
PACIFIC JOURNAL OF MATHEMATICS

VoJ 75, No. 1, 1978

CONJUGATE POINTS FOR
NONLINEAR DIFFERENTIAL EQUATIONS

KURT KREITH AND C. A. SWANSON

Much of the classical Sturm oscillation theory has a natural
generalization to linear selfadjoint differential equations of order
In if the notion of successive zeros is replaced by that of n - n
conjugate points. Specifically, the smallest β > a such that

y(a) = y'(a) = = /"-»(«) = 0 = y(β) = • • • = y<-"(/3)

is satisfied by a nontrivial solution of the equation is called the
first conjugate point of a and denoted by r)x{a).

In the case of linear selfadjoint equations the existence of such
conjugate points can be related to the existence of certain eigenvalues,
and comparison theorems can be established by comparing appropriate
quadratic forms. However if the equations are nonlinear or nonselfad-
joint, the existence of such conjugate points cannot be established by
these classical techniques. The case of fourth order nonselfadjoint
linear equations was dealt with in [1] where criteria are established for
assuring the existence of 2-2 conjugate points. This treatment depends
on the fact that linear nonselfadjoint fourth order differential equations
can be represented by second order systems of the form

y"=a(t)y
( " ' x"=c(t)y

In §2 below we show how to extend this theory to nonlinear fourth order
equations by considering systems of the form

y f ( , y , 0
( L 2 ) x" = g(x,y,t).

For both the linear and nonlinear cases, the existence of conjugate
points is related to the existence of a trajectory x(t), y(t) satisfying the
related second order system and

(1.3) y ( α ) = y ' ( α ) = O = y(Jβ) = y'(/S)

for some β > a. The major difficulty in establishing (1.3) is in showing
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that no such trajectory can satisfy x(t)<0 and y(t)>0 for arbitrarily
large values of t. In §3 this particular problem is treated in a more
general context of trajectories in E", and a number of results of
independent interest are also established.

2. Fourth order equations. In this section we consider
second order systems of the form

y" = f(x,y,t)

χ" = g(χ,y,t)

where

/(JC, y, t) > 0 for x > 0,
(2.2)

v < 0 for x < 0,

and

(2.3) g(jc,y,ί)>0 for y > 0 .

For convenience / and g are assumed continuous on ( - °o? oo) x ( - oo? oo) x
[0, oo). Such systems can be used to represent a large class of nonlinear
equations. Most immediately, if /(x, y, t) = x and g(x, y,t) =

!v, (2.1) becomes

(2.4) y(w)-q(O\y\μ-ιy=o.

Other examples will be considered in §3.
To establish the existence of 2-2 conjugate points relative to (2.1) we

consider solutions y(t), x(t) satisfying

(2.5) y(a) = y'(a) = 0; x(a) = xo; x\a) = v0

and seek to show the existence of at least one solution of (2.1), (2.5)
satisfying

(2.6) y(β)=y'(β) = 0

for some β> a. We shall in fact establish criteria which assure the
existence of such a solution for every JCO>O.

Fixing Xo>0, we may represent a solution of (2.1), (2.5) in terms of
its trajectory C(v0) in the JC, y -plane. The open quadrants of the plane
will be denoted by I, II, III, and IV. As shown in [1] (for the linear
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case), the existence of a conjugate point trajectory satisfying (2.1), (2.5)
and (2.6) follows from four conditions on the force field F = (g,/):

(A) If for some ί0 = α the quantities y (to\ y '(to), x (t0) and x \t0) are
all nonnegative (but not all zero), then y(t), y'(t), x(t) and x'(t) are all
positive for t > t0.

(B) No trajectory C(v0) can remain in II for arbitrarily large values
oft.

(C) No trajectory in I satisfies

(i) x(t) I xo^O and y(ί) t °° a s ' - * 0 0 ,
or

(ii) y(t) i yo = O and x(t) f oo as ί—>oo?

nor can any trajectory in I tend to a finite limit point (JC0, y0) in the closure
of I as t -> oo.

(D) No trajectory can go directly from II to I to II.
In order to extend these criteria to the nonlinear case under

consideration, we require the following result.

LEMMA 2.1. For every JCO>0, there exists V(JCO)<O such that v0^
V(x0) assures that the solution y (t), x (t) of (2.1), (2.5) satisfies y (t) < 0 for
some t > a.

Proof From (2.2) it follows that a solution x(t), y(t) of (2.1)
satisfying x(γ) = y(y) = O; x'(y)< - 1 , y'(γ) = O for some γ>a also
satisfies y (t) < 0 for some t > y. By continuity and compactness we can
choose constants γo>a and sufficiently small yo>0, wo>0 so that
neighboring solutions x(t), y(t) satisfying the conditions

y(y)<y<>\

for any γE[α, γ0] also satisfy y(t)<0 for some t ^ γ. To show the
existence of such neighboring solutions we note that /(x, y, t) and
g(jc, y, t) are assumed nonnegative and continuous for (JC, y, t) G K, where

K = [O,xo]x[O,yo]x[a,γo].

Therefore there exist positive constants /0, g0 such that

OS/(x,y,ί)S/o, OSg(x,y,t)Sgo
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for (x,y,t)EK. Comparing the solution y(t), x{t) of (2.1), (2.5) with
the solution Y(t), X(t) of

Y(a) = Y'(a) = 0; X(a) = x0,

we conclude that for v0 ^ Vo and (X, Y, t) E K,

Thus for any x0 > 0 it is possible to choose Vo sufficiently negative so that
for VQ^ Vo we have x(γ) = 0 for some γ = γo and

χ ' ( γ ) < - i ; y ( r ) < y 0 ; y'(γ)<>vo.

For such choices of υ0, y(t) will become negative as was to be shown.
There is a simple physical interpretation of this proof. Because of

the uniform boundedness of f(x> y, t) and g(x, y, t) in K, one can fire a
particle from (JC0, 0) at t = α with a sufficiently negative initial velocity
x'(a) so that the particle will cross the y -axis at t = γ < γ0 and satisfy

x ' ( γ ) < - l ; y(γ)<y 0 ; y / ( r)<w 0

while crossing this axis.
On the basis of Lemma 2.1 we may assert that for every x0

Ύ\ Ξ{uo |C(ϋo) enters the lower half plane}

is nonempty. From (2.2) and (2.3) it follows that the initial conditions
JCO>O, υo>O imply that y(t), x(t) will be positive for all t > a.
Therefore

°^2 = {VQ\C{VQ) remains in the upper half plane for all t >a}

is also not empty. With these properties established for (2.1), the
original proof of the following result [1; Theorem 2.2] generalizes
verbatim to the present nonlinear setting.

THEOREM 2.2. If conditions (A)-(D) are satisfied, then there exists a
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nontrivial solution y (ί), x(t) of (2.1) satisfying y(a) = y '(a) = 0 = y(β) =
y'Q3) for some β > a.

It therefore remains to establish criteria which assure that conditions
(A)-(D) are satisfied. As observed above, (A) follows easily from the
integral representation of (2.1), (2.5) on account of (2.2) and
(2.3). Condition (B) will be considered in §3 in a more general
setting. For the case f(x, y,t) = x and g(x, y, t) = q{t)\y \μ~ιy{μ > 1) it
will follow as a special case of Corollary 3.3 that (B) is satisfied whenever

(2.6) j tpq(t)dt = ™

for some p < 1. Also, the first few lines of the proof of Theorem 3.1
immediately yield the following

LEMMA 2.3. For arbitrary e > 0 suppose there exist positive-valued
functions λe E C[0,oo) and φ E C(0,o°) such that

for all (x, y) EII with min (| x |, y) g e and for all t E [ί0, °°), t0 > 0. Then
condition (B) is satisfied if no solution of the differential inequality

u" + λ€(t)φ(u)^0 for any e > 0

can remain positive for all t > t0.

Lemma 2.3 is not readily applicable since explicit oscillation criteria
for nonlinear differential inequalities are not well known. However,
examples of explicit criteria are established in §3, specifically in terms of
(3.4) and (3.5).

Condition (C) is dealt with by means of the following.

LEMMA 2.4. If /(JC, y, t) ^ F(x, y, t) ^ 0 where F(JC, y, t) is continu-
ous, monotonic increasing in x and y, and satisfies

(2.7)

for all constants fc > 0 and yo = O, then no trajectory in I satisfies
y(t) i yo = O and x(t) | oo as ί-»oo.

Proof If x (t) t °° then, since x \t) > 0 for y > 0 by (2.1) and (2.3),
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there exists a constant k > 0 such that *(*) = kt for all t > γ. Since

f(x(τ),y(τ),τ)dτ

!' F(x(τ),y(τ),τ)dτ
Jy

it follows that

precluding the possibility that y(t) I y0.
In an analogous way, trajectories satisfying x(t) I xo = O and

y(t) I oo are precluded by the condition that g(jc, y, ί ) ^ G(x, y, ί) = 0
where G(x, y, t) is monotonic increasing in x and y and satisfies

(2.8) G(*o, kτ,τ)dτ = °o

for all k > 0 and JC0 = 0. The fact that /(JC, y, ί) and g(jc, y, ί) are positive
for x > 0 and y > 0 precludes finite limit points in the first quadrant, and
this observation, together with (2.7) and (2.8), yields criteria for
(C). Finally, (D) follows as in [1] from the assumption that g(x, y, t) > 0
for y > 0 .

By way of application of these results we shall formulate criteria
which assure the existence of 2-2 conjugate points for solutions of
(2.4). Other applications will follow from the results to be established
in §3.

THEOREM 2.5. Suppose q(t)>0, μ > 1, and that

(2.9) Γ tpq(t)dt = oo

for some p < 1. Then the equation (2.4) has a 2-2 conjugate point r\\{a)
for any a > 0 .

Proof Since /(*, y, t) = x, g(x, y, 0 = <?(ί)|y l ^ y and q{t) >0, (2.2)
and (2.3) are clearly satisfied and (A) and (D) follow easily. From
Corollary 3.4 it follows that (B) is satisfied whenever (2.9) holds for some
p < l . Choosing F(x, y, ί) = /(jc, y, t) = x and G(JC, y, ί) = g(x, y, ί) =
q(t)\y\μ~ιy, (2.7) is automatically satisfied whereas (2.8) requires that

r tμq(t)dt =
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However since μ > 1 this last condition follows from (2.9). With
conditions (A)-(D) so established for any a>0, the existence of ηi(a)
follows from Theorem 2.2.

3. Systems of nonlinear second order equations. In
this section, sufficient conditions are given for the nonexistence of
trajectories in an unbounded domain contained in a half-space of
n -dimensional Euclidean space En. In the special case n = 2, these
conditions assure that condition (B) is fulfilled. The results obtained
also constitute an essential step toward a general theory of conjugate
points for even order nonlinear differential equations, and at the same
time have independent interest in oscillation theory and topological
dynamics.

Points in En will be denoted by x = (JCI, , xn) and (x9 y) will denote
the inner product of x and y, x E En, y E En. For a fixed h E En, let X
be the half-space

% = {xEEn:(x,h)>0}.

A trajectory is defined to be the path traced out in an unbounded
domain Sf CEn by a solution vector x of a vector differential equation of
the type

(3.1) (a(t)x')' = B(x,tl xEίf

as t varies over [0, oo), i.e., a trajectory is a set {x(t): 0 ̂  t < «, x satisfies
(3.1)}. For convenience we first deal with the case α(ί) = l, i.e.,

(3.2) Jc" = JB(*,O, xE&

under the assumptions listed below.

Assumptions.

1. B: En x [0, oo)-»En is a continuous vector-valued function such
that

(3.3) (-B(x,t),h)*λ(t)φ((x9h))

for all x E if, t E [0,o°), where h is a fixed n-vector;
2. A is a positive-valued continuous function in [0,oo);
3. φ is a positive-valued C1 function with <p'(w)>0 in (0,°°); and

either
4. A and φ satisfy the conditions
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= 00

for some number c > 0, or

4L. (Linear case) φ(u) = u and there exists a number p < 1 such
that

(3.5) Γ

THEOREM 3.1. Under the assumptions listed above, no trajectory of
(3.2) can remain in Sf Π ffl for all time t.

Proof. Suppose to the contrary that x is a solution of (3.2) with
x(t)ESenX fora l l ί>0. Define u(t) = (x(t),h). Then w(ί)>0for
all t > 0, and since x(t) G if it follows from (3.2) and (3.3) that u satisfies
the differential inequality

(3.6) u" = {x",h)^-λ(t)φ{u).

Since w"<0 for all t >0, a standard argument shows that there exists a
number f0 such that u '(t) > 0 for all t g t0. Define

υ(t)=
W

in the nonlinear case, which is a C1 function since φ [u (t)] > 0 and φ E C1

by Assumption 3. Then, using (3.6) and (3.7), we find that

v\t)^ -tλ(t)+ U'^\w w
φ[u(t)]

Integrating over (ί0, ί) we obtain

o ( 0 - β ( ί . ) ^ - τλ(τ)dτ+ -^-
Jto Ju(to) <P\U)

which diverges to - °o as t->°o by the hypotheses (3.4). Therefore
ι;(ί)<0 for all sufficiently large ί, and consequently w'(ί)<0 by
(3.7). This contradicts the fact that u \t) > 0 for all t g t0 and completes
the proof in the nonlinear case.

In the case of linear majorization (3.3), define
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fu'(t)
(3.8) v(t) =

with p as in hypothesis (3.5). Then

A _ u(t)\tu"(t) + pt<'-ίu'(t)]-t' \u'(t) 2

u\t)

(3.9) ^ -1 p λ (0 + ptp-1 ^-γJ .

However,

so that
u'(t) u'itoΓ* '<"

Hence there exists a number tx g t0 such that u f(t)/u (t) ^ 2/t for all t g tu

and (3.9) yields the inequality

υ '(t) ^ - tpλ (t) + 2ptp'\ t^h.

Then

The first integral diverges by hypothesis (3.5) and the second integral
converges as t —» °° since p - 2 < - 1 . Thus we again have the contradic-
tion v(t)<0, so u'(t)<0, for sufficiently large t.

COROLLARY 3.1. No trajectory of (3.2) can remain in if Π $f for all
t>toif assumptions 1-3 hold for all x E Sf, t E [ί0, °°) and if no solution u
of the differential inequality (3.6) can remain positive for all t > ί0.

In an earlier case considered by Kreith [1], (3.2) was a linear system
x" = A(t)x> where A denotes a n n X n matrix function with continuous
entries in [0,<»), i.e.,

(3.10)
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Then (3.3) is satisfied, in particular, if there exists a positive-valued
continuous function λ in [0, °o) such that

(3.11) - Σ ^(OΛiX^λίOΣΛ*
i,/ = l i = l

for all x E if Π X and for all t G [0,«).

COROLLARY 3.2. No trajectory of (3.10) can remain in an un-
bounded subset if Π %t of a half-space for all t if (3.11) and (3.5) are
satisfied.

A special case of interest in conjugate point theory is the case that
Λ = ( - l , l , , l ) a n d

if = {x EEn: Xi<0, xt > 0 for ί = 2 , ,n}.

Define

€ij = 1 if i = 1, / = 2, , n

= 1 if / = 1, i = 2, ,n

= - 1 otherwise

(3.12) ()

Then

- J α* ( 0 ^ , = Σ €««« (01 *jΊ = λ (f) 2 I x, I = λ (ί) (x, A)
i,j = \ i,/ = l ; = 1

and hence (3.11) is satisfied in the subset if of $f if λ(ί) is defined by
(3.12). In the case n = 2, Λ = ( - 1,1), the definition (3.12) reduces to

(3.13) λ(ί) = m i n [ - α n ( ί ) + α2i(ί)> « 1 2 ( i )- a22(t)].

We conclude that no trajectory of (3.10) can remain in the second
quadrant of E2 for all t if (3.5) is satisfied, where λ (t) is given by (3.13).

In the case n = 2, the nonlinear system (3.2) has the form (2.1), i.e.,

( x" = g(xux2,t)

in the notation of this section. If ft = ( — 1 , 1 ) , assumption (3.3) is
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equivalent to

(3.15) g(xux2,t)-f(xux2,t)^λ(t)φ(x2-χ1)

for all (xi, x2) E £f, t E [0, °°), with λ and φ as in assumptions (2), (3) and
(4) of Theorem 3.1. Condition (3.15) is a slight modification of that
given in Lemma 2.3.

COROLLARY 3.3. No trajectory of (3.14) can remain in {x Eίf:x2>
JCJ for all t if (3.15) holds for allx E ^ , t G [0, oo) and assumptions 2-4 are
satisfied.

EXAMPLE 1. Consider the Emden-Fowler prototype of (3.14):

xϊ

in II, where p and q are positive valued continuous functions in [0, oo) and
h = ( - 1 , 1 ) as before. The equivalent fourth order scalar differential
equation is

= 0, μ>ί.

Define

λ(t) = πάn[p(t),q(t)], t g 0

Jf€ ={xEE2: | J C , | < € , | j c 2 j < e } , e > 0

Then Jίe is a neighborhood of the origin of fixed (but arbitrarily small)
measure e2 and 5^ is all of the second quadrant except those points in
Jίe. We assert that

g(xu x2, t) - f(xu χ2, t) ̂  δλ(0 (I x,I + x2)

for all x £ Sfe, ί E [0, oo). To prove this, first note that in the case of
(3.16)

(3.17)

for all JC2 > 0, xι < 0. For x G Sft, either x2 ̂  e or 0 < x2 < e and j xλ \ ̂
e. In the first case, the right side of (3.17) is not less than
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λ(t)min(l,€μ~1)(x2 + \xi\) while in the second case it is not less than
2λ(ί)(*2+|*i | ) This proves the assertion.

COROLLARY 3.4. No trajectory of (3.16) can remain in the second
quadrant for all t if

J t'min[p(t),q(t)]dt =

for some number p < 1.

This follows since Corollary 3.3 can be applied in 5 ,̂ and e is
arbitrary.

EXAMPLE 2. Another special case of (3.14) is the nonlinear system

, μ>v>l
(3.18)

where p,q, and r are positive valued continuous functions in [0,°°) and
A =(—1,1). Let Sf€ be as in Example 1 and define λ(ί) to be

min[r(0,4(0]> *><>•

g(xuX2,t)- f(xux2,t) = p(t)\xι\ + r(t)\Xl\" + q(t)xμ

2

( 3 1 9 )

for xE.Sf€ with x2 § e, where

in view of the standard inequality

(3.20) ιv' + z" ^ (|)""1(H' + z )', w s 0, z ^ 0.

Also, if 0 < x2 < e and | JCI | g e we have

(3 2 1 )

by (3.20) again. It follows from (3.19) and (3.21) that
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(3.22) g(xu X2, t) - f(xu X2, t) ^ S 3 λ ( ί ) (\Xl\ + X2)
v

for all x G Sf€9 t G [0,«>), where

183

In this example, assumption (3.3) of Theorem 3.1 (or Corollary 3.3) holds
in the nonlinear case φ(u)= δ3u

v, v >l, λ(t) = mm[r(t)9q(t)], t >0, and
hypothesis (3.4) reduces to

(3.23) J tmin[r(t),q(t)]dt = ™.

COROLLARY 3.5. A trajectory of (3.18) cannot remain in II /or
arbitrarily large t if (3.23) is satisfied.

We note that the system (3.18) corresponds to the fourth order
equation

in the case p(t) = l9 and corresponds to a similar fourth order equation
with nonlinear damping terms when p is a positive C2 function. The
results are somewhat different in the case that r{t) can change sign
(variable direction damping), but can be derived easily by a similar
analysis. The sublinear cases μ < 1 and/or v < 1 would require a major
modification of our techniques.

An extension of Theorem 3.1 to the system (3.1) will now be given,
where a is a positive-valued continuous function in [0,oo). In the
nonlinear case, conditions (3.4) are generalized to either conditions
(3.24a) or (3.24b) below, according as the integral of I/a is divergent or
convergent:

(3.24a)

ίx dt

(3.24b)

dt
a{t)

Γ 0

J

r
J

du

ψo{u)

where in (3.24b) it is assumed that the function φ in (3.3) satisfies
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for all w >0, υ>0, with φQE C^O,^), <Jp0(M)>0, and <pί(w)>0 in
0<w<°°. For example, φ can be a power function w—>wμ, μ>
1. The last of conditions (3.24b) involves the composition of the
functions φ0 and ψ, where

Γoo

ψ(t)=\ a~\s)ds,

The conditions in the linear case (i.e., 4L, involving (3.5)) are
generalized to either (3.25a) or (3.25b) below:

= 00

for some numbers p < 1, σ > 1, respectively. We note that (3.24a) and
(3.25a) reduce to (3.4) and (3.5), respectively, in the case a(t) = l
considered in Theorem 3.1.

THEOREM 3.6. Under assumptions 1, 2, and 3 of Theorem 3.1
one 0/ (3.25a), (3.25b), (3.24a), or (3.24b), a trajectory cannot remain in
&n%for all time.

The proof is similar to that of Theorem 3.1 and will be omitted.
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