. We are now
done by induction and Lemma 2.4.

LEMMA 2.6. ® is α cancellatiυe semigroup. Let uhu2,vuv2E.c&
such that uxu2 = ϋiϋ2. Then exactly one of the following occurs.

(i) l(uλ)<l(vλ), I(υ2)<l(u2)9 u^Όx and v2\fu2.
(ii) l(vι)<l(uι), I(u2)<l(υ2)9 vι\iu1 and u2\fυ2.
( i i i ) u x = ϋ i a n d w 2 = v2.

Proof Let M,, W2, VU V2 E ® such that uλu2= vxv2 = (A,a). By
Lemma 2.3, there exist β,y E (1, α ) such that (A, a)[Uβ] = uu (A, α ) [ l γ ] =
ϋj, (A, a)[βM= u2 and (A, α ) [ γ α ] = ι?2. Suppose / ( M J ) ^ /(uj). Then by
Lemma 2.2(ii), 0 ̂  y. So by Lemma 2.2(i), u^Vu υ2\fu2. If l(ux) =
l(vι), then j3 = y and so uλ = vu u2= υ2. We are now done by sym-
metry.
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LEMMA 2.7. Let (A, a) E 2), x E A, \\x\\ = β. Then,

(i) If βE (1, a), then for l£γ<β<δ^a,xe yΦ((A, α ) M ] ) .
(ii) // j3 = 1, ffcen x E Φ((A, α ) w l ) /or all δ E (1, α ] .
(iii) // β = α, ίften x G γΦ((A, α) [γ,β]) /or α// γ G [1, α ) .

(i) XEAΠ Jγ,δ C yΦ((A, α) [ γ,δ ]).
(ii) There exists a sequence (xn) in A, ||JCΠ || ^ 1 for all n such that

xn -> x. So x G A Π /1)δ = Φ((A, α ) M ] ) .
(iii) There exists a sequence (xn) in A, ||xn || ^ α for all n such that

xn ^ x. So x G A Π IΎta = γΦ((A, α) [ y,β J).

DEFINITION. Let U = {x | x G R2, ||x || = 1}.

(1) Let K = KCU. Then for α G R+, α > 1, let K(a) = (ALa)
where A ={γx\xEK, γ G [ l , α ] } . Let i? = {K{a)\K = X C
ί / , α 6 R > > 1}. Then «S? C S). Note that X = ί/ Π Φ(K ( α )) So if
Kia\ L(β)E<e and X ( α ) = L (^, then K = L and α = β. Examples of
elements of £6 are given in Figure 2.

(2) Let K ( α ) G «SP. Then for β E R+, (Kiaψ = K^\ This is well
defined and agrees with the semigroup definition of power if β E Z+.

(3) Let u,v e 3). Define u ~ υ if either there exist α G ® ,
i,y G Z + such that u ~ a\ v = a\ or if w, i; G ££ and υ = ua for some
α GR+ .

REMARK 2.8. (i) K(a\ Kiβ) E Sβ. Then K(a)K(β) = K(aβ\
(ii) Let uEie, β,yER+. Then (wβ) γ = uβ\ uβ+Ύ = uβuΎ and

/(«^) = j8/(iι).
(iii) Let u E ££. Then there exists unique v E ££ such that u ~ v

and /(ϋ) = 1. If l{u) = γ, then vy = u.
(iv) Let u E ®, v E ££. If w | ϋ, then u E X and u ~ ϋ.
(v) ~ is clearly an equivalence relation on X. If w G ®, u G if,

M ~ ϋ, then M G if. It will follow from Theorem 3.16 that ~ is in fact an
equivalence relation on ®.

THEOREM 2.9. Lei T be a nonempty finite set. For i E Γ, / G Z + ,
choose Uij G 3) swc/z ί/iαί w,,y+1| w,,7 for all i E Γ, / G Z + ; αnrf /(Mi,; ) ->0 as
y—>oo /or any /ixed i £ Γ . Lei (A, a ) G ® . Assume that for each
β E (1, a ) , / G Z + , //*ere exist k E Z\ γ,δE [1, a ] , ι,/?, ( j E Γ *«<:/* ΛΛ/
y < β < δ, k > j and so that either (A, a ) [ γ δ ] = uuk or else (A, a\Ύφ] = wpfc

(A, a)[β,fi] = Mfl,k. Γ/zen 5^me u^ E ££.

Proof Let U = {x\xE R2, ||x || = 1}. Let | T\ = n. We prove by
induction on n. So assume that the theorem is true for nonempty sets of
order less than, n (possibly none). We assume that the conclusion of the
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FIGURE 2. Examples of elements of S£.

theorem is false and obtain a contradiction. For x E U, let Px =
{yx I γ E R+} and Jx = Px D Iha. Then X = Px Π 7 l α. First we claim that
it suffices to show that for each x E U, Jx C A or Jx Γ) A = 0. In such a
case, first let JXCA. Then_ since A is closed, JXC_A. Next let
Jx Π A = 0 . We claim that JΓX Π A = 0 . For, let y E Λ Π A. Then
|| y | | = 1 or a. So there exists a sequence (yn) in A Π Iha such that
yn -> y. Let yn = rn xn, rn E (1, α), xn E ί/. Then xn -> x. Since yn E
JXn Π A, we obtain JXn C A. So ((α + 1)/2)JCΠ E A for all n. Since A is
closed and xn -> JC, we get ((α + l)/2)x E A, contradicting the fact that
Λ n A = 0 . We have thus shown that for all x E U, Jx Π A = 0 or
Jx C A. So letting K = A Π {7 we see that K is closed and that
(A, a) = K ( α ) E if. Then of course some uUj E if, a contradiction. This
establishes our claim.

So let JC E U such that JX£A. Then Λ\A is nonempty and open
in Jx. So there exist βyγ E(ί,a) such that β < γ and f A y n / , C
Λ\A. Let δ E (β, γ) and let / E Z\ Then there exist kEZ\ μ,vE
[1, α ] , i,/>, q E T such that μ <δ < v,k > j and so that either (A, α ) ( μ v ] =
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uιk or else (A, a)[μM = upM and (A, α ) [ M = uq,k. If / is large enough (and
h e n c e l{uιλ), l(upJi), l{uqk) s m a l l e n o u g h ) , w e o b t a i n t h a t μ,v E{β,y).
Hence by Lemma 2.4, (A, a)[M satisfies the hypothesis of the theorem
for the same T. We now claim that for each i E Γ, there exists j E Z + ,
such that u y |(Λ, α) [ j 8 i r]. Suppose not. Then for any / E Z + , wM doesn't
come into consideration in the above argument. So n > 1 and (A, α ) [ A r ]

satisfies the theorem with T\{i} in place of T. So by our induction
hypothesis some ww E iξ a contradiction. So our claim is
established. Since w, ,7 +i | Wi,, for all relevant i, y, we see that there exists
r E Z + such that for all i £ T , / £ Z + , / > r, w,,,- |(A, a\M.

We now assume /x Π Λ / 0 and obtain a contradiction. So let
a EJX Π A, | | α | | = δ. So δ E ( l , α ) . There exist k EZ\ μ, * / E [ l , α ] ,
i,p,q ET such that μ < δ < v, k > r and so that either (A, α ) [ μ ι / ] = wα or
else (A, α) ί / A , δ ] =« M and (A, α ) ( M = uqM. But Mα, wM, M̂ ,k \{A, a)[M. So
in any case (A, a)[μ,δ] | (A, a)[M and (A, a)[M | (A, α) [ β, γ ] . By Lemma 2.5,
there exist £ b £ 2 E R + such that ^Φ((A, a)[μM) U ^ 2 Φ ( ( A , α ) [ M ) C
Φ((A, α)[/8,y]). By Lemma 2.7(i), aEμ Φ((A, a)M). Since (A, α) [ μ,H =
(A, α ) M 1 (A, α) [ δ,H, there exists £3 e R+ such that a E ^3Φ((A, α ) M ] ) or
α E ^3Φ((A,α) ra,H). So for some ^ E R+,_ ξa E Φ((A, α) [ A γ ]) =
(l/j8)(A n/β, 7)C(l//3)(A Π/ f t γ ) . So/3^αEA Π/ A γ . But α ε Λ and so
βξaEPx. But | | j 8 fα | | ε J j8 ,γ]C( l ,α) . So /3fα E A Π Λ Π /Aγ, con-
tradicting the fact that IβtΎ ΠJX CJX\A. This contradiction completes
the proof of the theorem.

3. W o r d equat ions in 2 ) . Let Γ be a nonempty
set. Define ^ R ( Γ | 0 ) = ^ R (Γ) and ^ R (Γ | Γ) = ^(Γ) . If Λ C Γ , Λ ^ 0 ,
Λ ^ Γ , then let ^ R (Γ |Λ) denote the subsemigroup of ^ R (Γ) generated by
^R(Γ\Λ) and ^(Λ). Let w E ^ R (Γ). Then for any Λ C Γ, w E ^R(Γ|Λ)
if and only if each A E A appears integrally in w.

Let <p:Γ-»®, Λ C Γ , such that φ ( Γ \ Λ ) C l Then φ extends
naturally to a homomorphism φ: ^ R (Γ|Λ)-> ®. In fact let w E
^R(Γ|Λ), w = Aϊ - - - An" in standard form. So At E A implies e, E
Z + . Define <£(w) = <p(Ai)€l φ(An)

€n. This makes sense, since for
u E!£,eE R+, ue is defined. Using Remark 2.8(ii), it is easily seen that
φ is a homomorphism. We call φ the natural extension of φ to

Let (uu * ,wπ) be a solution in S*R(Γ) of a word equation
{wbw2}. Let Λ = { A | A E Γ , A appears integrally in each
uu-',un}. Then u,, , κπ ε ^ R (Γ |Λ). Let <p: Γ-> ® such that
φ(Γ\A)C££. Let φ be the natural extension of φ. Let αι = <p(wί),
i = 1, , n. Then ( α b , an) is a solution of {wu w2} in ®. We say
that (α,, , αn) follows from (uu , wn).
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REMARK 3.1. In the above notation suppose there exists ΛiCΓ,
φ: Γ->® such that ^(Γ\Λ,)Ci£ Let ψ be the natural extension of φ to
yR(Γ|Λ,). Suppose uu , un E ^(ΓlAO and fll = <£(«,), i =
1, , n. Then (α b , an) follows from (uu , un). This is because
the above implies that Λi C Λ and so Γ\Λ C Γ\Λi C <k Also it is clear
that the natural extension of φ to ^R(Γ|Λ) is the restriction of φ to

Even though we are only interested in word equations, it will be
convenient to introduce the concept of a constrained word equation.

DEFINITION. Let w, = wι(xι, , * n ) , w2 = w2(xu '' *, **) Ξ
9*{xu'* '? xn)' Let TU ,TS denote 5 disjoint nonempty subsets of
{xu - , xn}. Choose ak E R+ corresponding to each k E Th j =
l, ,s. Let Mj={(xk,ak)\kE T}). We call si = {wb w 2 ; M b ,M,}
a constrained word equation in variables xu •••,*„. We allow the
possibility that m = 0, in which case jz# is the word equation {wu w2}. If
l^i^n and / ̂  Γ7 for every /, 1 ̂ / ^ 5, then we say that x-t is a free
variable of sd. Otherwise xι is a constrained variable. If m = 0 , then x£-
is free (1 ^ i ^ n). Let au , αn E ®. Then ( α b , αn) is a solution
of si if the following conditions are satisfied.

(1) Wι(au , an) = w2(au - , an).
(2) (xk, ak) E M} implies that ak E i? and /(αfc) = αk, / = 1, , 5.
(3) Let (JC,, α,) E Λfp, (xy, αy) E M,. Then ax~ a} if and only if

P = <7
Similarly if α b , an E ^ R (Γ), then we say that (au , αn) is a solution
of ^? if (1), (2) and (3) above are satisfied with SE replaced by

DEFINITION. Let si = {wu w 2 ; M h ,MS} be a constrained word
equation in variables xu , JCΠ.

(1) Let μ = (au , αn), î  = (fei, , bn) be solutions of si in 5), ^ R

respectively. (Note that then for each constrained variable xh l(at) =
l(bt)). Then we say that μ follows from v (as solutions of si) if μ
follows from v as solutions of the word equation {wu u>2}.

(2) A solution μ of d in ® is resolvable if it follows from a
solution of d in ίFR(Γ) with |Γ | ^ r + 5 ^ n where r is the number of free
variables of d.

(3) d is resolvable in ® if every solution of d in 3) is resolvable.

LEMMA 3.2. Let wu w 2 E ^ ( x b ,x n ) Lef α b , αn E

such that di^cij for all i, y. Suppose l(wι(au- - -,an)) =
I(w2(au - , αn)). Γ/ien Wj(αi, , an) = w2(α1? , an).

Proof. For some A E Γ, α, = Λ α , αt = /(a,), ί = 1, , n. Let
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l(w{(au •• , α n ) ) = I(w2(au- ,an)) = β. Then clearly wλ(au , an) =

Aβ = w2(au- > Ό '

LEMMA 3.3. Let au - ,an E J£, bu , bn E ^ ( Γ ) . Suppose that
at ~ α; implies bx ~ b} for ij E {1, , n). Assume further that /(α, ) =
/(6, ), / = 1, , n. Lei w b w2 E ^ ( x b , xn) such that wλ(au , an) =
H>2(<2h ' , an)- Then wλ(bu , 6n) = w2(fei, , bn).

Proof. We prove by induction on length of wλw2 in
&(xu * * *,*«)• We can assume without loss of generality that each jtf

appears in WιW2. Let wλ = JCM xίs, vv2 = xh jcy . So

α{l ais = ah α, = α.

Choose p, ^ maximal so that 1 g p g s, 1 g q g ί for 1 g /c S p, α,, - αik

and for 1 g k ^ q, aμ - ajk. Now ah\iah or α/J/α/,. So by Remark 2.8(iv),
ah ~~ ah. Let u = ah * aip and ϋ = ah α;V Then M, D G 1 Also α =
w6 = UC for some b,cE S)1. First assume p = 5. Then 6 = 1. Itq^t,
then αy<?+1|u and so aJq+ι~~u~ah, a contradiction. So q = r. Then
a, ~ αy for all /,/. Hence bx - 6, for all /, /. Since /(6, ) = /(αf) for all /,
we obtain that l{wλ{bu , 6 n))= / ( ^ ( α , , , α n ))= I(w2(au , αn)) =
/(w>2(6i, , 6n)). We are then done by Lemma 3.2. Similarly we are
done if q = t. So assume /? < 5 and q < t. We claim that u =
v. Otherwise, by symmetry, let v = uvu vx E J£ Then 6 = UjC. Since
<V,|Λ we see that aip,ι\ivι or t;i|iflip+1. So αίp+1 ~ vλ ~ a in a
contradiction. So w = υ and 6 = c. Thus

Λfl aip = ah ••' a]q; alp+ι als = α/q+I 0,.,.

By our induction hypothesis,

K * 64, = 6yi 6y, and 6ip+I 6lf = 6Λ+1 6y,

So 6£1 bis = 6/, 6/f and we are done.

LEMMA 3.4. Lei ^ = {wb w2; M b , Ms} in variables xu , xn.
Suppose for some vv3, w4, w5, w 6 E 2F(xu , xn), Wi = w3w4, vv2 = w5w6

such that w3 and w5 involve only constrained variables. Let (ah , an)
be a solution of d in 2). Suppose w3(au , an) = w5(αi, , αn). Ler
S3 = {vv4, w6; Mi, , Ms) in variables xu , xn. Γ/ie/t (α1? , an) is a
solution of 8ft. If (au , an) is resolvable as a solution of 39, then it is
resolvable as a solution of si.
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Proof. Note that the free and constrained variables of sέ and 38 are
the same. Clearly w 4(α b , an) = wβ(au * , an) and so (au , an) is a
solution of 38. Let (bu , bn) be a solution of 35 in ^R(Γ) from which
(flh ,α n ) follows. It suffices to show that w ^ , ,ftn) =
w2(fci, , bn). Let x; be a variable appearing in w3w5. Then xy is
constrained and so αy £ «S?, 67 E ^ ( F ) and /(α y)= /(£,). For the same
reason if xh xk appear in w3w5, then α, ~ ak if and only if 6; ~ 6k. So by
Lemma 3.3, w3(bu , 6n) = w5(&i, , bn). Since ( 6 b , bn) is a solu-
tion of 38, w4(bu- ,bn)= w6(bu- -,bn). So Wi(i,, , bn) =
w2(bu ;bn).

LEMMA 3.5. Let sέ = {wu wx; Mu , Ms} in variables xu , xn.
Then sέ is resolvable in 2.

Proof. Let (au , an) be a solution of sέ in ®. Let c, = a{ if xέ is
a free variable, and otherwise let c, E i? such that c{ ~ Λ, , /(ct) = 1. Then
for constrained x x we have at = cί(αi). Let Γ = {Ab , An} where A* =
Ay if and only if i = / or xh xy are constrained and α, ~ αy. Then
|Γ | = r + s where r is the number of free variables of sέ. Let fe, = A, if xt

is free and otherwise let b, = A,/(αi). Then (bu - , fcn) is a solution of
sέ. Let Λ = {Ai|jci is free}. Then biE3FΛ(Γ\A)9 ι = l, ,n. Let
φ: Γ—> ® be given by φ(A, ) = ci? i = 1, , n. Then φ is well defined
and φ (Γ\Λ) C ££. Let φ be the natural extension of φ to

Then φ(bi)=ah i = 1, , n. So (αx, •• ,β n ) follows from

LEMMA 3.6. Any constrained word equation without free variables is
resolvable in 2).

Proof. Let ^ = {wu w2; M b , Ms) in variables xu , JCΛ with all
variables being constrained. Let (α1? * ,α n ) be a solution of j# in
S). So each at E <£. Choose c< E J£ so that c, ~ αt, / ( c f ) = l . So

.α, = c\{a\ Let Γ = {Au , An} with At = Af if and only if a, ~ ar So
|Γ | = 5. Let bi = A! ( α ), ΐ = 1, , n. By Lemma 3.3, (£>b , bn) is a
solution of sέ. Define φ: Γ-^ S) by φ(Af ) = cί? ι = 1, , n. Then φ is
well defined and <p(Γ)CiP. Let φ be the natural extension of <p to
^R(Γ). Then ^ ( 6 , ) = ^ , i = l, ,n. So (αi, ,α n ) follows from

LEMMA 3.7. Lβί ^ = {w1? w2\Mu ,M,} in variables xu -,xn.
Let w3 E ^(xi, , xn) and let 2ft = {w3wu w3w2; Mu , Ms} in the same
variables. Let (au - , an) be a solution of 38. Then (au , an) is a
solution of sέ. If (au , an) is resolvable as a solution of sέ, then it is
resolvable as a solution of 38.
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Proof. This follows by noting that in S) as well as in any ̂ R(Γ), the
solutions of si and 3ft are the same.

LEMMA 3.8. Let si - {wb w2; M b , Ms) in variables xu , xn.
Suppose Xι is a free variable not occuring in w1w2. Let Sβ -
{wi, w2; Mi, , Ms} in variables JC2, , *„. If9S is resolvable in 2), then
so is si.

Proof Let (au ' , an) be a solution of si in 2). Then (α2, , αn)
is a solution of S3 in 2). So (α2, •••, αn) follows from some solution
(b2, , &„) of 38 in ^ R ( Γ ) with |Γ | ̂  r + 5 where r is the number of free
variables of 33. Correspondingly there exist Λ C Γ , φ : Γ - ^ S ) such that
b2, --,bne ^ R (Γ|Λ), φ ( Γ \ Λ ) C ^ and the natural extension φ of φ to

satisfies <p(&f) = ah i = 2, , n. Let bx £ ^ R (Γ) and set Γi =
Λ, = ΛU{6,}. Then (bu •••,&„) is a solution of ^ in

^ ( Γ i ) . Extend φ to φi by setting φι(bι)=aι. Then
ί)i,fc2, ,i« E ^R(Γi|Λi), ^ ( Γ Λ Λ I J C J ? and the natural extension φx of
φj to ^R(Γi|Λi) satisfies φx(bι)= an i = 1, , n. So ( α b , an) follows
from (bu , 6Π), |Γi | ̂  r + 1 + 5 and the number of free variables of si is
r + 1.

LEMMA 3.9. Let sέ = {wl9 w2; Mu , Ms} m variables
xu '' •> xn Suppose ( α b , α n) Ϊ5 α solution of si in ® . Assume that for
some ιV /j *i ^^^ ̂ y β^e /ree variables and a, = α; . Lei w',(jcb , jcn) =
wf(jc!, ,jcy_i, JC,,X;+I, , x π ) , ί = l , 2 . 77ιen JC; does noί appear in
w[w'2. Let Sδ = {κ>{, W 2 ; M I , ,M S } in variables jcb •• ,jcn. // 35 w
resolvable in 3), ί/ien ί/ie solution (au , αn) o/ ̂  /s resolvable in ®.

Clearly ( α b , α n ) is also a solution of ^ . Let (ftb •••,&„)
be a solution of S3 in ^ R ( Γ ) from which (α 1 ? , α n ) follows. Then
μ = (fcb , fy-i, 6«, 6/+i, , &n) is also a solution of ^ and ( α b ••-,«„)
follows from μ.

LEMMA 3.10. Lei si = {wu w2; M b , Ms} in variables xu , xn.

Let (au , an) be a solution of sέ in 2). Suppose that for some i, JC, is free
and atE^. If at ~ a, for some (xpaj)EMp, then let M'p =
Mp U{(xhl(at))}, M'q=Mq for qέp and set & = {w,, w2;M[, ,MJ} m
variables xί9 - ,xn. // α,/ αy /or any constrained variable xh then set
Sδ = {wb vv2; Mi, , M n {(jCi, /(fl,-))}} iw variables xu , JCΠ. ΓΛen Sδ Λas
/esser number of free variables than sέ. If 8ft is resolvable in S) ί/ien so is
the solution (au , an) o/ jzί.

Froo/. Let r be the number of free variables of si. Then S3 has
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r - 1 free variables. Clearly (au , an) is also a solution of 38. Let
(aU'' ,an) follow from a solution (bu * ,ftn) of 38 in ^ R (Γ) with
|Γ | g (r - 1) + (s + 1) = r + s. Then clearly (bu , bn) is also a solution
of ^ and hence the result follows.

LEMMA 3.11. Let si = {w1? n>2; Mu , M s}. Let μ = ( α b , αn)

fee α solution of si in S). Suppose (x/? at)E Mk. Assume α, = α α" /or
some α', α " E 2). Introduce new variables x'h x'[ and set

W r( Xi, *, Xi-iy X i, X /, Xi + u * ' Ί %n)

— WtyXu ' - , AC, _i, X jX ,, Xi+i, * *, Xn)

t ^ ( X i , # * , Xt-ι, X ,, X , , X, +i, ' * , Xn), ί = 1, 2.

My /or yV k, M'k = {(xj, /(αί)), (x'ί, /(α?))} U (Mk\{(x,, «ι)}
WS M;, ,Mί} m variables xu , x H ^ U ' U i + b ,JCΠ.
ί/ze same number of free variables as si. Also v =

(a!, , Ui-u a'h a", at+u " s f l n ) w Λ solution of 8ft. If v is resolvable in ®
then so is μ.

Proof Let r be the number of free variables of si (and hence
38). First note that since a'h a"|ah a\~ a"~ ah It is then obvious that
v is a solution of 38. Let v follow from a solution
(bu - , ft,-!, ftί, ft'?, fti+i, , ftn) of 38 in ^ R (Γ) with |Γ | ^ r + s. Let ft, =
ftl ft'ί and let ^ = (bu , ft/-!, bh bι+l9' * , ftn). It is then clear that ξ is a
solution of si and that μ, follows from ξ.

LEMMA 3.12. Let si = {wu w2; Mu - , M,} m variables xu , xn.
Lei /x = (αi, , αn) be a solution of si in 2). Suppose «V /, xy is α /ree
variable and a^ a,a\ for some αJ G ® . Introduce a new variable
x). Let

W /(Xi, * * ', X/-1, X/, ^/ + 1? ' * #, Xn)

= = W r ( X i , ', Xy-l, XjXyj X/ + lj " # *j -^n)

G c/"(Xi, * , X/-i, Xy, Xy+ij ' ' *, Xn)? t = 1, 2 .

Lei 38 = {wj, wί Λfi, ,M S } m variables xu ,Xy_bxJ, x/+1, ,xn. Γ/ien

^ = (αi, , α7-i, a), fl/+i, ••-,«„) is α solution of 38. // ^ is resolvable then

so is μ.

Proof. Let r be the number of free variables of si (and hence 38). It
is clear that v is a solution of 38. Let v follow from a solution
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(bu- ,b}-ub
f

hb)+u -,bn) of m in ^ R ( Γ ) w i t h | Γ | ^ r + s. L e t b}, =
kb'j. T h e n δ = (bu -,bj-ιybhbj+u- -,bn) is a s o l u t i o n of si a n d μ
follows from δ.

Let r E N and consider the following:

Every constrained word equation in less than r free

(*)
variables (possibly none) is resolvable in ®.

LEMMA 3.13. Assume (*). Let si = {wu w2\ - } in variables
xu , jcn. Assume si has exactly rfree variables and that wλ and w2 start
with different variables, at least one of which is free. Then si is resolvable
in ®.

Proof Let (au * ?αM) be a solution of si in ®. Assume
( α b ,αn) is not resolvable. We will obtain a contradiction. Let
T = {i\ x, is a constrained variable}. So by (*) and Lemma 3.8, each free
variable occurs in wλw2. Let x, appear mγ) times in w{w2, i =
1, •, n. Then mί1 }G N for i G Γ and m\1}EZ+ for i ^ Γ. Let u =
wxw2(au - , an). So M is a word in au - , an with αt appearing mί υ

times, i = 1, , n. Now let ^/(1) = ^ , w ^ = wu wψ = w2, xί1} = x, , α|1} =
αt, i = 1, •••,/!. We will construct a sequence of constrained word
equations ^ ( f c ) = {w(/°, w^}; } in variables x[k\ , x(

π

Λ) with solutions
(α(ifc), , α(

n

k)) in ® such that the following properties are true for all

k ez + .
(I) The constrained variables of si(k) are exactly x\k\ i E T. Also

for iET, a\k)=aγ\
(II) u is a word in α(/°, , a(k) with αffc) appearing m(k) times. If

fc > 1 , then mik)^m{k-χ\ i = l, ,n and Σf=1 m f } > Σ Γ = 1 mi f c l ) .
(III) If fc > 1, then a?~l) is a word in a?\ , α(

n

fc), i = 1, , n.
(IV) If k > 1, then αί k ) | / f l j * " " , i = 1, , n.
(V) w ^ and w^° start with different variables, at least one of

which is free.
(VI) (a[k\ , aV) is not resolvable.
Clearly si(ί) satisfies (I) to (VI). We proceed by induction. So

having constructed si(i\ 1 ̂ y ^ /c, satisfying (I) to (VI), we proceed to
construct si(k+ί\ Let w\k)= x(k)- , w(

2

k) = x(

q

k) - . So p/q and either
xp or xq is free. We have correspondingly

(5) , ( » ) . . . = / ! < * ) . . .

First consider the case that afy = af\ If both JC^ and x^ are free, then
by applying first Lemma 3.9, and then Lemma 3.8 and (*), we see that
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(a\k\ - -, a(

n

k)) is resolvable, a contradiction. Next assume x(

q

k) is
constrained. Then x(k) is free and ap

k)E<£. Then by Lemma 3.10 and
(*), (a[k\ , aik)) is resolvable, a contradiction. So l(ap

k))έ /«>)• By
symmetry, assume l(a(k)) < l(a(k)). Then a^a^K First suppose jtf > is
constrained. Then x{k) is free and ap

k)E 56. We then get a contradic-
tion as above. So jt£k) is free. Now a(k)= ap

k)a(k+l) for some
< + 1 ) e 2 ) . Set a\k+ι)=a\k) for iY 9 . Clearly a\k+1)\fa\k\ / =
1, , n. Also since 9 £ Γ, a <k) = af+ι) for i G T. Trivially, each a\k) is
a word in α}k+1), , a(k+1\ So w is a word in a[k+ί\ , αj*+1). Let αίk + 1 )

appear mίfc+1) times in this word. Then m\k+ι)= m\k) for *Y/? and
mp

k+ι)=mp

knm(k)^mp

k)+m^>mf\ So ΣΓ-i mί f c + 1 )>Σr= 1 m<fc). Now
the left hand side of (5) must include more than just a(k) (as l(ap

k))<
l(a(k% So let the left side of (5) be ap

k)a{k)--. If tέq, then (5)
becomes

(6) α<k+I) = α<k+1) , tϊq.

If t = q, then (5) becomes

(7)

Now introduce a new variable x(k+ί) and set x\k+1) = xίfc) for iV qr. If (6)
holds, then correspondingly let w[k+1)= x(k+ι) , w(

2

k+ι)= x(k+ι) - . If (7)
holds, then correspondingly let wf+1)= xp

k+ί)x(k+ι)- , w?+ 1 )= * ? + υ " ' •
Now applying Lemma 3.12 and then Lemma 3.7 we can construct a
constrained word equation sd(k+1) = {w(!k+1), w^fc+1); } in variables
x[k+ι\ , jc(

n

fc+1) such that (a\k+ί\ , α(

n

fc+1)) is an unresolvable solution of
sέ{k+ι). Also a close examination of the construction shows that the
constrained variables of sέ(k+λ) are exactly xik+x\ i E T. This completes
the induction step of our construction.

Now by (II), ΣΓ-i m ίk)-> oo as k -> oo. So at least one m ίk )^ oo. So
/(αί f c ) )^0. Let ΛΓ = {i|/(αίk ))->0}. By (I), Γ Π ί ί = 0 . There exists
6 E R+ such that for i 0. K, l(a{k))>e for all k E Z + . Choose k large
enough so that l(a(k)) < e. Let α = a{k\ Then by (III), for all a E Z + ,
α>fc, α is a word in a\a\ i E K: Let Pα = {a\a)\i E X}. Let α =
(A,ξ). Then by Lemma 2.5, for each aEZ+, a > k, there exist
ξ0, - , ξm such that 1 = ξ0 < ξι < < £m = ξ and for /' = 1, , m,
(A, ξ)[ξ,-itξ,] E Pa. So we see that the hypothesis of Theorem 2.9 is
satisfied. So a^Eg for some i E K, a E Z\ Then since T Π K = 0 ,
xία) is a free variable of ^ ί α ) . So by Lemma 3.10 and (*), (αlα), , α(

n

α)) is
resolvable, contradicting (VI). This completes the proof of
Lemma 3.13.

THEOREM 3.14. Every constrained word equation is resolvable in ®.
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Proof. Let r E N and assume (*). We must show that every
constrained word equation with r free (Variables is resolvable. Let
sέ ~ {wh w2; } in variables xu •••,*„ with r free variables. We prove
by induction on length of wλw2 in &(xί9 * , xn) that si is resolvable. Let
T = {i\Xi is constrained}. Let (au , an) be a solution of ^ in ®. If
Wi and w2 start with the same variable, then by our induction hypotheses,
Lemma 3.7 and Lemma 3.5, we are done. So let wu w2 start with
different variables. If some free variable does not appear in wxw2 then
since (*) holds, we are done by Lemma 3.8. So assume that each free
variable occurs in wxw2. If either w1 or w2 starts with a free variable,
then we are done by Lemma 3.13. So assume that both wλ and w2 start
with constrained variables. Let w{ - xιx xlm and w2 =
JC;I xjt. Choose p, q maximal so that l ^ p ^ / n , l^=q^=t and for
ί^akp, l^β^q we have iα,jβ G T. Clearly,

(8) ah aim = an ajt.

By symmetry assume that l(ah - α ί p ) ^ l{aμ α ; j . Choose α minimal
such that ί^a ^q and /(α, , aip)^ l(ah α/β). Then α7tt = a'}aa"jafor
some fl .e i f , a"jaE<gι such that

(9)

First consider the case a"ja= 1. Then a'ja= a]a and α,-, alp =
ah - - aja. Now by (8), p = m if and only if a = / and in such a case we
are done by Lemma 3.6. So let p < m, a < t. But now we are done by
Lemma 3.4 and our induction hypothesis on l(w{w2) in ^(JCI, *,*„).

So we are left with the case a"ia^l. Then p<m and xlp+ι is
free. Also by (8), (9) we have

(10) < W = <••••

Now as in Lemma 3.11 introduce new variables x'ja9 x"]a. Corresponding
to (10), let w I = xip+ι - - and w2 = x "ja . Now an application of Lemma
3.11 followed by Lemma 3.4 (because of (9)) yields a constrained word
equation S3 = {wj, w2, •} with same free variables as «$# (though the
total number of variables is n + 1) such that (10) represents a solution of
S3 and the resolvability of 58 implies the resolvability of ( α b , an). Also
in this construction, xip+1 is free and x"ja is constrained. So by Lemma 3.13,
53 is resolvable. So ( α b , an) is resolvable and our proof of Theorem
3.14 is complete.
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COROLLARY 3.15. Every word equation is resolvable in S).

Let {wu w2} be a word equation in variables xu ,jcn. A solution
( α b •• ,α n ) in ® of {wuw2} is trivial if either there exist M G S ,
ku -,kn E Z+ such that α, = u\ i = 1, , n or if there exist α G l ,
α b " , α π £ R + such that α α = ah ΐ = 1, , n. Then Theorem 1.9 and
Corollary 3.15 imply the following.

THEOREM 3.16. Let {wu w2} be a word equation in variables
JCI, •••,*„ having only trivial solutions is any free semigroup. Then
{wu w2) has only trivial solutions in 2).

4. An approximation theorem for 2). For the definition
of a pseudo-metric, see for example [5; p. 129]. Consider the following
properties for a function < p : ® x ® ^ R + U { 0 } .

(a) φ is a pseudo-metric on ®.
(b) For any wb u2E^, eG R+, there exists δ G R+ such that for all

ϋi, ι>2G ®, <p(w;> t>i)< δ, / = 1,2, implies φ(uλu2, vxv2)< e.
(c) Forany M 6 ^ , <p(«,wδ)->0 as δ ^ l .
If the above hold, then it is easy to see that for all uu , um G 2),

β G R+, there exists δ G R+ such that for any vu - , vn G ©, ̂ p(wl, ϋ, ) < δ,
i = 1, , m implies <p (wj wm, vί ϋw ) < 6.

Using Corollary 3.15, Theorems 1.1 and 1.8, we obtain the following

THEOREM 4.1. Let φ satisfy (a), (b) and (c) above. Let
(au - - , an) be a solution in S) of a word equation {wu w2}. Then for
every e G R+, there exists a strongly resolvable solution (bu , bn) of
{wu w2} in ® such that φ(ah bt) < e, / = 1, , n.

DEFINITION. Let p be the pseudo-metric on compact subsets of R2

given by p(A,B) = m(A\B U B \ A ) where m denotes the Lebesgue
measure. Let λ be pseudo-metric on ® given by λ((A,a), (B,β)) =

THEOREM 4.2. Let ( α b ,α n ) be a solution in S) of a word
equation {wu w2}. Then for every € G R+, there exists a strongly resolvable
solution (bu , bn) of {wu w2} in ® such thatλ(au b>)< e, i = 1, , n.

Proof. By Theorem 4.1 we must show that A satisfies (a), (b) and
(c). First note that p satisfies the following.

2. p(αΛ, A ) - > 0 as a -> 1 and A is fixed.
Now let (Ai, *i), (A2, «2), (Bi, j8i), (β 2 , j82) G ®. Then (A l5 ax){A2, a2) =
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(A, U α,Λ2, α,α2) and (Bu β1)(B2, β2) = (B, U β,B2, βφ2). So

p(Λ, U α,A2, B t U β,B2) ̂  p{Au B,) + p{axA2, βxA2) + pCfrAj, β,B2).

/Let ( A J ^ J ) , (A2,a2) be fixed and suppose λ((Auai)9(Buβi))-»0,
λ((A2,α2),(B2,j32))->0. Then p(A,,B1)-^0, βi-^α'i, β 2 ^ α 2 ,
p(A2,B2)-*0. So p(AiU aιA2,Bι UβιB2)->0 and βίβ2->a1a2. Thus
A((A l 2α 1)(A 2,α 2), (JB1? j8i)(B2, j82))-»0. This establishes (b). Next let
K = K C U = {x \x_ER\\\x\\= ί}, a,βER\ 1< a < β. Then
Φ(Kiβ))\Φ(Kia)) C Jα,β; So for α fixed, λ (K(a\ K(β))->0 as j8 -* α. This
establishes (c). (a) is of course trivial and the theorem is proved.

5. Word equations of paths. In this section let n E Z + be
fixed and let 9b\ denote the groupoid of paths in Rft mentioned in the
problem at the end of [4]. Also let *, = , f[aφ] have the same meaning as
in [4]. Let <£x denote the set of lines in 2U Let 5E\ = {/*]/ E i?,} and
let 3)* = {/*|/6 2>i}. So S * is a semigroup. We start off with an
analogue of Theorem 2.9.

THEOREM 5.1. Let T be a nonempty finite set. For i E T, j E Z + ,
choose fhJ E 9bx such that /M+i|/Λy for al1 ' ^T, jE Z+ and /(/,,;)->0 as
j ~> oo for any fixed i E T. Let f E 9bx. Assume that for each β E [0,1],
/ E Z + , there exist a,γE [0,1], i E T such that a < γ, β E [α, γ]

Proof. The second part of the proof of [4; Theorem 2.1] shows that
there exist μ, vE[0,1], μ < * > such that / [ ^ G ^ . Choose β E
(μ, ι/). For any / E Z + , there exist α , γ G [0,1], ί E T such that α < γ,
jβ E [α, γ] and /[α,γ] = //,/. λVe can choose / big enough (and hence l(fu)
small enough) so that we must have a > μ, γ < v. Then / f/ = / [ α γ ] E «S?i.

For α EcS?ΐ, a £ R + , let αα denote the line in &\ in the same
direction as a but with length al(a). Let u9υE2*. Then define
w ~ v if either there exist α E ® ϊ , /,/ E Z + such that u = «', t? = a1 or if
w, ϋ E i?t and v = ua for some α E R+. Because of Theorem 5.1, we
can repeat §3 (including all the definitions) with ® replaced by 9b* and =S?
replaced by $£\. We then obtain the following theorem which answers
affirmatively a problem posed at the end of [4].

THEOREM 5.2. Every word equation is resolvable in 9b*.

Using Theorem 1.9, we now obtain,

THEOREM 5.3. Let {vvb w2} be a word equation which has only
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trivial solutions in any free semigroup. Then {wu w2) has only trivial
solutions in 3)*.

For continuous /: [0,1]—>Rn, let ||/|| = suρ,G[(U]||/(ί)||

DEFINITION. For w, vE3)*, let η(u, v) = inf{||/- g|||/, g G ®i,/ =

Then η can be shown to have the following properties:

(a) η is a pseudo-metric on 3)*.
(b) For any uu u2E3)*u e £ R+, there exists δ G R+ such that for

all Vι,υ2E3)*, η(uhvt)<δ, i = 1,2 implies 17(w^, ^1^2)< *•
(c) For any w Gi?ΐ, τ/(w, uδ)-*0 as δ - * l .
As in §4, Theorems 1.1, 1.8 and 5.2 easily imply the following.

THEOREM 5.4. Let (au- ,am) be a solution in 3)* of a word
equation {wu vv2}. Then for every e G R+, there exists a strongly resolvable
solution (&b , bm) of {wu w2} in 3)* such thatη(ah b,)< e, i = 1, , m.

Note added in the proof. Problem 1.10 has recently been solved by
the author.
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