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THE SHEAF OF OUTER FUNCTIONS
IN THE POLYDISC

SERGIO E. ZARANTONELLO

Let Un be the unit polydisc in Cn. Define a presheaf by
assigning- to each relatively open subset W of Un the multi-
plicative group of outer functions in the intersection WΠ Un.
If & denotes the associated sheaf, we prove that Hq(Un, &)=0
for all integers q ^ 1.

1* Introduction. Classically, the outer functions in the open
unit disc U are functions of the form

λ exp I w zk(w)dm(w) ,
)τ w — z1 w

where m is the Haar measure on the unit circle T, k is an absolutely
integrable real-valued function on T, and λ is a complex number of
modulus one. Closely related to the class of outer functions is the
Smirnov class JV*(Z7), which consists of all functions that are holo-
morphic in U and admit an inner-outer factorization. The class
N*(U) is an algebra, and the outer functions are precisely the in-
vertible elements of this algebra. An alternative characterization
of N*(U), considered by Rudin in [5], where it was extended to
the polydisc Un, is that a holomorphic function f in U belongs to
N*(U) if and only if there exists a strongly convex function φ
(depending on /) for which ^(Log+ |/|) has a harmonic majorant.
This definition can be extended naturally to arbitrary polydomains
WΊ x W2 x ••• x Wn, the requirement now being that ^(Log+ |/|)
have an ^-harmonic majorant in W1 x W2 x x Wn. We define
the outer functions in W1 x W2 x x Wn to be the invertible
elements of the algebra N^(W1 x W2 x x Wn). (For the polydisc
Un, this definition can easily be seen to agree with the one given
by Rudin in [5, Def. 4.4.3, p. 72].)

The correspondence that assigns to each polydomain W in Cn

the group O( W Π Un) of outer functions in the intersection W Π U*f

defines a sheaf <g? on the closure Un of Un, which is locally deter-
mined in the sense that Γ(Un, &) is canonically isomorphic to the
group of outer functions in Un. Our aim, in this article, is to show
that the cohomology groups Hq(Un, &) are trivial for all integers
? ^ 1.

Sheaves of a similar type (sheaves of germs of holomorphic
functions satisfying boundary conditions on polydomains) have been
studied by Nagel in [4], where a unified approach to many types of
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boundary behavior was given. NagePs methods, however, do not
appear to be applicable in our case. Instead, we use the methods
developed by Stout in [7], which we also used in [8]. Indeed, the
proof of Lemma 3.1 closely follows that of Lemma 1.2 of [7], and
part of our conclusion is that the multiplicative Cousin problem with
iV*-data can be solved in the polydisc.

II* Preliminaries* We denote the open unit disc {z 6 C: | z | < 1}
by U, and its boundary, the unit circle, by T. The cartesian product
of n copies of U will be denoted by Un. More generally, a poly-
domain in C% will be a cartesian product W1 x W2 x x Wn of n
domains (open connected sets) in C. Similarly, Tn will be the car-
tesian product of n copies of T.

Let W be an open set in Cn, a continuous function h:W-^
(— oo, +oo) is n-harmonic if it is harmonic in each complex variable
separately; an upper semicontinuous function s: W-+[— °°, + ô) is
n-subharmonic if it is subharmonic in each complex variable sepa-
rately. If h and s are as above, and if s(z) ^ h(z) for all ze W,
we say that h is an n-harmonic majorant of s in W.

The following proposition ([8, Th. 2.10, p. 301], see also [2])
shows that having an %-harmonic majorant is a local property under
certain conditions.

PROPOSITION 2.1. Let W19 W2, •••, Wn be bounded domains in
C such that the boundary of each W, consists of finitely many
mutually disjoint Jordan curves. Let W = Wι x W2 x x Wn,
and let {Ua} be a relatively open covering of the closure W of W.
If s is a positive n-subharmonic function in W with "local" n-
harmonic majorants ha in each intersection Ua Γl W, then s must
have an n-harmonic majorant in all of W.

Let W be a polydomain in C\ We define N*(W) to be the
class of all holomorphic functions / in W such that ^(Log+ |/|) has
an ^-harmonic majorant for some strongly convex function φ. We
recall that a function φ: (— <*>, +<χ>)—»[0, +°°) is strongly convex if
it is convex, nondecreasing, and if l i m ^ Φ(t)/t = +<». Given two
(or finitely many) strongly convex functions φa, it is always possible
to find a strongly convex φ such that φ ̂  φa for all a. This, together
with the arithmetic properties of Log+, shows that N*(W) is closed
under pointwise addition and multiplication, and is therefore an
algebra. The class 0{W) of outer functions in W is defined to be
the group of all invertible elements of the algebra N*(W). If W
is simply connected, then feO(W) if and only if / = exp#, where
g ~ u + iv is holomorphic and where φ{\u\) has an w-harmonic ma-
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jorant in W for some strongly convex function φ. The additive
group formed by such functions g will be denoted P(W).

Let Ω be the family of all cartesian products W1 x W2 x x Wnf

where each Wj is connected and relatively open in Un. The pres-
sheaves W-+P(WΠ Un), W-+O(Wf) Un), defined for W in Ω, induce
sheaves &* and & on U*. There is a canonical map P(Un)-^Γ(Un, 3?)
which is clearly one-one and a group homomorphism. To see that
it is also onto, suppose {Wa} is a finite covering of Un (by members
of Ω) and suppose that / = u + iv is a holomorphic function in Un

whose restriction to each intersection Wa 1Ί U* is in P(Wa Π Un). For
each a let φa be a strongly convex function such that 0α(|w|) has
an ^-harmonic majorant in Wa Π Z7*. Choose a strongly convex ^
such that φ ̂  φa for all a. The w-subharmonic function 0(|w|) has
^-harmonic majorants in the intersections Wa Π Un. Consequently,
by (2.1), it has an ^-harmonic majorant in Un. The function / then
belongs to P(Un), and the canonical map P(Un)-*Γ(Un, &*) is there-
fore an isomorphism. In a similar way we show that O(Un) and
the group Γ( U%, &) of global sections of £?, are canonically isomor-
phic. More generally, if W is a member of Ω, Γ(W, &*) and Γ(W, &)
can be naturally identified with the class of holomorphic functions
in W whose restriction to any VeΩ such that Vd W, is in P(Vf] U%)
and in O(Fn Un) respectively.

In §IV we prove that H\Un

9 &) = 0 for all integers q ^ 1.
First we need some technical results.

Ill* A generalized Cartan lemma. The following lemma is
the crux of our work. It is a modified version of [7, Lemma 1.2,
p. 380].

Let \ and λ2 be disjoint closed arcs on the circle T, and let S2

be the extended complex plane. For j = 1, 2, define V3- to be the
union of the disc U, its exterior S2 — U, and the interior (relative
to T) of λ, .

LEMMA 3.1. // feP(Un), there exist functions fά which are
holomorphic in Vd x Un~\ and such that:

(a) / = Λ + / 2 on U\
(b) fόeP(U%
(c) Λ e P α S 2 - U*) x U*-%
(d) fj G P(Dj x Un~ι), for some open disc Dj containing λy.

Proof. We use the notation and terminology of [5]. In partic-
ular, mn will be the Haar measure on T*, Zn will be the set of all
n-tuples of integers, Z\ the set of all ae Zn such that ax ^ 0, a2 ^
0, , an ^ 0, and Yn = Z\ U (-^Γ+). For z = fe, «2, , «J e Un and
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W = (Wlf W2y

kernel; i.e.,

(1)

where
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, wn) 6 Tw, Pw(j2?i, w) will be the ^-dimensional Poisson

P,(z,w)=
z I '

and « y =

We define ULW(S, w) to be the summation in (1) restricted to the
lattice points of Yn. It can be verified that Kn{z, w) is the real
part of

Hn(z, w) =
(1 (1 - wnzn)

In what follows, we will use an alternative characterization of
P{Un). It is a consequence of [5, Th. 3.1.2, p. 37] and [5, Th. 3.2.4,
p. 41] that a holomorphic function / belongs to P(Un) if and only
if its real part u is the Poisson integral of some function u* e
L\Tn); if this is the case, then u*(w) = l im^- u(rw19 rw21 •••, rwn)
for almost all w eTn (with respect to the measure mΛ).

Suppose now that feP(Un), and write / = / ' + /", where
f\z1} z2, , s j = /(0, «2, , zn). The function / ' is clearly in
P(S2 x C7""1); therefore it suffices to prove the lemma for / " instead
of /. Let u be the real part of / " and let u* be the radial bound-
ary values of u. Since the Fourier coefficients

u*(a) = 1 wau*(w)dmn(w)

vanish for all a g Yn, we can write:

S r
Pn(z, w)u*(w)dmn(w) = \ Kn(z, w)u*(w)dmn(w) .

The kernel Hn(z, w) is holomorphic in zf Hn(0, w) = 1, and Kn(z, w) =
Re Hn(z, w). Therefore, since /rr(0) = 0, we have

r

f"(z) = \ Hn(z, w)u*(w)dmn(w) .

Choose an infinitely differentiate real-valued function χ on the
circle T, such that χ is identically zero on an open connected subset
ϊ\ of T which contains X19 and identically one on a similar neigh-
borhood T2 of λ2 in T. Define
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f[\z) = \ Hn{z, w)χ(w)u*{w)dmn(w) ,

f'2\z) - [ Hn(z, w)[l - χ(w)]u*(w)dmn(w) .

It is clear that f" is not only holomorphic in Vd x Un 1 but at all
points in T5 x Un~ι as well, and that f[\z) + fϊ(z) - f'\z) for all
ze Un.

We first prove that f" e P( Un) (a symmetric argument will show
that fϊeP(Un)).

The function %(Wj) is the sum of its Fourier series XίΞ ckw
k

L,
which converges uniformly and absolutely in T. Since χ is real-
valued, we have c_fc = ck; also \ck\ = O(k~q) for all integers q ^ 1.

If ux is the real part of /(', we have

,{z) = \ Kn(z,

To show that f"eP(Un) it suffices to find a function AeL\Tn)
such that

(3.1.1) \ Kn(z, w)χ(w1)u":(w)dmn(w) = \ Pn(z, w)A(w)dmn(w) .

This is trivially verified, with A(w) = χ(Wi)u*(w), if u(zίf z2, •••, zj
depends only on zx\ for instance, if the radial boundary values of
u{zly 0, , 0) take the place of u*. It therefore suffices to establish
(3.1.1) with u* replaced by the radial boundary values of u(zlf z2, , zn) —
u(zlf 0, , 0). We assume then, without loss of generality, that
u(zu 0, , 0) is identically zero, or equivalently, that u*(aί9 0, , 0) = 0
for all integers ax. Write

(3.1.2)

ιλ(z) = c0 \ Kn(z, w)u*(w)dmn(w)

oo f

+ Σ \ Kn{z, w)[ckWι + όfc'w;f]/^*(^)d?^%(/w;) .
fc = l J Γ ^

Let jtix and ^ be identically zero on Tn, and define, for k — 2, 3,

and for almost all w e Tn,

U*{WM, w2, , wΛ) Σ

2" i = l

u\wjj, w2, , wj Σ

where mx is the Haar measure on the circle T. The functions μk9 vk

belong to L\Tn), and have Z/-norms no greater than (k — 1) [| 2̂ * HJ..
A simple calculation shows that the Fourier coefficients βk(cc19 cc2, - f an)
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are zero unless 1 — k ^ ax ^ — 1, in which case they agree with
ϋ*(aί9 a2, , an). We now recall that /"(0, z2, zn) = 0, and con-
sequently that the Fourier coefficients ύ*(0, a2, — ,an) are all zero.
This, together with the assumption that ύ*(cc19 0, •••, 0) = 0 for all
integers alf and the series expansion of K^(z, w), shows (as in [7,
p. 384]) that

(3.1.3) ]τn

= I Pn{z, w)wk

ι[u""{w) - μk{w)]dmn(w) .

Similarly

\ Kn(z, w)wϊu*(w)dmn(w)
(3.1.4)

= \ Pn(z, w)wί[u*(w) - vk(w)]dmn(w) .

If we define Ak(w) — ckwi[u*(w) — μk(w)] + ckwϊ[u*(w) — vk(w)], and
combine (3.1.3) and (3.1.4), we have

\ Kn(z, w)[ckwί + ckwϊ]u*(w)dmn(w)
(3.1.5) ]τn

= \ Pn(z, w)Ak(w)dmn(w) .

The estimates H^IL ^ (k - 1)Π-»*Ik, \\vk\\, ^ (fc - l) | |w*| | l f show
that H-Ajfelli ^ 2||w*||1|cij.|A;. Since Σ*=ik* l* converges, the series
Σ*U Λ converges absolutely in L\T%). If A = c0^* + Σ?=i Λ , (3.1.2)
and (3.1.5) show that (3.1.1) is verified. Consequently f['eP(Un).

Next we prove that f" and f" are in P((S2 - Un) x Un~ι).
A direct calculation yields

fϊ(%19 %2> ' "> Zn) — fϊ(—t

(3.1.6)

&u w,)
(

^χ(w1)u(w)dmn(w)
z2w2) . . . (1 - znwn)

for all z 6 ϋ7%. (Here, Pλ{z19 wx) is the one-dimensional Poisson kernel.)
Taking real parts in (3.1.6), we get

άZu z') - uΛ —, zΊ
\z1 /

(3.1.7)
= I Pife, w1)χ{w1)u""{w)dmn{w)

+ \ Pi(^, wJ
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where zf — (z2f , s») and wf = (w2, , wn).
Since the Fourier coefficients of X(wt)u*(w) = Σ-Ξ ckwΐu*(w) are

zero for all lattice points not in Z x F%_u and since

we can write

(3.1.8) J r *

= \ Pn(z, w)χ(wι)u*(w)dmn(w) .

On the other hand, if we define

u*(wlf wf)dmn_x(wr) ,
\

τn-ί

then

Pfa, wί)χ(wί)u*(w)dmn(w)

(3.1.9)

= \ Pn(z, w)χ(w1)v*(wι)dmn(w).\

Substituting (3.1.8) and (3.1.9) in (3.1.7) yields

') - uj—, z') = \ Pni^fo, z'

which allows us to write

ui^-, z'λ = ( Pn(2f ^)[

The above exhibits u^l/z^ z') as the Poisson integral of a func-
tion in L\Tn). This implies ([5, Th. 3.2.4, p. 41]) that there exists
a strongly convex φ and an w-harmonic function h in Un such that

for all (#!, «') 6 ί/71. Consequently

for « e (S2 - £7) x Un"\ Since ^(1/^, «') is ^-harmonic in (S2 -ϋ)x
Un~\ fϊ must belong to P((S2 - Ό) x Z771"1). Similarly, we show
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that /; 'eP((S 2 - Ό) x U^1).
Finally, we prove part (d) of the lemma.

Denote by hv and hsi_ϋ the least ^-harmonic majorants of \u^\
in Un and (S2 — Ό) x J771"1 respectively. (That /^ and hst^j exist
is a direct consequence of parts (b) and (c) of the lemma.) As func-
tions of the single variable z19 hu(zif 0, * ,0) and hs^ΰ(z19 0, * ,0)
are positive harmonic functions (in U, and in S2 — C7). Therefore,
as is well known, they must have nontangential boundary values at
almost all points of T. Choose in each of the two connected com-
ponents of Tί — λL a point where both hu(zίf 0, , 0) and hS2_ϋ(zί9 0, , 0)
simultaneously have a nontangential boundary value. Call these
points ζ' and ζ", and let C be a circle which intersects the circle T
precisely at ζ' and ζ". If C has center a and radius p we write
C — a + pT. Let A be the disc bounded by a + pT, and let Wx =
f/ U ϊ1! U (S2 - t7). AS we mentioned earlier, / " is holomorphic in
W, x I/*"1. Thus, for each z' = fe, •••, ̂ ) e C/ "1, the function ^->
f['(z19 z') is holomorphic in T^. Since the closure of Dx is contained
in Wlf the function ^(^i, zf) can be represented there as the Poisson
integral of its values on the circle a + pT, i.e.,

(3.1.10) ufa, z') = [ ut(a + ρwlf zf)PiZl ~~ a,w1)dm1(w1) ,
Jr \ p /

for all z = (zlf zf) e A x Un~\
Similarly, for each zι in U or in S2 — U, the function zr —>

/ί'(«i> «') is holomorphic in I/*"1, and belongs to P( C/̂ "1) by parts (b)
and (c) of the lemma. Thus z' -* u^z^ zf) has radial boundary values
UyίZv w') in L^Γ*"1), and

(3.1.11) ^ ( ^ , «f)

for all « = (zlf z') either in C/w or in (S2 - ϋ) x if*"1.
A point α + pwt on the circle a + pT will be contained in U or

in S2 — U, or will be one of the two intersections ζ' and ζ" of
a + pT with ϊ7. In the first two cases, by (3.1.11), we have

ut(a + pwίt z') = \ ^ ( α + jOWj, w^P^' ^
Jr*—i

Substituting the above in (3.1.10), we obtain

ufa, z')=\ \\ u,{a + pw19 wf)Pn^(

®1ΛS -a \
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for all z = (zl9 z') e A x Un~\
The function ux(a + pw19 wr) is measurable on T*9 and for each

wxeT belongs (as a function of wf) to L\Tn). We next show that
u^a + pwlf wf) is in L\Tn).

For a fixed point a + ^ ^ in a + pT, the function

pw 19 zr) = ί K (

7*"1is the least w — 1-harmonic majorant of z' —> | ̂ (α + ^ z') | in Z7*
Since | ux | has ^-harmonic majorants hπ and Λ'(S2_t7 in Un and S2 — U
respectively, we have the inequalities

(3.1.13) I(a + pw19 z') ^ ^ ( α + pwlf zf) , if a + pw, e U,

and

(3.1.14) I(a + pwlf zf) ^ hS2_ϋ(a + ôŵ  2;) , if α + ^ ^ 6 S2 — £7 .

Recalling that /^(£i, 0) has limits as z1 approaches ζ' and ζ" non-
tangentially, it follows that Λz/ί̂ , 0) is bounded on the intersection
a + pT f] U (since the circle a + pT meets T nontangentially at ζ'
and ζ") Similarly, hS2_ϋ(zly 0) is bounded on a + pT f] S2 - Ό. Thus
there exists a constant Λf such that hv{a + ^^i, 0) ̂  ikf if α + ρwx e U,
and hS2_ϋ(a + /0Wi, 0) ^ M if a + ^ ^ eS2 — Ό. Therefore, if we let
z' = 0 in (3.1.13), we get

\ I wx(α + pw^w') I dmn^(w') ^ M,
JJΓ»—1

for all wι e T. Hence

)T)Tn-l

which shows that Uj(a + pw19 wr) is in L\Tn). In conjunction with
(3.1.12), we can now assert that ux(z19 z

f) is the Poisson integral of
u,(a + pwlf w') in Dx x ϋ'*"1. Consequently, f" e P(Dλ x U^1). A
parallel argument shows that there is a disc D2 containing λ2 such
that /ί 'eP(A x t/"-1).

For the next proposition consider the open intervals J1=(—1,1/2).
J2 = ( —1/2, 1), and J = ( —1, 1). Let K be an arbitrary bounded
open interval. Define the rectangles Q^ = Jx + iϋΓ, ©2 = 2̂ + ί-Ŝ>
Q = J + ΐj£, and let L = L2 x L3 x x LΛ be an arbitrary poly-
rectangle (open) in C71"1.

PROPOSITION 3.2. {Generalized Cartan lemma). If ge P((Qi Π
Q2) x L)9 there exist gx e P(Qt x L) and g2 e P(Q2 x L) such that
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9 = 9i + 9% on (Qx (Ί ft) X I/.

Proof. Without loss of generality, assume that the rectangles
Lm are all equal. Let ψ be a conformal mapping from the disc U
onto Lm, and ψ be a conformal mapping from U to Qtr\ Q2 Extend
ir to a homeomorphism between the closures £7 and ft n Q2 Let
Λ = {-1/2 + w # e K}, Λ2 = {1/2 + ίy: y e K), and λx, λ2 be the pre-
images of Λ, Λ2 under ψ*. Let F l f V2 be the domains constructed
from λi, λ2 as in (3.1). By the reflection principle, we can extend
f to a conformal mapping ψt from V1 onto the rectangle Sί =
(-1/2, 3/2) + iϋΓ; i.e., given \z\ > 1 define ^( s ) = 1 - ψ(l/z). Simi-
larly, ψ* can be extended to a conformal mapping ψ2 from F 2 onto
S2 = (-3/2,1/2) + %K.

Define Φ: Un -> (ft n Q 2 ) x L by Φfe, «„•••, O = (f (zj, ^(z2), ,
^(^)), and let Φf. V, x f/"""1 -> S3 x L be the extension of Φ obtained
replacing ψ by ψjf for i = 1, 2.

Suppose ^ 6 P ( ( Q 1 n Q 2 ) x 1̂ )- Since the composition f—goφ is
in P(Un), there exist functions f19f2 satisfying the properties (a),
(b), (c), and (d) of (3.1). If gs = fj°Φi9 the following can be verified:

0') g = 9i + g* on (Qι (Ί Q8) x L,

(b;) ^ePqQ.nft)) x L,
(c') flri€P((Si-Q1nQ,))xL,
(dy) gύeP{Φό{Dά x tf-1)), for i - 1, 2.

We claim that g5 e P(Q, x L).
The set f\(A) is the intersection of an open subset of C, that

contains λx, with Sx, and Φ^D^ Un~ι) = ψ^D^xL. Consequently, we
can find a relatively open polydomain Wδ in the closure St x L such
that Wδ Π (S, x L) = Φ1{Dι x Un~ι). It is also clear that there are
relatively open polydomains Wβ and Wr in ft x L such that TΓ̂  Π
(ft x L) = (ft n ft) x £, and TFr n (ft x L) = (ft - ft Π ft) x L. Thus
we have a covering TF̂ , Wr, Wδ o£ Qx x L with the properties:

(b'O fteP^nίQiXD),
(c") ^eP(TFrn(ft x £)),
(d'O ^ e P ( ^ Π ( f t xL)).

The hypotheses of (2.1) are satisfied, so g1eP(Qι x L). A parallel
argument shows that g2 e P(ft x L).

IV* The Cech cohomology of Un with coefficient in &. Our
goal is that Hq{ Un, &) = 0 for all integers q ^ 1. The standard

2exact sequence 0 —• Z -> ̂  • & —> 0 reduces this to proving
Hq(Unj &) — 0. If X is the cartesian product of n bounded open
rectangles in C, we have analogous sheaves & and <^ on X,
and the vanishing of the cohomology of Un with coefficients in &
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is entirely equivalent to the corresponding result for X. In the
sequel, we work with X instead of Un. The reason for this pre-
ference is that it allows for the systematic partitioning into smaller
polyrectangles used in (4.4).

Let I = (-1, 1). Define R = I + il, and set X = R*. Let ΎJ^ be
the family of all cartesian products of open rectangles whose edges
are parallel to the real and imaginary axes of C.

Fix an open covering ^aW" of X. A q-simplex σ of ^ is a
g + 1-tuple (UQ, Ulf •••, Uq) of sets in ^ its support \σ\ is the in-
tersection Uo n U1 Π ••• ΓΊ Uq. If I F G F " is contained in X> define
Cq(^(W), P) to be the group of all alternating functionals 7 (q-
cochains) that assign to each g-simplex σ of ^ a function Ύ(σ) in
P(\σ\ Π W) (the zero function if the intersection is empty), and let
δ: Cg(%S(W), P)-+Cq+\^(W), P) be the standard coboundary operator.
The groups Cg(%f(W), P) together with the homomorphisms d form
a cochain complex with cocycles Zq(%S(W), P), coboundaries Bq(^(W)f

P), and cohomology groups Hq(^(W), P). It is an immediate con-
sequence of (2.1) that H\^(W), P) equals P(W). We define
H9(^(W)9 P) = 0 if q< 0.

If V is a poly rectangle in "W such that VaW, we have re-
striction homomorphisms ρvw: Cq(^(W), P)->Cq(^(V), P) which can
easily be seen to commute with the coboundary operators. (If 7 6
Cq(^{W), P) and σ is a g-simplex of ^ , pvw^(σ) is the restriction
of the function Ύ(σ) to |σ|Γ)F.) When clear in the context, we
shall denote ρvw7 also by 7, and refer to it as the restriction of 7
to %S(V).

For (4.1), (4.2), (4.3), let £ = (-1, 1/2), I2 = (-1/2, 1), R, = I, +
il, R2 = Iz + H, and set X\ = R, x Rn~\ XI = R2 x Rn~\

LEMMA 4.1. If q ^ 0 and if ΎeCq(^(Xl Π Xί), •?)>
7, e Cq(%S(X{), P) and 72 e Cq(^(Xt\ P) such that 7 = 7 , - 7
ίfee appropriate restrictions to f/(X\ Π -X"?)-

Proof. We first observe that (3.2) remains valid if Jlt J2f J are
arbitrary open intervals such that JX\J J2 = J, and such that either
Jv(zJ2J or J2dJlf or length Jx ^ 1/2 length J, and length J2 ^ 1/2
length J. If σ is a ^-simplex of ^ the polyrectangles | σ \ Π Jf ί,
|σ| (Ί Xi, |cr| n X\ IΊ -Xf, will satisfy the modified hypotheses of (3.2);
they can be taken as the polyrectangles Qt x L, Q2 x L, and (Qx Π
Q2) x L of (3.2).

Let 7 e C*(^(X1 n -X?), P) and let σ be a ^-simplex of %S. Since
7(α )eP( |o | n XI Π -X?)» w e can decompose it as a difference 71(α

>) —
72(σ) of functions Ύs(σ) eP( |σ | Π X(). Repeating this for each q-
simplex we construct 7t 6 Cq(^(X{), P), 72 e Cq{^S(X^, P) such that
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^ - 7 2 = 7 .

LEMMA 4.2. Let q^O. IfΎ.e Cq(^(X{), P) and 72 e Cq(^(Xl), P)
have identical restrictions to ^/{X\ Π XV), then 7X and 72 must be
the restrictions to <&(X\) and *%f(Xl), respectively, of some 7 e

), P).

Proof. Let σ be a g-simplex of <2S. Then Ύx(σ) eP(\σ\ f] Xϊ),
Ύ2(σ)eP(\σ\ Π XI), and 7̂ (7) agrees with 72(σ) on the intersection
\σ\f]Xlf) XI- Let 7(σ) be the analytic continuation of 71(<τ) given
by %ί(0 ). It follows from (2.1) that 7(σ) eP(\σ\ f] X). Repeating
this procedure for each σ, we define τ e C g ( ^ ( J ) , P) with the re-
quirements of the lemma.

DEFINITION 4.3. For each integer g ^ O , we construct the se-
quence of homomorphisms 0 -> Cq(^(X[ U Xf), P) ̂  Cg(%S(X{, P) φ
C\<2f{X% P) -1 G\^{X\ n XI), P) -> 0, where φ(Ύ) - (7, 7) and ψ(Ύ19

2̂)) = 7t — 72 (with obvious restrictions). Lemmas (4.1), (4.2) assert
that it is an exact sequence. It can be verified that the homomor-
phisms φ, ψ commute with the coboundary operator <?. Consequently,
the above is a short exact sequence of the cochain complexes

{c\^{x\\]XX),P),h}, {c\^(Xΐ),P)®θ{^{Xΐ),P),δm, {C^mxin
XI), P), <?}. As is well known ([1, Th. 3.7, p. 128]), there is an as-
sociated long exact sequence

0 —> > Hq-\^(xι n xi), P)

\ \ U X!), P)
(4.3.1) ,*

£ [), P) 0 m^(Xl), P)
ι n xΐ), P) — .

Since, by (3.2), 0 -* P(X\ U XI) -t P(X[) φ P(X>) t P(X\ n Xf) -> 0 is
exact, we can assume that in (4.3.1) the first term following zero is
H\f?(Xl U XI), P).

PROPOSITION 4.4. For any polyrectangle X in W~, for any
covering %S c <W~ of X, and for any integer q ̂ 1, the cohomology
groups Hq(^(X), P) are trivial.

Proof. We argue by induction. Suppose that either q — 1, or
that q > 1 and the proposition is true for all positive integers ^
<7 — l. Let X be a member of W~; assume without loss of generality
that X = X\ U XI is the polyrectangle of (4.3.1).
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If q > 1, the inductive hypothesis, applied to X\ Π X?, implies
\ Π Xf), P) = 0. Hence, the homomorphism

(4.4.1) H*{&{X\ U X% P) -^-> i*W(Xί), P) 0 Hq(^(Xf)9 P)

is one-one for all q ̂  1 (the case q = 1 is trivial).
Suppose that iϊ«(^(X), P) Φ 0, and let ζ be a cocycle in

Zq(^{X), P) that does not cobound. Since 0* in (4.4.1) is one-one,
the restrictions of ζ to ^(Xί), and to ^(XD, cannot both cobound.
Let X?1 be the polyrectangle on which ζ fails to cobound. The
procedure that led to (4.3.1) can be repeated for Xf1, a subdivision
X?1 = X\ U XL and the same covering f/. As before, if we apply
the inductive hypothesis to X\ n XI, the homomorphism

u XD, P) -̂ -> i2W(XD, P) Θ # g(^(XD, P)

will also be one-one. Iterating this procedure, proceeding cyclicly
through the real and imaginary coordinates of C*, we obtain a nested
sequence Xί1Z)X22Z) D ! > D of poly rectangles with diameters
eventually decreasing to zero, on none of which the cocycle induced
by ζ cobounds. This leads to a contradiction: ^ = {Ua} is an open
covering of X, so for some integer m and some Ua in the covering,
we will have Xtm a Ua; if m is so chosen, the restriction of ζ to
^ ( X » trivially cobounds, i.e., if 7 is defined by Ύ(U0, •••, Uq__x) =
ζ(Ua, Uo, . . . , [/,_,), then δ7 = ζ.

COROLLARY 4.5. Lei X be a polyrectangle in Cn and Un be the
unit polydisc in Cn. Then, for all integers q ^ 1,

(a) H'(X,
(b) Hq(
(c) H\

Proof. As was noted earlier, (b) and (c) are direct consequences
of (a).

To prove (a) it suffices to show that Hq{ T, &*) = 0 for any
covering 3^ c ^ ^ of X (since such coverings are cofinal in the class
of all open coverings of X). Choose such a covering ψ] and let
^ c *W~ be a refinement of y such that the closure of each member
U of ^ is contained in some polyrectangle μU of Yl Let tf =
(Z70, C/Ί, •••, Uq) be a simplex of ^ and let μσ = (μUQ, μUίf •••, ̂ Ϊ7ff)
be the corresponding simplex of ψl Recall that a section 76
Γ(\μff\f &*) can be naturally identified with a holomorphic function
fr in I μσ \ Π X, and that the restriction of fr to | σ | Π X will be in
P(|<τ| Π X). With this in mind, we construct, for each integer q ̂  0,
a one-one homomorphism



280 SERGIO E. ZARANTONELLO

Cq( T, 3*) -^-> C\^f{X\ P)

defined by letting μ*(7)(σ) be the function fr restricted to \σ\ Π X.
A straightforward calculation shows that μ* commutes with the
coboundary operators; consequently it induces a one-one homomorphism

), P) .

It follows, by (4.4), that Hq( T, &*) = 0, which completes the proof.

V Remarks. In [7] Stout proved that the multiplicative Cousin
problem with bounded data can be solved in the polydisc U". If,
as in [6], we let έ%f be the sheaf of germs of locally bounded
holomorphic functions, and g7 be the sheaf of multiplicative groups
of invertible elements of Jg^ this is equivalent to the assertion that
H\Un, g7) is trivial. If we apply the methods of §IV to the sheaf
^ b (defined in [6]) of locally bounded pluriharmonic functions on Un,
it follows that Hq(Un, gf) = 0 for all q > 1, as well.

The methods used for the study of the sheaf & can be also
applied to obtain similar results for the sheaves 3ίfv, induced by
assigning to each relatively open polydomain W c Un the Hardy
space £έf*(WΓ\ Un). If p > 1, Lemma 3.1 holds word for word if
everywhere we replace the letter P by the symbol 3ίfv\ it then can
be proven, as was done for the sheaf ^* that Hq(Un, <§ίfv) = 0 for
all q ̂  1. A simpler procedure, however, is to show that the sheaves
3ίfv correspond to a particular case of the boundary conditions studied
by Nagel in [4].

Finally, we mention that as a consequence of H\Un, &) = 0, it
is possible to solve the multiplicative Cousin problem with i\Γ*-data
in Un (in [8], the corresponding problem for the Nevanlinna class
N was shown to be solvable). By standard arguments (such as in
[3, Cor. 2, p. 47]) it can be shown that H\^9 &) = 0 for any
covering <%S — {Ua} of Un. If ^ consists of relatively open poly-
domains, and if for each a we are given /a6iV*(Z7a Π Un) such that
fafj1 is an outer function in the intersection Ua Π Uβ Π Un ( a cocycle
in ZX^S, &)), there must exist FeN*(Un) with the property that
Ffa1 is an outer function in Ua Π Un for each a.
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