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ON COVERINGS OF EUCLIDEAN SPACE BY
CONVEX SETS

G. D. CHAKERIAN AND H. GROEMER

Let j/ί = {KuK2, - - -} be an infinite countable class of
compact convex subsets of euclidean n -dimensional space
Rn. We shall say that % permits a space covering or, more
precisely, a covering of Rn, if there are rigid motions σu σ2,
such that Rn c U ^ i ^ J ζ . In this paper we concern our-
selves with necessary and sufficient conditions in order that
a given class 3ίf permits a space covering.

If the set of diameters {d(Ki): K^ E K} is bounded, the problem has
already been solved in [3] by showing that in this case JC permits a
covering of Rn if and only if the series Σ7=ιv(Ki) of volumes v(Kt)
diverges. (The same result holds obviously without any restrictions on
the diameters if n = 1.) On the other hand, if {d(Ki)} is unbounded and
n > 1, it is not difficult to see (cf. [1] and [2]) that the divergence of this
series is no longer sufficient but only necessary. Only in the special case
n = 2 are some necessary and sufficient conditions known [2].

Our principal results are stated in the following §2. Theorem 1
gives an inductive criterion that enables one to decide whether a given %
permits a space covering. Theorems 2 and 3 serve the same purpose but
are of a more explicit nature, involving the divergence of infinite series of
geometric invariants associated with the members of 3ίf. Other results,
regarding coverings by balls, boxes (i.e. isometric images of n-
dimensional intervals), and 2-dimensional sets, are stated and discussed
in the same section. This is followed by the proofs of three lemmas in
§3. Lemma 1 appears to be of some independent interest. §4 contains
the proofs of our theorems.

2. Theorems and corollaries. A nonempty compact con-
vex set will be called a convex body. If K is a convex body in R", and if
p, q are two points of K such that the length of the segment [p, q ] is equal
to the diameter d(K), then we call the orthogonal projection of K onto a
hyperplane perpendicular to [p, q] a normal projection of K. Of course,
a normal projection of K is not uniquely determined by K. However, if
{Ki} is given we shall always assume that for each Kt a definite normal
projection N(Ki) has been selected and is kept fixed. Since each N(Ki)
is at most (n - l)-dimensional it is clear (using a self-explanatory
extension of our original definition) what is meant by saying that the class
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{N(Ki)} permits a covering of R n l . When a class {X,} is mentioned it is

always assumed that i = 1,2, .

THEOREM 1. Let jf{ = {Kt} be a class of convex bodies K, in Rn

( n ^ 2 ) with diameters d(Ki), volumes v(Kt), and normal projections
N(Ki). Then, % permits a covering of Rn if and only if either
ΣdiKl)*i v(Ki) = oo or {N(Ki): d(Ki)> 1} permits a covering of Rn~\

If n S 3 it is clearly possible to apply the theorem again to the set
{N(Ki): d(Kι)>l}, and so on. In this way one is lead to a criterion,
expressing the property that 3ίf permits a space covering, entirely in terms
of the convergence properties of infinite series. To formulate a result of
this kind we introduce the following notations. For any convex body K
in Rn (n g 0) we set

N°(K) = K, and Nm(K) = N(Nm~\K)) (m = 1,2, , n).

Furthermore, if m = 0,1, , n we write

= d(Nm(K)) and vm(K) = v(Nm(K)),

where v denotes the (n - m)-dimensional volume of Nm(K), and define
υH(K)=l, dn(K) = 0. Obviously, d°(K)^ d\K)^ - ^ dn(K) = 0.
Finally, if n g 1, we partition the class fKJ of the preceding theorem into
n +1 subclasses by the following definitions:

Sm = {Kt: dm(K>)^ 1, dm~1(Ki)> 1} (m = 1,2, • , n).

Using these definitions we can now state:

THEOREM 2. A class {Kι} of convex bodies Kt in Rn permits a
covering of Rn ( n έ l ) // and only if one of the series ΣKiξΞs

mVm{Ki)
(m = 0,1,2, , n) diverges.

The condition in the preceding theorem can be expressed in terms of
the divergence of a single series. This in turn can be expressed in terms of
series involving the Minkowskian cross-sectional measures (Quermassin-
tegrale) W^Ki) of the convex bodies Kh as defined, for example, in[5, p.
209].

THEOREM 3. Let {Ki} be a given class of convex bodies in Rn

(n § 1), and let d[ be defined by d[ = d^Ki). Then, each of the following
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three conditions is necessary and sufficient that {Kt} permits a covering
of Rn.

00 d°d1 dn~1

( a )
§ 1 + dΊ + d'd) + dU\d2Λ •• + d\d\d\

To illustrate the applicability of these theorems consider first the
case n = 2 . We have S° = {lζ: d(lζ ) ^ 1}, S1 = {Kt: d(Ki)>
1,^(^X0)^1}, and S2 = {K,: d(N(Ki))> 1}. Theorem 2 shows (com-
bining S1 and S2) that {XJ permits a covering of R2 if and only if either
Σddosi ϋ(Xi) = °° or Σd(Ki)>i v(N(Ki)) = «. The latter of these two condi-
tions can also be written as Σd(Ki)>1 w (Kt) = oo? where w(K() is the
(minimum) width of Kt. This follows from the easily established fact
that there are constants cu c2 such that Cιv(N(Kt))^w(Ki)^
c2v(N(Ki)). These inequalities are, for example, a consequence of
Lemma 1. Thus, we have the following corollary, which expresses one
of the main results of [2].

COROLLARY 1. Let 3ίf = {JK)} be a class of convex bodies in R2,
where Kt has content v{Kι) and {minimum) width w(Ki). Then 3ί
permits a covering of R2 if and only if either Σd(Kj)^1ι;(K i) = oo Or

It should also be noted that the conditions given in [2] in order that
permit a covering of i?2, involving the divergence of series con-

structed from the areas, perimeters, and diameters of the Kn are
immediate special cases of Theorem 3.

As another application we consider a class {Bt} of closed balls B, in
Rn. In this case all the sets Sm are seen to be empty, except S° or
5". If di is the diameter of J3, the two resulting series in Theorem 2 are
(disregarding constant factors) Σ 4 s l v{Bι) and Σ d i > 1 1. The latter of these
series diverges if and only if Σdι>1 v(Bi) diverges (viz., if and only if there
are infinitely many Bt with dx > 1). Hence we find:

COROLLARY 2. Let 2ft = {B,} be a collection of closed balls B, in
Rn. Then, 8ft permits a covering of Rn if and only if ΣΓ=i v(Bi) = oo.

This corollary shows also that the condition Σ υ ( l ζ ) = oo? which is
always necessary, and has been proved in [3] to be sufficient if the
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diameters are uniformly bounded, is also sufficient if the sets Kt do not
degenerate, in the sense that every K> has a circumscribed sphere and an
inscribed sphere whose ratio of radii is bounded by a constant indepen-
dent of /.

For the case of ellipsoids the following corollary is another im-
mediate consequence of Theorem 2.

COROLLARY 3. Let % = {Et} be a class of n-dimensional ellipsoids,
where Et has lengths of principal axes e)S e]^ ^ e". Then % permits a
covering of Rn if and only if one of the series

ϊ* Σ eΐe? eϊ, , Σ eΓιeΛ

h Σ
\ 2e\>l

diverges.

Finally we consider the case of boxes. If one wishes to apply
Theorem 2 directly to this situation one meets the cumbersome problem
of finding the normal projections (which are not projections in the
directions of the edges). A more satisfactory solution is obtained by first
inscribing in each box an ellipsoid of maximum volume and circumscrib-
ing an ellipsoid of minimal volume (considering first the case of a cube
and then applying affine transformations). It is seen immediately that
the boxes permit a covering if and only if the corresponding ellipsoids
do. Furthermore, it is easily seen that the edges of the boxes and the
corresponding lengths of the axes of the ellipsoids are proportional by a
constant depending on n only. Hence, we obtain from Corollary 3:

COROLLARY 4. Let 3 = {JJ be a class of boxes, where ί has edge
lengths a\^ a]^ - ^ α ?. Then $ permits a covering ofRn if and only if
one of the series

Σ αί αϊ α?, Σ <*Wr an

h-; Σ
a\>\

diverges.

For example, the class of boxes with edge lengths a) = ί2, a] = 1/Vi",
a] = 1/ί does not permit a covering of R3 although Σv(Ki) = oo, but the
class with a) = Vί, a] = Vi, a] = 1/i does.

3 Three l e m m a s .

LEMMA 1. Let K be a convex body in Rn that is contained in a right
cylinder Z of height d(K) and base N(K). Then K contains a translate
ofϊZ.
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Proof. There is no loss in generality by assuming that the points
fl=(0,0, , 0 , α ) ( α ^ 0) and - a are in K and have the property that
2α = d(K). We may also assume that N(K) lies in the plane
{(JC\JCV ,JCΠ): xn = 0}. The cylinder Z can then be defined by Z =
N(K) + [- α, α], and an arbitrary point z EZ can be represented in the
form

(1) z=sa+p ( p E N ( K ) , - l g 5 g l ) .

Since the line through z orthogonal to N(K) contains a point of K, say /c,
we have

(2) k=ra+p ( - l ^ r ^ l )

with the same p as in (1). From (1) and (2) we obtain

Because of | s | ^ l , | r | ^ l we have l + ( s - r ) / 2 ^ 0 , l - ( s - r ) / 2 ^
0. Furthermore, we find 1 + (1 + (s - r)/2) + (1 - (5 - r)/2) = 3. Hence,
the point \z is a convex combination of the points k, a, -a of K, and
consequently \z E K Thus \Z CK and the proof of the lemma is
complete.

To formulate our second lemma we define a generalized k -cylinder
as the vector sum F + L, where F is a nonempty convex body of
dimension not greater than k ( l ^ k ^ n ) , and L is an (n-fc)-
dimensional linear subspace that is orthogonal to F. The set F will be
called a base of the cylinder.

LEMMA 2. Let C be a generalized k-cylinder ( l ^ / c § n ) with base
Fofk -dimensional volume vk (F), and let Br denote the ball in Rn centered
at the origin and of radius r. Then,

(3) v(CΠBr)^ωn.kvk(F)rn-\

where ωn-k is the volume of the (n - k)- dimensional unit ball in R n k

(ω0 = 1).

Proof If the dimension of F is less than k then v(C) = 0 and
consequently v(C ΓΊ Br) = 0. Since (3) is obviously satisfied in this case,
we may now assume that F has dimension equal to k. Then, for each
point x E F there exists a unique (n - fc)-dimensional affine subspace Lx

that contains x and is orthogonal to F. Furthermore,
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(4) υ(CΓ\B,)=ί υn-k{LxΓ\Br)dx,
Jx(=F

where υn-k denotes the (n - fc)-dimensional volume. Since Lx ΓΊ Br is
an (n - k)-dimensional sphere (or a single point, or empty) of radius at
most r, we have vn-k(Lx Π Br)^ ωn-kr

n~k, and (3) follows immediately
from this inequality and (4).

For the formulation and the proof of our third lemma it is advan-
tageous to introduce the following notation. Let φ and φ be two real
valued functions on the class of all convex bodies of R". Then we write
φ ~ φ or φ(K)~ Φ(K) if there are positive constants (depending on φ
and φ only) such that aφ(K)^ φ(K)^= bφ(K) for all convex bodies K
of Rn.

LEMMA 3. Let m be an integer with Og m ̂  n. Then,

(5) υm ~ dmdm+1 - d"1

and

(6) Wm « d°d1 - dn~m~\

where the right hand sides of these inequalities have to be set equal to 1 if
m = n.

Proof First we note that the case m = n is completely trivial and
can therefore be excluded from our further considerations. It is also
clear that it suffices to prove (5) only in the case when m = 0, since
υm{K)^dm{K)dm+\K)"'dn-\K) in Rn expresses the same as
v°(Nm(K))~d°(Nm(K))--dn-m-\Nm(K)) in Rm. If n = 1 we have
v°=d° and Wo= d° which shows that both (5) and (6) are true fn
R \ We make now the induction assumption that (5) (for m = 0) and (6)
be also true in spaces of dimensions less than n. Let K be an arbitrary
convex body of Rn. From Lemma 1 and the fact that v(Z) =
d\K)v\K) we obtain

(5) follows now from this relation and the fact that the induction
assumption yields

vι(K) = v°(N(K))~ d\N(K))dι(N(K)) dn-2(N(K))
= d\K)d\K)-'dn\K).

To prove (6) we denote again by Z (or Z(K)) the cylinder associated
with K according to Lemma 1. Then we have Z = I + N, where / is a
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line segment of length d°(K) and N = N(K). It has been shown (see
[5], p. 215) that there are positive constants α, b such that

(7) Wm(Z) = ad\K)W'm{N)+bWf

m^{N)

where W'm, W'm-ι are cross-sectional measures with respect to R n~\ The
induction assumption implies

WL(N(K))« d\N(K)) dn-m~2(N(K)) = d\K) dn~m-\Kl

WLι(N(K)) « d°(N(K)) dn-m-ι(N(K)) = d\K) dn~m{K).

From these two relations and (7) we find (noting also that dk+ι(K)^
dk(K))

(8) Wm (Z(K)) ~d°(K)---d "~m-\K).

(6) is now an immediate consequence of (8) since Lemma 1 and the
monotonicity, translation invariance and homogeneity of Wm imply

Wm(K)~Wm(Z(K)).

4. Proofs of the t h e o r e m s . It is convenient to first prove
Theorem 2 and then Theorem 1.

Proof of Theorem 2. First we wish to show that the condition

(9) 2 υm(Ki) = ™, for some m = 0 , 1 , « ,n

implies that {K,} permits a covering of Rn. If n = 1 this is obvious, and
we make the induction assumption that it be also true in Rk if k < n. If
Σ^es0 v°(Ki) - Σ d ( K l ) s l v(Ki) - oo the desired conclusion has been shown to
be true in [3]. For this reason we now assume that n > 1 and that
ΣχIEs°ϋo(i^,)<00. Then, there is no loss in generality by assuming that
actually S° = 0 , i.e. d(Kι)>\ for all JK,-. There is an integer g such that
l ^ g g n and ΣKι.ess υg(K, ) = °°. We now remark that for any divergent
infinite series ΣΓ=i ax with ax ̂  0 it is always possible to partition the
indices into infinitely many disjoint subsets such that each of the
corresponding subsequences {aX}} {a2}} * satisfies ΣJLi αiy = oo
(i - 1,2, ) (First, let us define successively sums sλ - ax + a2 + +
aqs s2= α f l l+i+ • + α v s 3 = α ί 2 + i + " + α ί 3 , so that sr ^ 1. The
series Σ£=os2/,+i, Σ^o ^ + i ) , Σ ^ o ^ + i ) , are then divergent and deter-
mine obviously such a partitioning.) Applied to the above series this
implies that {Kt} can be partitioned into pairwise disjoint subclasses {K*}
so that for k = 1,2,
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Σ »«(*}) = «>.
/cfes8

Since g ^ 1 this can also be written as

and according to the induction assumption it follows that {N(K))}
permits a covering of Rnl (for every fixed k).

To complete the proof we circumscribe about each K) a cylinder,
say Z{K)), as indicated by Lemma 1. Then, since d(Kk

})^ 1 and thus
the height of Z{K)) is not less than 1, {Z{K))} permits obviously a
covering of a strip of width 1 (i.e. of the closed set between two parallel
hyperplanes unit distance apart). The class {\Z(K))} permits then a
covering of a strip of width 1/3. But since every K) contains a translate
of \Z(K)) the class {K)} permits (for every fixed k) also a covering of a
strip of width 1/3. Since Rn can be written as a union of strips of width
1/3, the total class {&} = {K]\ \J {K]} U clearly permits a covering
oίRn.

To prove the necessity of the conditions (9) we assume now that all
the series ΣK i G S-ι;m(K /) converge and fKj} covers JR". The class Sn

consists then of only finitely many bodies Kh and therefore Σκ,e5» ι (Ki) ^
Co for some constant c0. If Ki E.Sm, where 0 S m < n, let Z, = Zn

x~
m be a

generalized (n - m)-cylinder with bases Nm(Kt). Then X, CZh and if
{Ki} permits a covering of Rn the class {Z,} must have the same
property. In fact, we may assume that the cylinders Z{ are already so
arranged that

(10) RnC\J Zh
ι = l

Now, let r be a number that is greater than 1. According to Lemma 2

and therefore

υ(Brn U Z,W
\ i = l /

Since all the series ΣKiES

mVm(Kι) are assumed to converge and r > 1 there
is a positive constant c such that υ(JBΓ Π UΓ=i Z,) ^ crn - 1. However, (10)
would imply v(Br Π UΓ=iZ,) = ωnr", giving a contradiction if r is large
enough. This completes the proof of Theorem 2.
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Proof of Theorem 1. If the assumptions of Theorem 1 are satisfied
then either

Σ v(κ,) = co
( K ) l

or one can apply Theorem 2 (for Rnl) to the class {ΛΓ(Xί)
: d(Ki)>

1}. This latter possibility leads immediately to the fact that

(12) X υm(Kι) = ™, for some m = 1 , 2 , •• , n - - l .
m

But if either (11) or (12) is satisfied, an application of Theorem 2 (for Rn)
shows that {Kt} permits a covering of Rn.

Conversely, if {Kι} permits a covering of JR", then the assumptions of
Theorem 2 are satisfied, which means that either (11) holds or
ΣN(κi)Gs- vm (N(Kt)) = oo for some m = 0, 1, , n - 1. But, again by
Theorem 2 (for R n~ι) the latter condition can be interpreted as stating
that {N{Kt)\ d{Ki)>ί] permits a covering of JR""1.

Proof of Theorem 3. First we concern ourselves with condition
(a). It follows immediately from Lemma 3 that for m = 0,1, , n any
of the series ΣKies

mVm(Ki) which appear in Theorem 2 diverges if and
only if the corresponding series Σ κ, e 5-d7(iΓ+ 1 * * dTx diverges. If we
write

A = 1 + dΐ+dW + * * + d»d\ dΓ2

we have

, v d,dr , ,

and we see that it suffices to prove that ΣKies-d1 dΓVDj diverges if
and only if Σκ,es

md"dT+ι • • d"~ι diverges. To show this equivalence we
note that the definition of S m implies that for K( G 5 m and m = 0,1, , n

(13) dΓι^ ^d"; ^KdΓ'^ ^d",

where we have to omit for m = 0 the terms dT~\ , d°, and for m = n
the terms d"'\ , d?. As a consequence of (13) we obtain for m =
0,l,2, ,n

(14) d°,d) •••dΓ'^Di^ nd°,d) • • • dΓ1
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(with d°id) d?~ι = 1 if m = 0). The equivalence of the conditions
Σ/ces-d?- d"~ιIDι = °° and Σ K j e s - d 7 * * d"~ι = °° is now an immediate
consequence of (14).

Regarding the condition (b) of Theorem 3 we remark that because of
Lemma 3

1 1
vm(K) dm(K) --dnl(K)

and that

d°r-dΓι / 1 , 1 i i 1

Di \do

t -'d"~ι d\ 'dΓι d?

These two relations show that (a) and (b) are equivalent.
To prove that (c) is necessary and sufficient we have only to point out

that (a) and (c) are clearly equivalent because of (6).
It might be worth mentioning that the denominators in the series of

condition (c) can be replaced by any other linear combination of the Wm

(m = 1,2, , n), provided that all coefficients of such a combination are
positive. For example, if B denotes the unit ball of Rn it follows from
Steiner's formula that v(K + B)- v{K) can be used for this
purpose. Hence, we have the following result:

{Kt} permits a covering of Rn if and only if
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