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MEIER TYPE THEOREMS FOR GENERAL
BOUNDARY APPROACH AND σ-POROUS

EXCEPTIONAL SETS

D. C. RUNG

In this paper we are concerned with determining under
what conditions equality is obtained between two different
cluster sets of a function / at a point on the boundary of
its domain. Specifically for functions defined in the unit
disc D in the complex plane taking values in the extended
plane we show that the generalized angle cluster set equals
the generalized outer angular cluster set at all points of the
boundary of D except possibly for a σ-porous set. The
definition of both generalized cluster sets includes the usual
Stolz angle definition but this result generalizes the known
results. In addition the proof is shorter than proofs of less
general results.

If / is required to be meromorphic in D then an application of
the principal result gives a decomposition of the boundary of D into
a set of generalized normal points of /, a set of generalized Picard
points of /, and a σ-porous set. The third result gives a different
decomposition into generalized Plessner points; generalized pre-Meier
points and a σ-porous set. Again these results generalize known
results.

The notion of porosity was introduced in 1967 by E. P. Dolzenko.
While he defined porous sets in higher dimensions as well we shall
limit our considerations to C: \z\ — 1. Porous sets have zero Lebesgue
measure and are of first Baire category and in addition isolate
properties essential for certain cluster set considerations. In turn
this allows generalizations of results of Meier [10] and others. In
a series of papers Yoshida [14-20] extended results of Meier and
others by using the notion of porosity. Yoshida's fundamental
lemma [15, Lemma 1] has a very complicated statement and proof.
In this paper we expand this lemma; offer a succinct proof which
hopefully illuminates better the character of the results; and apply
it to obtain generalizations of some of Yoshida's results as well as
those of Dragosh ([6], [7]), Colwell [4] and Yanigahara [13].

2* Definitions and notation* Let D be the open unit disc and
P^C. For each eίθ e C, let 7(0, ε, P) be the length of the largest
subarc of the arc (ei{θ~ε\ ei{θ+ε)) which does not meet P. If no such
arc exists define 7(0, ε, P) = 0. According to Dolzenko [5], P is porous
at eiθ if
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(2.0) Έm Ύ ( < ? ) β > P ) > 0
e-»0

DEFINITION 1. A subset P C C is a porous set if it is porous at
each peP; P is σ-porous if it is the finite or countable union of
porous sets.

Condition (2.0) implies that the density of P at eiθ is not unity
and so a porous set must have zero Lebesgue measure as does a σ-
porous set. Because a porous set is nowhere dense, a σ-porous set
is also of first Baire category. Thus porosity contains both the
metric and topological features found in Meier-type theorems. It is
known [3, p. 75] there exists a residual set on C with zero Lebesgue
measure and so zero Lebesgue measure does not imply α -porosity.
The set of rationale is an example of a set of first category and
measure 0 which is not porous. The existence of a set which is of
first category and measure 0 but not σ-porous was asserted by
Dolzenko [5, pg. 3] and was constructed by Zajίcek [21, Prop. 5.2].

Zero capacity and <7-porous sets do not have any obvious con-
nections. If E is the Cantor middle thirds set on C and eiθeE, it
is easy to see that 7(0, 1/6% E) ^ (l/6*)(2/3), n = 1, 2, , and so E
is porous. On the other hand E is known to have positive capacity.
To complete the analysis we construct a residual set K (thus K is
not tf-porous) which has zero capacity. It will be the intersection
of complements of Cantor-type set. For convenience we construct
the set on [0, 1]. Begin by letting Ht be the closed interval of
length 1/4 symmetric about 1/2; then let {JPi2)}, i = 1, 2, be the closed
intervals symmetric about 1/22 and 3/22 respectively, with each inter-
val of equal length and chosen so that, setting H2 = F[2) (J F{

2

2) U Hl9

cap H2 £ cap H, + — .
Δ

This is clearly possible. Proceed inductively defining Hn by adjoining
to Hn-ίf 2n~1 closed intervals of equal length symmetric about the
points i/2n, i = 1, 3, , 2n — 1 and chosen so that

cap Hn ^ cap Hn_x + — .

The Hn's are closed sets with ίfκ_! £ Hn and thus setting Kt =

, = limcapίίM ^ lim Γ(cap Hd + ±±-Ί = λ + ±. = A .
tt-*oo n-><x> L k = 2 2 J 1 6 2 1 6

Let K2 be the set obtained by the same method as used for Kγ except
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that we begin by selecting the initial interval about 1/2 with capacity
1/32, and all subsequent closed intervals symmetric about the same
midpoints but chosen so that the new Hn's satisfy

Thus K2 Q Klf and cap K2 ^ 9/23. Defining Kn9 n > 2, in the same
fashion and setting K = ΠϊU Kn9 we have

cap K = 0 .

Because each Kn is a residual set so also is K. (I wish to thank
Professor W. Schneider for suggesting this construction.)

For future use we note that if P is not σ-porous then the sub-
set P* of P of all points at which P is not porous is uncountable.
Otherwise since P — P* is porous—as is easily seen—and a singleton
set is obviously porous we would have that P is σ-porous.

DEFINITION 2. If a property & holds for all points of E £ C
except possibly on a er-porous subset of E, we say that & holds
strongly on E, or that strongly on E points satisfy property &.

Substs of C which are not σ-porous have the happy property
of exerting strong collective influence on the boundary behavior of
functions / at certain points of C. This is best illustrated by
Theorem 3, although out first lemma indicates the basic connection
between porosity and boundary behavior. This lemma was proved
in the angular case by Dolzenko [5, Eng. translation, pg. 5], and in
a more general setting by Yoshida [15, Lemma 1], although Dragosh
[6, Lemmata 4, 5] proved a horocyclic version using metric density
instead of porosity. We present it in a still more general setting
and a result of Satyanarayana and Weiss [12, Theorem 5] both
simplifies the proof and extends Yoshida's result. (We thank Pro-
fessor L. Garbanati for this last reference.)

We wish to define approach to a point of C inside a reasonably
nice subdomain of D and so let h(φ) be a real valued function defined
in some open interval Ih on the real line symmetric about 0. On Ih

we require that

( i ) h be continuous;

(2.1) (ii) h(φ) = h(-φ);

(iii) Λ(0) - 0, h(ΐ) - 1, h(φi) < h(φ2) < 1, 0 ^ φ, < φ2.

Call such an h an approach function. In addition if h"(φ) exists for
φe Ih, φ Φ 0, and is strictly positive, then h is said to be a convex
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approach function. An approach function h defines a boundary curve
at eiθeC as follows. Let φ — θelk and set

(2.2) z(φ; θ, h) = (1 - h(φ ~ θ))e^ .

Then z(φ; θ, h) is a symmetric curve with respect to the radius
at eiθ and determines a boundary domain at eiθ, according to the
following

(2.3) Ω(θ, h) = {re^ | r £ 1 - h(φ - θ)} .

Note that when \Ih\ < π, Ω is convex if /*, is. For 0 ^ r < 1, a
truncated boundary domain is

(2.4) X?r(0, h) = 0(0, Λ) Π {N ^ r} .

Henceforth if A £ A Ar will mean A f] {\z\ ^ r}. If h(φ) = ^9 + 1,
g ;Ξ> 0, the case g = 0, defines the usual nontangential approach; for
q = 1, we have horocyclic approach; and for arbitrary q ^ 0, the
situation considered by Yoshida. For q > 0 it is necessary to define
right and left fe-angles at eiθ. To this end for c > 0 put h\φ) = h(φfc),
and for 0 < a < b, define the right angle

(2.5) R^f{θ, a, 6, h) = {re** 11 - feα(φ - 0)< r < 1 - h\φ -θ)\φ^θ),

while a left /i-angle Lj*f(θ, α, 6, Λ) is defined as in (2.5) except $> ^ θ
is replaced by φ ^ Λ A reduced right fc-angle Ra(θ, α, 6, fe) (or
reduced left fc-angle) is defined by replacing ha and hh in (2.5) by
h/a and h/b respectively. Any choice of 0 < a < b defines a right
and left /wangle and we omit any of the parameters in the symbol
if we can safely ignore them.

The reduced fc-angle a is so called because for a convex approach
function h, and any 0 < a < δ,

(2.6) Ra(θ, - ^ - , - ^ - , h{a+b)/2) £ R^f(θf a, b, h)
V a + b a + b I

with left fe-angles also satisfying (2.6). To see this we combine the
definition of angles in (2.5) and the fact that for convex approach
functions h! is increasing for φ Φ 0 to argue via the generalized
mean value theorem that

a_±±h a<p-θ)2\ (a±b\/_2_\fc,ί{φ - θ)2\
2a \ a + b / _ V 2a )\g + 6/ \ α + ί> '

(2 7) fc(£^) " ±.w(ΈΞϊ) '

A similar result holds for the other pair of boundary curves. Because
h{a+b)/2 is a convex approach function the result of Satyanaraya and
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Weiss [12, Theorem 5] implies that the hyperbolic Hausdorff distance
at eiθ between the boundary curves of the reduced fo-angle in (2.6)
is asymptotic to 1/2 log (1 + 2|α — 6|/1 — 2|α — 6|) as \z\ —> 1, and so
not only does a right fc-angle defined by a convex h contain a reduced
fe-angle but one of a positive hyperbolic width.

Let p(a, b) denote the hyperbolic distance in D and N(a, s) =
{beD\p(a, b) < s}. The above result reinterpreted says that a
(reduced) Λ-angle at eiθ—provided h is convex—contains (close to eiθ)
discs of a fixed hyperbolic radius. Finally note that if h(θ) — kθ9+1,
q 2> 0, k > 0, then fc-angles and reduced A-angles are equivalent.

3* Fundamental lemma* The lemma first is given in a set-
theoretic fashion using approach functions, and then in a hyperbolic
geometric setting using convex approach functions.

LEMMA 1 (Spotlight Lemma). Let P £ C, such that P is not
porous at eiθ. Given an approach function h and positive numbers
a < 6, r\ c, there is a value r > 0, such that

(3.0) Ωr(θ; hc) Q U R>sK>(φ, a, h h)

and the same result holds for left h-angles.

REMARK. The right fc-angles are congruent under rotation and
can be thought of as beams of light with a positive width emanat-
ing from each point of P. The beams are hyperbolically wide if h
is convex. The lemma says that if all the lights are turned on there
is an r > 0 such that the set Ωr(θ, hc) is fully illuminated.

Proof. It is easy to show that it is sufficient to prove the lemma
for the case c = 1, and θ — 0. We first consider the right angle
situation. Suppose the lemma is false. Then for some choice of
0 < a < b and r' > 0, there is a sequence {zn} tending to 1 inside
Ω(0, h) such that

(3.1) znί U RJK>{θ,a, 6, h) ,U

that is, the zn lie in the umbra of all right fe-angle lights at P. Let
z(φ; 0J, ha) and z(φ; θh

n, hb) be the unique ft-angle boundary curves
through zn. See Figure 1 for a description of these and other
pertinent sets. Assume first that Q\ < θa

n < 0. The arc (eiβ», e<) then
lies in the complement of P. We will show that the ratio

fib fla

(3.2) °« M °*



206 D. C. RUNG

FIGURE 1

is bounded away from zero which contradicts the porosity hypothesis.
The two curves z(φ; θa

ny ha) and z(φ; θh

n, h
h) were chosen to meet at

s« = ls« e1>Λ- Thus

(3.3)

On the boundaries of right /^-angles h x exists and is positive. From
(3.3)

(3.4)
a

= h \1- \zn\) = 2*-

Since zn e Ω(0, h) we have that \zn\ < 1 — h(φΛ) and after applying
h~ι to this inequality

(3.5)

Using (3.4) and (3.5), the ratio in (3.2) equals

b — a ^ b — a ^ Γ

b - 6+1
2.1)

Thus a contradiction is reached. If 0 £Ξ θi < θl a lower bound for
{θ% - θl)lθl is found to be b - a/a + 1, while if θ\ < 0 < θ%, P is
porous at 1 by definition. The proof for left angles is done by an
entirely similar analysis.
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LEMMA 2. Let P £ C, and suppose P is not porous at eiθ. Let
h be a convex approach function and 0 < a < δ, n' > 0 and c > 0 be
given. Then there exists r > 0, s > 0, such that for each sequence
{zn} tending to eiθ in Ωr(θ, hc), there is a corresponding sequence
{eiψn} in P, with the property that

(3.6) N(zn, s) Q RjK'iψn, a, b, h) , all n .

A corresponding statement holds for left h-angles as well.

Proof. Choose 0 < a < a' < bf < b. Then by Lemma 1 the
collection of rays Rj#ί,(φ, a', b', h), eiψ e P, cover Ωr(θ, hc) for some
r > 0. Select a point eiθ* e P for which zn e Rj^r,(φnf a', b\ h). Of
course zn is also in the larger ray Rj%fr,(φn, a, b, h)—larger by a
fixed hyperbolic distance according to the remarks following (2.7)
and the observation that each of the two sets between the larger
and smaller rays is itself a ray. Consequently RSsfr,(φnJ a, b, h)
contains N(zn9 s) from some s > 0, and all n, and the right /wangle
statement of the lemma is proved. A similar argment validates the
left angle case.

If hx and h2 are two approach functions with h2 < h19 and if
some collection of h2 rays cover Ωr(θ, h2), the same collection also
cover Ωr(θ, hx). For example if a collection of horocyclic rays cover
an oricyclic domain they also cover any angular domain.

4. Consequences of the spotlight lemma. The first consequence
of Lemma 1 is a statement about cluster sets of arbitrary functions
and generalizes the results of Dragosh [6, Lemma 6], Doleznko [5,
Theorem 1], Yoshida [15, Theorem 2] and Yanagihara [13]. If EQD
such that eiθ e E fΊ C, then the cluster set of a function / along E
at eiθ will be denoted by C(f, θ, E), with again any parameter omitted
if safely done. And let W be the extended plane.

THEOREM 1. Let f be defined in D taking values in W, and h
a given approach function. Then strongly on C, for any choice of
0 < a < δ, and c > 0,

(4.0) C(/, J*(θ, a, b, h)) = C(/, Ω(β, hc)) .

Proof. There is no loss of generality in assuming all angles are
right fe-angles. Further by a simple argument it is easy to show
that we need prove the result only in the case a, b, and c are rational
with b < c9 and so we suppose the result is false in this case. Then
for some rational numbers 0 < a < b < c there exists a non-tf-porous
set E Q C such that for each eiθ e E the set on the left in (4.0) is a
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proper subset of the set on the right. Select any countably dense
subset P of W and let R be the positive rationale. Then eiθ e E if
and only if for some choice of p0 e P and r0 e R the closed disk
D(p0, r0) with center p0 and radius r0 is entirely contained in the
complement of f(JK>{θ, a, b, h)) for some rational r' e R, and such
that D(p0, ro/2) n £(/, Ω(β, hrή) Φ 0. The set of all eίθeE which
satisfies the above situation relative to the parameters (a, ί>, c, r', p0, r0)
we denote by E(a, b, c, r', p0, r0). Thus I? is the countable union of
all such E(a, δ, c, r', po> f0):

(4.1) £7 - £7#(α, 6, c, rf, p0, r0) .

Then at least one set in the union (4.1) is not porous. Let
E(a, bf c, rf, p0, r0) = E be such a nonporous set and select a point
e** e E at which ^ is not porous. From Lemma 1 there is some
value r > 0 for which

(4.2) U J*Λ<Pf a, b,h) 2 Ωr(θ, hc) .

From our definition of i? we know that if eiφ e E then f(J^r,(φf a, b, h))
omits the closed disk with center p0 and radius r0 and so (4.2) implies
that f(Ωr(θ, hc)) also omits this same closed disk. But then C(f, Ω{θ, hc))
does not meet D(p0, ro/2) contrary to the fact that eiθ e E. Indeed E
is tf-porous.

To state some immediate consequences of the lemma in familiar
form we need some more definitions. Let h be an approach function
and / a function in D with values in W. A point eiθ is called an
h-Plessner (h-Fatou) point of / if C(/, j*(θ, h)) = W(C(f, J*(θ, h)) =
{w0}), for all fe-angles at eiθ. For h(θ) — θ we obtain the standard
Plessner (Fatou) point. The h-Fatou value w0 is to be independent
of the particular /wangle used. If we use reduced /^-angles in place
of standard ^-angles in the above we say eiθ is a reduced h-Plessner
or reduced h-Fatou point.

Henceforth we shall always assume a sequence {hn} of approach
functions has the two additional properties that hn ^ hn+x, and
hx{θ) = θ. If eiθ is an /^-Plessner (feΛ-Fatou) point of / for every
hne3έf, we say eiθ is an Sίf'-Plessner {^f-Fatou) point of /. In the
Fatou case we do not assume that the various /v-Fatou values are
equal. The sequence of polynomial approach functions hn(θ) — θn,
n = 1, 2, , we call &». Finally let Kh{f) be the set of all points
eiθ at which the cluster sets of / along any two ^-angles at eiθ are
equal, and put K^{f) = f\he^ K^(f). Because a countable union of
(7-porous sets is again cr-porous Theorem 1 can be rephrased as
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THEOREM Γ. Let Sίf = {hn} be a sequence of approach functions
and f a function in D. Then strongly (i) Plessner points of f are
S^f-Plessner points of f; (ii) for any fixed n the hn-Fatou points of
f are also hk-Fatou points for any k ^ n (with the same hn-Fatou
value); (iii) K*(f) is all of C.

To arrive at Meier-type theorems we need to limit ourselves to
meromorphic functions and state a few more definitions. For eiθ e C,
let Λ{f9 θ, h) be the set of all values w e W such that w is assumed
infinitely often by / in each (right or left) fr-angle at eiθ, h an
approach function. If we use only right (left) /^-angles in the above
we write RΛ(f, θ, h) (LΛ(f, θ, h)). If W - A(f, θ, h) contains at most
two values then eiθ is called an h-Picard point of f. Let χ be the
chordal distance on W. A point eiθ is an h-normal point of f
provided for each c > 0, and for any two sequences {zn} and {z'n}
with zn e Ω(θ, hc) all n, the property p(zn9 z'n) —> 0, n —> oo implies
X(f(Zn)f /(#»)) —* 0, n —» oo. (In the angular case this is a definition
of J. M. Anderson [1, p. 103].) If £ί? = {hn} is a sequence of ap-
proach functions and eiβ is an /^-Picard (/^-normal) point of / for
each hn e §ίf then eiθ is said to be an βίf-Picard (^f-normaΐ) point
of/.

THEOREM 2. Let f be meromorphic in D and h a convex ap-
proach function. Let Q £ C be a set of non-h-Picard points of f.
If Q is not o-porous there exists a nondenumerable set Q* Q Q of
h-normal points of /.

Proof. In the fashion of Theorem 1 — and following Meier [10] —
we write Q as a countable union of fairly nice sets. Let R be the
positive rationals. In addition let ^" be the (countable) collection
of triples {Dlf D2, Z)3}> where each Dif i — 1, 2, 3, is a closed disc in
W with rational center and radius and the triple of sets are
pairwise disjoint. Thus there exists a dτ > 0 such that if T =
(Dlf D2, Dz), then χ(Dif Dό) ^ dT9 iφ j . Distinguish the set of all
points ei(p e Q at which / omits some three values w\9)

9 i = 1, 2, 3,
(all distinct), respectively in the three truncated fe-angles at eiθ

9

*£Ku(<Pf r2i, r*i> h) each rhi e R and w\,φ) eDi9 i = 1, 2, 3, for some T =
(A, D2, Ds)ejr. Thus

(4.3) χiwP, w{P) ^ dτ , i Φ 3 \ i, i = 1, 2, 3 .

The three /^-angles associated with the triad (w[ψ\ w2

ψ), w{

3

ψ)) are one
of eight possible combinations of A-angles according as to whether
they are left or right angles. We use K = 1, 2, •••, 8 to designate
the combinations.
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Label the set of all eiψ e Q satisfying the above conditions as
Q({ffci}i,i=i> T, tc). Then Q is the countable union of all such sets.
Consequently at least one set in the union, say Q is not porous, and
let Q* be the nondenumerable subset of Q at which Q is not porous.
To show any eiθ eQ* is a fc-normal point of / fix a domain of the
form Ω(θ, hc) and consider two sequences {zn}, {z'n}, with zn e Ω(θ, hc)
and p(zn, z'n) -* 0, n —» °°. Notice that for each value i = 1, 2, 3, the
corresponding collection of fc-angles emanating from points of Q is
composed of all right or left ^-angles and so by Lemma 2 where are
three sequences in Q, eφ»\ i = 1, 2, 3, such that for all n > Ni9 and
some pi > 0

tf(sΛ, pt) Q JKu{ψϊ\ ru, rM> fc) , i = 1, 2, 3 .

Thus / omits all three values {wf }}, i ?= 1, 2, 3, in JV(3n, p0), ^ =
min ft, i = 1, 2, 3, for w sufficiently large, and the triad of points
{wfn) satisfies (4.3) for fixed dτ. According to Gauthier [8, p. 281J,
this implies that χ(f(zn), f(z'n)) —> 0, n —> °o, that is, eiθ is an h-normsd
point. The result of Gauthier cited here involves the ^-sequences
of Lange [9].

This result which generalizes Dragosh [7, Theorem 9] and Yoshi-
da [17, Theorem 4] can be phrased as a strong decomposition of C.

THEOREM 2'. Let f be meromorphic in D and βέf a sequence
of convex approach functions. Then strongly on C points are either
β^-Picard points of f or ^ίf-normal points of /.

Proof. For any h e ££* the set of points of C which are neither
fe-Picard points nor fo-normal points of / must be α-porous else by
Theorem 2 that set contains ^-normal points.

The theorems of Meier, Yoshida, and to some extent Dragosh
previously mentioned arise by exploiting the behavior of / at an
/^-normal point. To generalize and strengthen these theorems a few
more standard cluster sets need to be defined. Because we rely on
the usual normal function arguments we sometimes have to use both
convex approach functions and reduced angles in order to insure that
these angles have a positive hyperbolic distance from boundary to
boundary. Again we mention that for approach functions of the
form h(θ) — θq+1, q ^ 0, /^-angles and reduced fo-angles are equivalent.

Let h be a given approach function and / a complex function
in D. For eiθ e C, let

π(f, θ,h) = Γi C(f, θ, 7) ,
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where the intersection is taken over all curves 7 which tend to eίθ

and which have the property that each 7 is contained in its own
reduced fe-angle at eiθ. A curve tending to eiθ is said to be an h-
admissible curve if there is a nested sequence of reduced angles at
eiθ {a(θ, an, bn, h)} with bn — an —> 0, such that each angle contains a
truncated subarc Ίr% of 7. Let

where the intersection is over all /^-admissible curves 7 at eiθ. If
we restrict the reduced angles to be either all right or left reduced
A-angles in these two definitions we write Rπ, Rπ* or Lπ, Lπ* as
the corresponding cluster sets. Suppose h is a convex approach
function and eiθ is both a reduced fc-Plessner and an /^-normal point
of /. It is easy to see that

π * ( / , θ,h)=W.

In addition if there is some value w0 g RA(f, θ, h), then we can prove

(4.4) woeRπ(f,θ,h)

with a similar result holding for left fo-angles. To show (4.4) con-
sider the reduced (truncated) right fe-angle in which / omits wQ.
Because eiθ is a reduced Λ-Plessner point of / we can find a sequence
{zn} in a smaller fc-angle inside of which f(zn) —> w0 and so there is a
po> 0 such that / omits wQ in N(znf p0) for n sufficiently large.
Because eiθ is an /^-normal point this implies that in any Ω(θ, hc)
containing the reduced right angle / tends to w0 in \Jn=1 N(zn, p),
for any choice of p > 0. Each curve tending to eiθ in any reduced
right fe-angle meets each of the sets N(zn, p) for some value p and
n large. Thus w0 is in the cluster set of / along all curves in the
reduced right angle and (4.4) holds. These remarks together with
Theorem 2 give

THEOREM 3. Let f be meromorphic in D and h a convex ap-
proach function. Then in a strong sense the reduced h-Plessner
points of f are either h-Picard points or points eίθ at which both

( i ) π*(f, θ, h) = W;
(ii) RA(f, θ, h) U Rπ(f, θ, h) = W = LA(f, θ, h) U Lπ(f, θ, h).

This theorem strengthens results of Colwell [4, Theorem 3] and
Dragosh [7, Theorem 10 (i), (ii), (iii)] in the case h(θ) = θ; and
Yoshida's result [18, Theorem 1], if h(θ) = θq+1, q ^ 0,

We could restate Theorem 3 for a sequence of approach functions
but do so only for the polynomial sequence & for then reduced
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angles and angles are equivalent and a more familiar appearing
theorem results.

THEOREM 3\ Let f be meromorphic in D. Then in a strong
sense the Plessner points of f are either S^-Picard points or points
eiθ at which both

( i ) π*(f, θ, hn) = W, and
(ii) RΛ(f, θ, K) U Rπ(f, θ, hn)^W^ LΛ(f, θ, hn) (J Lπ(f, θ, hn),

for each hn e &m

We close by showing how our results contain result of Yoshida
on pre-Meier points previously referred to. Theorem Γ tells us that
strongly points of C are Kh{f) points while Theorem 2' say that
strongly points are either h-Picard or /^-normal point. If we re-
strict h(θ) — θq+ί

9 q ^ 0, and suppose eiθ is an ^-normal point contained
in Kh{f) but is not an fo-Plessner point, then for any angle a(θ, h)

(4.5) π*(f, θ, h) - C(/, a{θ, h))^W.

A point satisfying (4.5) is called an ft-pre-Meier point. Of course
any fc-Picard point of / is already an fc-Plessner point of / so we
have shown the result of Yoshida in [19, Theorem 1].

THEOREM 4. Let f be meromorphic in D and h(β) = ΘQ+1, q ^ 0,
then strongly on C points are either h-Plessner points or h-pre-Meier
points of f

5* Although we did not use the idea of order of curves, for
any approach function h the two boundary curves of reduced /^-angles
have the same order of contact. According to an earlier result of
Seidel and Walsh [11, p. 200] the non-Euclidean Frechet distance
(and hence the non-Euclidean Hausdorίf distance) between the two
boundary curves is finite.

I wish to thank Professor Charles Belna for his assistance in the
preparation of this paper.
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