ON THE EXPANSION IN JOINT GENERALIZED EIGENVECTORS

Klaus Gero Kalb

Abstract

Let \mathscr{A} be a family commuting selfadjoint of (normal) operators in a complex (not necessarily separable) Hilbert space H. A natural triplet $\phi \subset H \subset \phi^{\prime}$ is described, such that (1) \mathscr{A} possesses a complete system of joint generalized eigenvectors in ϕ^{\prime}; (2) the joint generalized point spectrum of \mathscr{A} essentially coincides with the joint spectrum of \mathscr{A}; (3) the generalized point spectra, generalized spectra and spectra essentially coincide for all $A \in \mathscr{A}$; (4) the simultaneous diagonalization of \mathscr{A} in H by means of its spectral measure extends to ϕ^{\prime}. Also the multiplicity of the joint generalized eigenvectors of \mathscr{A} is discussed.

Let ϕ be a locally convex space, which is embedded densely and continiously into H, such that $A \phi \subset \phi$ and $\dot{A}=A \mid \phi \in \mathscr{L}(\phi)$ for all $A \in$ \mathscr{A}. Consider the triplet $\phi \subset H \subset \phi^{\prime}$. A joint generalized eigenvector of \mathscr{A} with respect to the joint generalized eigenvalue $\left(\lambda_{A}\right)_{A \in \mathscr{A}} \in$ $\Pi_{A \in \mathscr{M}} C$ is a continuous linear form $x^{\prime} \in \phi^{\prime}$ such that

$$
\begin{equation*}
x^{\prime} \neq 0 \quad \text { and } \quad \dot{A}^{\prime} x^{\prime}=\lambda_{A} \cdot x^{\prime} \quad \text { for all } A \in \mathscr{A} . \tag{1.1}
\end{equation*}
$$

The system $\mathfrak{F r}$ of all joint generalized eigenvectors of \mathscr{A} is called complete, if $\left\langle\rho, e^{\prime}\right\rangle=0$ for all $e^{\prime} \in \mathscr{F}$ implies $\varphi=0$ ($\varphi \in \phi$). For H separable there is a number of conditions on ϕ, under which \mathfrak{F} is complete (cf. e.g., [14], [3]), and there also are effective constructions of ϕ with respect to a given family \mathscr{A} (cf. [13], [14] for \mathscr{A} countable; [15]). The fact that especially in the case of a single normal operator there generally exist many more joint generalized eigenvalues and eigennvectors than necessary (and reasonable in physical applications) has led to recent investigations ([15], [16]; [1]; [2]; [5]; [8], [9]). Let $\sigma_{P}\left(\mathscr{A}^{\prime}\right)$ be the joint generalized point spectrum of \mathscr{A} (i.e., the set of all joint generalized eigenvalues of $\mathscr{A})$, let $\sigma(\mathscr{A})$ be the joint spectrum of \mathscr{A} as defined in Gelfand theory (cf. §2). Let \mathscr{B} be the (commutative) C^{*}-algebra generated by \mathscr{A} and 1. In the present work we propose the construction of a natural triplet $\phi \subset$ $H \subset \phi^{\prime}$, by which the following is achieved:
(a) $\sigma_{P}\left(\dot{\mathscr{A}}^{\prime}\right) \subset \overline{\sigma_{P}\left(\mathscr{A}^{\prime}\right)}=\sigma(\mathscr{A})$;
(b) $\sigma_{P}\left(\dot{B}^{\prime}\right) \subset \overline{\sigma_{P}\left(\dot{B}^{\prime}\right)}=\sigma\left(\dot{B}^{\prime}\right)=\sigma(B)$ for all $B \in \mathscr{B}$;
(c) the simultaneous diagonalization of \mathscr{B} by means of its spectral measure can be transferred to $\dot{\mathscr{B}}^{\prime}$.

For H separable we can even attain $\sigma_{P}\left(\mathscr{\mathscr { A }}^{\prime}\right)=\sigma(\mathscr{A})$ and $\sigma_{P}\left(\dot{B}^{\prime}\right)=$ $\sigma(B)$ for all $B \in \mathscr{B}$, and also have a description of the multiplicity of the joint generalized eigenvalues.

In the case of a single selfadjoint operator our method reduces to that of [9] (cf. also [11]) and for $\mathscr{A}=\mathscr{B}$ is similar to that of [15] where for H separable the equation $\sigma(\mathscr{B})=\sigma_{P}\left(\mathscr{\mathscr { B }}^{\prime}\right)$ is realized. The basic idea of the construction, due to R. A. Hirschfeld [7], is to choose (by means of an appropriate spectral representation of \mathscr{B}) the space ϕ as a space of continuous functions with compact support on a locally compact space R (or as a space of continuous vector fields, if the theory of R. Godement [6] is used), such that the joint generalized eigenvectors essentially are the point masses (characters).
2. Simultaneous diagonalization and spectral decomposition. In this section we summarize the spectral and multiplicity theory of [17], [18], [19]. Let S be the spectrum of \mathscr{B}, i.e., the set of all (continuous) homomorphisms of \mathscr{B} onto C, endowed with the usual topology. Let $\hat{B}(\cdot): S \rightarrow C$, defined by $\hat{B}(s)=s(B)(s \in S)$, be the Gelfand transform of $B \in \mathscr{B}$. The application $\mathscr{B} \ni B \mapsto \hat{B}(\cdot) \in$ $C(S)$ is an isometrical *-isomorphism of \mathscr{B} onto $C(S)$. Let $E(\cdot)$ be the spectral measure of $\mathscr{B}: B=\int_{S} \hat{B}(s) d E(s)(B \in \mathscr{B})$. The joint spectrum (cf. [18], p. 150) of \mathscr{A}, denoted $\sigma(\mathscr{A})$, is defined by $\sigma(\mathscr{A})=$ $\left\{(\hat{A}(s))_{A \in \mathscr{A}}: s \in S\right\} . \quad \sigma(\mathscr{A}) \subset \Pi_{A \in}, \sigma(A)$ is homeomorphic to S under the application

$$
\begin{equation*}
\kappa: S \ni s \longmapsto(A(s))_{A \in \mathscr{A}} \in \sigma(\mathscr{A}) . \tag{2.1}
\end{equation*}
$$

Choose a decomposition $H=\bigoplus_{i \in I} H_{i}$, such that $\mathscr{B} H_{i} \subset H_{i}$ and $\mathscr{B}_{i}=$ $\left.\mathscr{B}\right|_{H_{i}}$ possesses a cyclic vector $x_{i}(i \in I)$. Let S_{i} be the spectrum of $\mathscr{B}_{i}(i \in I)$. Then there is a family $\left(m_{i}\right)_{i \in I}$ of positive Borel measures on S_{i} with support S_{i} inducing a spectral representation $H \leftrightarrow$ $\bigoplus_{i \in I} L^{2}\left(S_{i}, m_{i}\right)$. Thereby H_{i} is transferred in $L^{2}\left(S_{i}, m_{i}\right)$, especially x_{i} in $1_{s_{i}}(i \in I)$; an operator $B \in \mathscr{B}$ is converted in the multiplication by $\left(\widehat{B}_{i}(\cdot)\right)_{i \in I}$, where $\widehat{B}_{i}(\cdot)\left(=\left.\widehat{B}(\cdot)\right|_{s_{i}}\right.$ if S_{i} is considered as a subset of S) denotes the Gelfand transform of $\left.B\right|_{H_{i}}(i \in I)$; a spectral projection $E(\mathfrak{b}), \mathfrak{b}$ a Borel subset of S, is transferred in the multiplication by $\left(\chi_{\mathrm{b}_{S_{i}}}\right)_{i \in I}$. Finally we have $m_{i}(\cdot)=\left(E(\cdot) x_{i}, x_{i}\right)(i \in I)$. When H is separable, we can choose $I=N$ and achieve by a normalization (cf. [17], [10]) that (in an essentially unique manner) $m_{1}>m_{2}>\cdots$, particularly $S=S_{1} \supset S_{2} \supset \cdots$. The (well defined) function

$$
\begin{equation*}
m_{H}(s)=\#\left\{n \in N: s \in S_{n}\right\} \quad(s \in S) \tag{2.2}
\end{equation*}
$$

is called the Hellinger-Hahn multiplicity function of \mathscr{B}.
We return to the general case, in which, for the sake of simplification of notation, we formulate the affirmations concerning spectral decompositions in a somewhat different way (cf. [19]): We consider the sets $S_{i}(i \in I)$ as pairwise disjoint sets $\widetilde{S}_{i}(i \in I)$ and define $R=\cup_{i \in I} \widetilde{S}_{i}$. A set $V \subset R$ is defined to be open, if for all $i \in I$ the set $V \cap \widetilde{S}_{i}$ (interpreted as a subset of S_{i}) is open in S_{i}. With that R is a locally compact topological Hausdorff space; each S_{i} is open and compact in R. A function $f: R \rightarrow \boldsymbol{C}$ belongs to $C_{c}(R)$ if and only if $\left.f\right|_{\tilde{s}_{i}} \in C\left(S_{i}\right)$ for all $i \in I$ and $\left.f\right|_{\bar{s}_{i}}=0$ for all but finitely many $i \in I$. Define a Radon measure μ on R by

$$
\mu(f)=\int_{R} f \cdot d \mu=\sum_{i \in I} \int_{S_{i}} f \cdot d m_{i} \quad\left(f \in C_{c}(R)\right) .
$$

Then there is a spectral representation $H \leftrightarrow L^{2}(R, \mu)$ of \mathscr{B} by which \mathscr{B} is converted in a subalgebra of the multiplication algebra $B C(R)$ (:=algebra of bounded continuous numerical functions on R) on $L^{2}(R, \mu): \mathscr{B} \ni B \mapsto$ multiplication by $\widetilde{B}(\cdot) \in B C(R)$, where $\widetilde{B}(r):=\widehat{B}(\lambda r)$ $(r \in R)$. Here $\lambda: R \rightarrow \bigcup_{i \in I} S_{i} \subset S$ is the natural surjection. Finally we shall need:
(2.3) $E(\cdot)$ is concentrated on $\bigcup_{i \in I} S_{i}$; particularly $\overline{\bigcup_{i \in I} S_{i}}=S$;

$$
\begin{gather*}
\|B\|=|\hat{B}(\cdot)|_{C(S)}=|\widetilde{B}(\cdot)|_{B C(R)} \quad(B \in \mathscr{B}) ; \tag{2.4}\\
\sigma(B)=\widehat{B}(S)=\overline{\widetilde{B}(R)} \quad(B \in \mathscr{B}) . \tag{2.5}
\end{gather*}
$$

($|\cdot|$ denotes the supremum norm.)
3. Expansion in joint generalized eigenvectors. We proceed now to the construction of the triplet $\phi \subset H \subset \phi^{\prime}$. We assume without loss of generality that $H=L^{2}(R, \mu) \leftrightarrow \bigoplus_{i \in I} L^{2}\left(S_{i}, m_{i}\right)$ and $\mathscr{B} \subset$ $C B(R)$. Let $\phi:=C_{c}(R)$. It is easy to see that ϕ is topologically isomorphic to the locally convex direct sum $\dot{\sum}_{i \in I} C\left(S_{i}\right)$ (considered in [9]). ϕ satisfies with respect to \mathscr{B} (and \mathscr{A}) all the prerequisites listed in the introduction. For $r \in R$ define $e^{\prime}(r) \in \phi^{\prime}$ by $\left\langle\varphi, e^{\prime}(r)\right\rangle=$ $\varphi(r)(\varphi \in \phi)$.

Theorem (3.1). (i) $\quad \dot{B}^{\prime} e^{\prime}(r)=\widetilde{B}(r) \cdot e^{\prime}(r)(B \in \mathscr{B}, r \in R)$.
(ii) $(\varphi, \psi)=\int_{R}\left\langle\varphi, e^{\prime}(r)\right\rangle \overline{\left\langle\psi, e^{\prime}(r)\right\rangle} d \mu(r)(\varphi, \psi \in \phi)[(\mathrm{i})$ and (ii) mean that $\Subset=\left\{e^{\prime}(r): r \in R\right\}$ is a complete system of joint generalized eigenvectors of $\mathscr{B}]$.
(iii) $\quad \sigma_{P}\left(\dot{B}^{\prime}\right)=\widetilde{B}(R)(B \in \mathscr{B})$.
(iv) $\sigma\left(\dot{B}^{\prime}\right)=\overline{\sigma_{c 1}\left(\dot{B}^{\prime}\right)}=\sigma(B)(B \in \mathscr{B})$.

Here $\sigma\left(\dot{B}^{\prime}\right)$ denotes the spectrum of \dot{B}^{\prime} in the sense of Waelbroeck (cf. e.g., [12]) and $\sigma_{c 1}\left(\dot{B}^{\prime}\right)$ is defined as the set of those $z \in \boldsymbol{C}$, for which $\dot{B}^{\prime}-z$ is not invertible in $\mathscr{L}\left(\phi^{\prime}\right)$. Thereby on ϕ^{\prime} always is considered the strong topology and on $\mathscr{L}\left(\phi^{\prime}\right)$ the topology of uniform convergence on bounded subsets of ϕ.

Proof. (i), (ii) are direct consequences of our construction. (iii): Let $B \in \mathscr{B}$. Because of (i) we only have to show that $\sigma_{P}\left(\dot{B}^{\prime}\right) \subset \widetilde{B}(R)$. Let $z \in \sigma_{P}\left(\dot{B}^{\prime}\right)$ and suppose that $z \notin \widetilde{B}(R)$. Choose $x^{\prime} \in \phi^{\prime}$ such that $x^{\prime} \neq 0$ and $\dot{B}^{\prime} x^{\prime}=z x^{\prime}$. Let $\varphi \in \phi$ be arbitrary. Then there exists $\psi \in \phi$ such that $\varphi(r)=(\widetilde{B}(r)-z) \cdot \psi(r)(r \in R)$. Hence $\left\langle\varphi, x^{\prime}\right\rangle=\langle(\widetilde{B}(\cdot)-z)$. $\left.\psi(\cdot), x^{\prime}\right\rangle=\left\langle\psi,\left(\dot{B}^{\prime}-z\right) x^{\prime}\right\rangle=0$, i.e., $x^{\prime}=0$. Contradiction. (iv): By (iii) we have $\sigma(B)=\overline{\widetilde{B}(R)}=\overline{\sigma_{P}\left(\dot{B}^{\prime}\right)} \subset \overline{\sigma_{c 1}\left(\dot{B}^{\prime}\right)} \subset \sigma\left(\dot{B}^{\prime}\right)$. It remains to show that $\sigma\left(\dot{B}^{\prime}\right) \subset \overline{\widetilde{B}(R)}$: Let $z \notin \widetilde{B}(R)$. To demonstrate that $z \notin \sigma\left(\dot{B}^{\prime}\right)$, the two cases $z=\infty$ and $z \in C$ have to be treated seperately. Let $z=\infty$. Choose $C>0$ such that $|\widetilde{B}(r)| \leqq C(r \in R)$. Then $U:=\{\infty\} \cup$ $\{w \in C:|w| \geqq 2 \cdot C\}$ is a neighborhood of ∞, and $\left|(\widetilde{B}(r)-w)^{-1}\right| \leqq 1 / C$ $(r \in R)$ for $w \in U \cap C$. For $w \in U \cap C$ define $Q(w) \in \mathscr{L}\left(\dot{\phi}^{\prime}\right)$ by

$$
\left\langle\varphi, Q(w) x^{\prime}\right\rangle=\left\langle(\widetilde{B}(\cdot)-w)^{-1} \cdot \varphi(\cdot), x^{\prime}\right\rangle \quad\left(\varphi \in \phi, x^{\prime} \in \phi^{\prime}\right) .
$$

It is clear that $Q(w)\left(\dot{B}^{\prime}-w\right)=\left(\dot{B}^{\prime}-w\right) Q(w)=1$ for all $w \in U \cap C$ and easy to see that $\{Q(w): w \in U \cap C\}$ is bounded in $\mathscr{L}\left(\phi^{\prime}\right)$. Hence $\infty \notin \sigma\left(\dot{B}^{\prime}\right)$. If $z \in \boldsymbol{C}$, choose a neighbourhood V of z such that $\bar{V} \cap$ $\overline{\widetilde{B}(R)}=\varnothing$ and proceed similarity.

We shall show now that the spectral measure $E(\cdot)$ of \mathscr{B} can be extended to a spectral measure of $\mathscr{\mathscr { B }}^{\prime}$.

Theorem (3.2). There is an (unique) spectral measure $P(\cdot)$ on S with values in $\mathscr{L}\left(\phi^{\prime}\right)$ such that $\dot{B}^{\prime}=\int_{S} \hat{B}(s) \cdot d P(s)(B \in \mathscr{B})$ and $P(\cdot)_{H}=E(\cdot)$.

Proof. ϕ^{\prime} is the space of Radon measures on R. Define $P(\mathfrak{b}) x^{\prime}=$ $\chi_{2-1(6)} \cdot x^{\prime}\left(\mathfrak{b}\right.$ a Borel subset of $\left.S, x^{\prime} \in \phi^{\prime}\right)$, i.e., $\left\langle\varphi, P(\mathfrak{b}) x^{\prime}\right\rangle=\int_{\lambda-1(6)} \varphi \cdot d x^{\prime}$ for $\varphi \in \phi$. It is easily chequed that $P(\cdot)$ is a bounded σ-additive spectral measure in $\mathscr{L}\left(\phi^{\prime}\right)$ and that $\left.P(\cdot)\right|_{H}=E(\cdot)$. Since ϕ^{\prime} is complete and barrelled, the integral $\int_{S} \hat{B}(s) \cdot d P(s)(B \in \mathscr{F})$ exists in the
strong sense. An easy calculation shows that $\left\langle\varphi, \int_{S} \widehat{B}(s) \cdot d P(s) x^{\prime}\right\rangle=$ $\int_{S} \hat{B}(s) d\left\langle\varphi, P(s) x^{\prime}\right\rangle=\left\langle B \varphi, x^{\prime}\right\rangle$ for all $\varphi \in \dot{\phi}, x^{\prime} \in \phi^{\prime}$, i.e., $\int_{S} \hat{B}(s) \cdot d P(s)=\dot{B}^{\prime}$.

We now discuss the relations between the joint spectrum and the joint generalized point spectrum of \mathscr{A} :

THEOREM (3.3). $\quad \sigma_{P}\left(\dot{\mathscr{A}}^{\prime}\right) \subset \overline{\sigma_{P}\left(\dot{\mathscr{A}}^{\prime}\right)}=\sigma(\mathscr{A})$.
Proof. For $r \in R$ we have by Theorem (3.1) (i) that $(\widetilde{A}(r))_{A \in i r}=$ $(\hat{A}(\lambda r))_{A \in \mathscr{M}} \in \sigma_{P}\left(\dot{\mathscr{X}}^{\prime}\right) \quad(r \in R)$. Hence $\kappa(\lambda(R))=\kappa\left(\bigcup_{i \in I} S_{i}\right) \subset \sigma_{P}\left(\dot{\mathscr{A}}^{\prime}\right)$, where κ is the homeomorphism of (2.1). Because of (2.3) we obtain $\sigma(\mathscr{A})=\kappa(S) \subset \overline{\kappa\left(\bigcup_{i \in I} S_{i}\right)} \subset \overline{\sigma_{P}\left(\mathscr{A}^{\prime}\right)}$. It remains to show that $\sigma_{P}\left(\mathscr{\mathscr { A }}^{\prime}\right) \subset$ $\sigma(\mathscr{A})$. Let $\left(\lambda_{A}\right)_{A \in \mathscr{r}} \in \sigma_{P}\left(\mathscr{\mathscr { A }}^{\prime}\right)$; let $x^{\prime} \in \phi^{\prime}=C_{c}^{\prime}(R)$ be a joint generalized eigenvector of \mathscr{A}, i.e., (1.1) holds. Choose $i \in I$ such that $x_{i}^{\prime}=\left.x^{\prime}\right|_{C\left(s_{i}\right)} \neq 0$. Consider the triplet $\phi_{i} \subset H \subset \phi_{i}^{\prime}$, where $\phi_{i}=C\left(S_{i}\right), H=L^{2}\left(S_{i}, m_{i}\right)$. We then have $\left(\left.A\right|_{\phi_{i}}\right)^{\prime} x_{i}^{\prime}=\lambda_{A} \cdot x_{i}^{\prime}(A \in \mathscr{A})$. We shall show that there exists an (unique) $s_{i} \in S_{i}$, such that $\lambda_{A}=\hat{A}\left(s_{i}\right)(A \in \mathscr{A})$. For the sake of simplification of notation we suppress the index i, i.e., we consider the case of total multiplicity 1 without loss of generality. We first extend the function

$$
\begin{equation*}
\mathscr{A} \ni A \longmapsto \lambda_{A} \in C \tag{3.4}
\end{equation*}
$$

to \mathscr{B} such that (1.1) remains valid. To do this, let $\mathscr{P}(\mathscr{A})$ be the algebra of polynomials in elements of \mathscr{A} and 1. The closure of $\mathscr{P}(\mathscr{A})$ in $\mathscr{L}(H)$ equals \mathscr{B}. If $p=p\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ is a polynomial in n variables, we define $\lambda_{B}=p\left(\lambda_{A_{1}}, \cdots, \lambda_{A_{n}}\right)$ for $B=p\left(A_{1}, \cdots, A_{n}\right) \in$ $\mathscr{P}(\mathscr{A})$. By (1.1) we conclude that the function

$$
\begin{equation*}
\mathscr{P}(\mathscr{A}) \ni B \longmapsto \lambda_{B} \in C \tag{3.5}
\end{equation*}
$$

is well defined, constitutes an extension of (3.4) and satisfies

$$
\begin{equation*}
\dot{B}^{\prime} x^{\prime}=\lambda_{B} \cdot x^{\prime} \quad(B \in \mathscr{P}(\mathscr{A})) . \tag{3.6}
\end{equation*}
$$

Observing that $\lambda_{B} \in \sigma_{P}\left(\dot{B}^{\prime}\right) \subset \sigma(B)$ (cf. (3.1) (iii), hence $\left|\lambda_{B}\right| \leqq\|B\|$, we obtain that the (linear) function (3.5) is continuous. Hence it possesses an unique extension as a continuous function on \mathscr{B}, which we again denote by $B \mapsto \lambda_{B}$ and which satisfies for reasons of continuity the relations

$$
\begin{equation*}
\dot{B}^{\prime} x^{\prime}=\lambda_{B} \cdot x^{\prime} \quad(B \in \mathscr{B}) \tag{3.7}
\end{equation*}
$$

Using this it is easily chequed that $B \mapsto \lambda_{B}$ is an homomorphism of \mathscr{B} onto C (cf. [15]), i.e., defines an element $s \in S$ such that $\lambda_{B}=$ $s(B)=\hat{B}(s)(B \in \mathscr{B})$.

The proof shows particularly that a joint generalized eigenvector of \mathscr{A} is automatically one of \mathscr{B}.
4. The multiplicity of the joint generalized eigenvalues. First we give a supplement to the second part of the proof of Theorem (3.3):

Lemma (4.1). x^{\prime} is a multiple of point mass in s.
Proof. Recall that $R=S$ (according to our reduction to the cyclic case). (3.7) then means that

$$
\left\langle\hat{B}(\cdot) \cdot \varphi(\cdot), x^{\prime}\right\rangle=\hat{B}(s) \cdot\left\langle\varphi, x^{\prime}\right\rangle \quad(\varphi \in C(S), \hat{B}(\cdot) \in C(S))
$$

This implies that the support of x^{\prime} is contained in $\{s\}$. [When $\varphi \in$ $C(S)$ is such that $\operatorname{supp}(\varphi) \subset S-\{s\}$, choose $\widehat{B}(\cdot) \in C(S)$ such that $\hat{B}(s)=1$ and $\operatorname{supp}(\hat{B}(\cdot)) \subset S-\operatorname{supp}(\varphi)$. Then $\hat{B}(\cdot) \varphi(\cdot) \equiv 0$ on S, hence $\left\langle\varphi, x^{\prime}\right\rangle=\widehat{B}(s) \cdot\left\langle\varphi, x^{\prime}\right\rangle=\left\langle\varphi, \dot{B}^{\prime} x^{\prime}\right\rangle=\left\langle B \varphi, x^{\prime}\right\rangle=\left\langle\hat{B}(\cdot) \cdot \varphi(\cdot), x^{\prime}\right\rangle=0$.] This proves the affirmation (since $x^{\prime} \neq 0$; cf. [4], p. 70).

The lemma shows that the multiplicity of the joint generalized eigenvalues of \mathscr{A} with respect to the triplet $\phi \subset H \subset \phi^{\prime}$ constructed in § 3 is given by

$$
\begin{equation*}
\operatorname{mult}\left((\hat{A}(s))_{A \in \sim \sim}\right)=\#\left\{i \in I: s \in S_{i}\right\} \quad(s \in S) \tag{4.2}
\end{equation*}
$$

This formula illustrates the arbitrariness remaining in the selection of the spectral decomposition. Our construction is only well adapted to \mathscr{A} with respect to the spectra.

When H is separable, we can base the construction of ϕ on the "canonical" spectral decomposition described in §2. We then obtain:

Theorem (4.3). (i) $\quad \sigma_{P}\left(\dot{B}^{\prime}\right)=\sigma\left(\dot{B}^{\prime}\right)=\sigma(B)(B \in \mathscr{B})$.
(ii) $\sigma_{P}\left(\mathscr{\mathscr { A }}^{\prime}\right)=\sigma(\mathscr{A})$.
(iii) $\operatorname{mult}\left((A(s))_{A \in \mathscr{R}}\right)=m_{H}(s)(s \in S)$.

Proof. (i) and (ii) ensue from $S=S_{1}$, i.e., $\lambda R=S$, and the proofs of (3.1) and (3.3). (iii) is a consequence of formulas (2.2) and (4.2).

If \mathscr{A} has simple spectrum (i.e., in the separable case: \mathscr{A} possesses a cyclic vector, or, equivalently, $m_{H}(s)=1(s \in S)$) because of (4.3) (iii) the following formula holds:

$$
\begin{equation*}
\operatorname{mult}\left(\left(\lambda_{A}\right)_{A \in \mathscr{A}}\right)=1 \text { for all }\left(\lambda_{A}\right)_{A \in \mathscr{A}} \in \sigma_{P}\left(\dot{\mathscr{A}}^{\prime}\right) \tag{4.4}
\end{equation*}
$$

In the nonseparable case we have the following result concerning multiplicity:

Theorem (4.5). If $\mathscr{A}=\mathscr{B}$ is maximal Abelian, then (4.4) holds.

Proof. Then to \mathscr{B} corresponds the full multiplication algebra $C B(R)$ on $L^{2}(R, \mu)$. As $C B(R)$ separates the points of $R=\cup_{i \in I} \widetilde{S}_{i}$, we obtain that $S_{i} \cap S_{j}=\varnothing$ for $i \neq j$. Now the affirmation ensues from (4.2).

The natural extension of the notion " \mathscr{A} possesses simple spectrum" to the nonseparable case is that the von Neumann algebra generated by \mathscr{A} and 1 is maximal Abelian (cf. [19]). Theorem (4.5) says that (4.4) holds, if \mathscr{A} is a von Neumann algebra with simple spectrum. We conclude by formulating a problem: Let \mathscr{A} be an arbitrary system with simple spectrum. How "must" the triplet $\phi \subset H \subset \phi^{\prime}$ be constructed to obtain (4.4)?

References

1. D.Babbit, Rigged Hilbert spaces and one particle Schroedinger operators, Rep. Math. Phys., 3 (1972), 37-42.
2. H. Baumgärtel, Resonanzen und Gelfandsche Raumtripel, Math. Nachr., 72 (1976), 93-107.
3. Yu. M. Berezanskii, Expansion in eigenfunctions of self-adjoint operators, Providence, R. I.: Amer. Math. Soc., 1968.
4. N. Bourbaki, Elements de mathématique, Livre VI. Intégration. Paris: Hermann, 1965.
5. W. G. Farris, Perturbations and nonnormalizable eigenvectors, Helvetica Phys. Acta, 44 (1971), 930-936.
6. R. Godement, Sur la théorie des représentations unitaires, Ann of Math., 53 (1951), 68-124.
7. R. A. Hirschfeld, Expansions in eigenfunctionals, Nederl. Akad. Wetensch. Proc. Ser., A 68 (1965), 512-520.
8. K. Kalb, Spectrale Invarianz bei verallgemeinerten Eigenfunktionsentwicklungen, Manuscripta Math., 7 (1972), 271-297.
9. —, Die Vielfachheit nach Hellinger und die geometrische Vielfachheit der verallgemeinerten Eigenwerte, Archiv Math. (Basel), 25 (1974), 290-296.
10. ., Teorema y funciones de multiplicidad espectral, Rev. Col. Mat., 10 (1976), 1-37.
11. -, Selbstadjungierte Operatoren als "dual rein atomare" Skalaroperatoren, Math. Ann., 232 (1978), 121-130.
12. F. Maeda, Remarks on spectra of operators on locally convex spaces, Proc. National Acad. Sci., USA, 47 (1961), 1052-1055.
13. K. Maurin, Eine Bemerkung zu allgemeinen Eigenfunktionsentwicklungen, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys., 8 (1960), 381-384.
14. -, General eigenfunction expansions and unitary representation of topological groups, Warszawa: PWN, 1968.
15. K. Napiórkowski, On generalized eigenfunctions of operators in a Hilbert space,

Studia Math., 46 (1973), 79-82.
16. K. Napiórkowski, On good and bad generalized eigenvectors, I, II, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys., 22 (1974), 1215-1218; 23 (1975), 251-252.
17. E. Nelson, Topics in dynamics. I: Flows, Math. Notes Princeton, Princeton: University Press, 1969.
18. Ch. E. Rickart, General Theory of Banach Algebras, Princeton: Van Nostrand, 1960.
19. I. E. Segal and R. A. Kunze, Integrals and Operators, New York: McGraw-Hill, 1968.

Received April 21, 1977.
Johannes Gutenberg-Universität
D6500 Mainz
Germany

