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ON THE EXPANSION IN JOINT GENERALIZED
EIGENVECTORS

KLAUS GERO KALB

Let ^f be a family commuting self adjoint of (normal)
operators in a complex (not necessarily separable) Hubert space
H. A natural triplet φczHa φ' is described, such that (1) ̂ f
possesses a complete system of joint generalized eigenvectors
in φ'; (2) the joint generalized point spectrum of sf essentially
coincides with the joint spectrum of sf\ (3) the generalized
point spectra, generalized spectra and spectra essentially
coincide for all Ae^; (4) the simultaneous diagonalization
of 3f in H by means of its spectral measure extends to φf.
Also the multiplicity of the joint generalized eigenvectors
of sf is discussed.

Let φ be a locally convex space, which is embedded densely and
continiously into H, such that Aφaφ and A = A\φeJί?(φ) for all Ae
J^Γ Consider the triplet φaHczφ'. A joint generalized eigenvector
of s/ with respect to the joint generalized eigenvalue (XA)Ae^ e
HAe sC is a continuous linear form x'eφ' such that

(1.1) x' Φ 0 and A'xf = xA-x' for all AeΛf.

The system (£ of all joint generalized eigenvectors of J ^ is called
complete, if (<p, ef) = 0 for all e' e @ implies φ = 0 (φeφ). For H
separable there is a number of conditions on φ, under which @ is
complete (cf. e.g., [14], [3]), and there also are effective constructions
of φ with respect to a given family j y (cf. [13], [14] for ό^f count-
able; [15]). The fact that especially in the case of a single normal
operator there generally exist many more joint generalized eigenvalues
and eigennvectors than necessary (and reasonable in physical applica-
tions) has led to recent investigations ([15], [16]; [1]; [2]; [5]; [8],
[9]). Let σP(Jϊf') be the joint generalized point spectrum of J ^ (i.e.,
the set of all joint generalized eigenvalues of J ^ ) , let σ(j^) be the
joint spectrum of ^f as defined in Gelfand theory (cf. § 2). Let &
be the (commutative) C*-algebra generated by *$/ and 1. In the
present work we propose the construction of a natural triplet φa
Haφ', by which the following is achieved:

(a) σP(j^') c σ

(b) σP(Bf) cσP{B') = σ{B') = σ(B) for all

(c) the simultaneous diagonalization of ,<2$ by means of its

spectral measure can be transferred to &'.
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For H separable we can even attain σP(j^f) = σ(s*f) and σP(Bf) =
σ(B) for all Be&, and also have a description of the multiplicity
of the joint generalized eigenvalues.

In the case of a single selfadjoint operator our method reduces to
that of [9] (cf. also [11]) and for *%f = & is similar to that of [15]
where for H separable the equation o{0f) — σP(.^?') is realized. The
basic idea of the construction, due to R. A. Hirschfeld [7], is to
choose (by means of an appropriate spectral representation of &)
the space φ as a space of continuous functions with compact support
on a locally compact space R (or as a space of continuous vector
fields, if the theory of R. Godement [6] is used), such that the joint
generalized eigenvectors essentially are the point masses (characters).

2* Simultaneous diagonalization and spectral decomposition*
In this section we summarize the spectral and multiplicity theory
of [17], [18], [19]. Let S be the spectrum of ^ , i.e., the set of
all (continuous) homomorphisms of & onto C, endowed with the
usual topology. Let B(-):S-+C, defined by B(s) = s(B) (seS), be
the Gelfand transform of 5 e ^ . The application ^ 9 ΰ H ΰ ( )e
C(S) is an isometrical ^-isomorphism of & onto COS). Let E(-) be

the spectral measure of &\ B = \ B(s)dE(s) ( S e ^ ) . The joint
JS

spectrum (cf. [18], p. 150) of j ^ denoted σ(j%f), is defined by σ(j*f) =
{(Ά(s))Ae^: seS}. σ(jzf) a]JAe y σ(A) is homeomorphic to S under
the application

(2.1) κ\ S a s i > (A(s))Aej^ e σ(j^) .

Choose a decomposition H = ®ίeiHif such that .^HiCίHi and ̂  =
& Is* possesses a cyclic vector xt (i e I). Let £>< be the spectrum
of &t (iel). Then there is a family (m*)^/ of positive Borel meas-
ures on Si with support ^ inducing a spectral representation H+-+
(BieiL2(Si, m,). Thereby Ht is transferred in L\Si9mt)9 especially^
in ls. (iel); an operator ΰ e ^ is converted in the multiplication
by (2?i( ))i6i, where JB4( ) (=£(•)|5 < if Si is considered as a subset of
S) denotes the Gelfand transform of B\H. (iel); a spectral projec-
tion E(Jb)f h a Borel subset of S, is transferred in the multiplication
by (fansjiβi. Finally we have m4( ) = (E(-)xif xt) (iel). When H
is separable, we can choose I = N and achieve by a normalization
(cf. [17], [10]) that (in an essentially unique manner) m^m^ •••,
particularly S = Sλ D S2 "D . The (well defined) function

(2.2) mH(s) = %{n eN:se Sn} (s e S)
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is called the Hellinger-Hahn multiplicity function of &.
We return to the general case, in which, for the sake of sim-

plification of notation, we formulate the affirmations concerning
spectral decompositions in a somewhat different way (cf. [19]): We
consider the sets St (i e I) as pairwise disjoint sets §t (i e I) and
define R — ΌieiSi. A set VaR is defined to be open, if for all
i e I the set V Π St (interpreted as a subset of St) is open in St.
With that R is a locally compact topological Hausdorff space; each
Si is open and compact in R. A function f:R-*C belongs to CC(R)
if and only if f\steC(St) for all iel and f\-s. = 0 for all but finitely
many iel. Define a Radon measure μ on R by

(/e CC(R)) .

Then there is a spectral representation H *-* L2(R, μ) of & by which
& is converted in a subalgebra of the multiplication algebra BC(R)
(: = algebra of bounded continuous numerical functions on R) on
L\R, μ): & B BH* multiplication by £(•) e BC(R), where B(r): = B(λr)
(re ί ί ) . Here λ: i2-^ (Jie/Si c S is the natural surjection. Finally
we shall need:

(2.3) E(-) is concentrated on \J Sit particularly U St = S;
iel iel

(2.4)

(2.5) σ{B) - B(S) = B(R) (B e

(| | denotes the supremum norm.)

3* Expansion in joint generalized eigenvectors* We proceed
now to the construction of the triplet φaHaφ'. We assume with-
out loss of generality that H = L\R, μ)<-+®iei L?(Sif mt) and & c
CB(R). Let φ: = C0(R). It is easy to see that φ is topologically
isomorphic to the locally convex direct sum *ΣnsiC(&i) (considered in
[9]). 0'satisfies with respect to & (and Jzf) all the prerequisites
listed in the introduction. For r e R define e'(r) e φf by (<p, e'(r)> =
<p(r) (φeφ).

THEOREM (3.1). (i) B'e\r) = B(r) e'(r) (Be^,re R).

(ii) (<p, ψ) = \ <p, e'(r))<f, e'(r))dμ(r) (<p, ψeφ) [(i) α^ώ (ii)

® = {e'(r):reiί} is a complete system of joint generalized
eigenvectors of &\.

(iii) σP(B') = 5(i2) (J5 e &F).
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(iv) σ{B') = σcl{Bf) = σ{B)

Here σ(Br) denotes the spectrum of B' in the sense of Waelbroeck
(cf. e.g., [12]) and σcl(B') is defined as the set of those zeC, for
which Bf — z is not invertible in £f(φ'). Thereby on φ' always is
considered the strong topology and on <Sf{φf) the topology of uni-
form convergence on bounded subsets of φ.

Proof, (i), (ii) are direct consequences of our construction, (iii):
Let Be&. Because of (i) we only have to show that σP(Br)(Z.B(R).
Let z 6 σP(Br) and suppose that z £ 5(22). Choose x' e φ' such that
x'ΦO and B'xf = zx'. Let φ e Φ be arbitrary. Then there exists ψ e φ
such that <p(r) = (B(r) - z) f (r) (reR). Hence (φ, x'} = <(5(•)-«)•
ψ(.), x') = (ψf (B' - z)x') = 0, i.e., x' = 0. Contradiction, (iv): By

(iii) we have σ{B) = 5(22) = σP(B')aσcl(B')c:σ(B'). It remains to

show that σ(i?') c B(R): Let 2 e 5(22). To demonstrate that z ί σ(B'),
the two cases ^ = 00 and zeC have to be treated seperately. Let
z = 00. Choose C > 0 such that |5(r) | ^ C (r 6 22). Then U: = {00} u
{̂  eC: I w| ^ 2 C} is a neighborhood of 00, and |(5(r) - w)"1] ^ 1/C
(r G 22) f or w e U Π C. For well ΠC define Q(w) e £f(Φ') by

<φ, Q(w)a?'> = <(5( ) - ί^)-1 φ( ), a?'> (9? 6 & a' 6 φ') .

It is clear that Q(w)(B' - w) = (J?' - w)Q(w) = 1 for all weUnC
and easy to see that {Q(w): we U f) C} is bounded in Jϊf(φ'). Hence
00 gσ(ΰ') If zeC, choose a neighbourhood V of z such that 7 ί l
B{R) — 0 and proceed similarity.

We shall show now that the spectral measure E( ) of & can
be extended to a spectral measure of &'.

THEOREM (3.2). There is an (unique) spectral measure P( ) on S

with values in £f(φ') such that B' = \ B(s) dP(s)(Be&) and

Proof. φr is the space of Radon measures on R. Define P(b)x' =

Xx-nn'x' (b a Borel subset of S, x'eψ'), i.e., <<p, PQb)x'} = \ φ dcc'

for 9 6 ^ . It is easily chequed that P( ) is a bounded σ-additive

spectral measure in Sf{φ') and that P( )\H = -&(•)• Since ^' is com-

plete and barrelled, the integral \ B(s)-dP(s) (Be.^) exists in the
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/ Γ Λ \
strong sense. An easy calculation shows that (ω, \ B(s)-dP(s)x'\ =

\ )s I
\ B(s)d(φ, P(s)x') = (Bφ, x'} for all φ 6 φ, x'eφ', i.e., ( B(s) dP(s) = B'.
JS JS

We now discuss the relations between the joint spectrum and
the joint generalized point spectrum of

THEOREM (3.3). σP(^ff) c σP

Proof. For reR we have by Theorem (3.1) (i) that (A(r)) i e y =
^ e σP(j*') (r 6 R). Hence κ(X(R)) = κ(\JieI St) c σP(j*f'),

where K is the homeomorphism of (2.1). Because of (2.3) we obtain

6 7 Si)C(Tp(jy#') It remains to show that
Let (\A)Λβ.s, e σP(jχ?')', let x' € φf.= C^J?) be a joint generalized

eigenvector of J ^ i.e., (1.1) holds. Choose i e I such that X^X'^^ΦQ,

Consider the triplet φt c Ha φ'if where φt = C(£y, i ϊ = ί/2(Si, mj . We
then have (A\ΦiYXi = XA-xri (Aej^f). We shall show that there
exists an (unique) s* 6 Sif such that XA = 4(8^) (A 6 J ^ ) . For the
sake of simplification of notation we suppress the index ί, i.e., we
consider the case of total multiplicity 1 without loss of generality.
We first extend the function

(3.4) J/941 > XAeC

to & such that (1.1) remains valid. To do this, let «^*(j$O be the
algebra of polynomials in elements of Jzf and 1. The closure of
^(j&O in £?(H) equals ^ . If p = p(αx, , α J is a polynomial in
n variables, we define XB = p(\Λι, , XAn) for B = p(i4lf , AJ 6

By (1.1) we conclude that the function

(3.5)

is well defined, constitutes an extension of (3.4) and satisfies

(3.6) B'x' = XB-x' (Be

Observing that XBeσP(B')(zσ(B) (cf. (3.1) (iii), hence \XB\ ̂  ||JB||,
we obtain that the (linear) function (3.5) is continuous. Hence it
possesses an unique extension as a continuous function on έ%?, which
we again denote by B\-^XB and which satisfies for reasons of con-
tinuity the relations

(3.7) B'x' = XB xr {Be<2£).

Using this it is easily chequed that B\-*XB is an homomorphism of
έ% onto C (cf. [15]), i.e., defines an element s e S such that XB =
s(B) = B(s)
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The proof shows particularly that a joint generalized eigenvector
of Suf is automatically one of &.

4* The multiplicity of the joint generalized eigenvalues* First
we give a supplement to the second part of the proof of Theorem
(3.3):

LEMMA (4.1). x' is a multiple of point mass in s.

Proof. Recall that R — S (according to our reduction to the
cyclic case). (3.7) then means that

<£(.) <p( ), *'> = B(s) <fp, x') (ψ 6C(S), £(•) 6 C(S)) .

This implies that the support of xr is contained in {s}. [When φβ
C(S) is such that supp (φ) c S — {s}, choose B(-)eC{S) such that
B(s) = l and supp (2?( )) c S - supp (φ). Then 5( •)?>(••) = 0 on S,
hence (φ, %') = B(s)-(φ, x'} = <φ, ΰ V ) = <β^, *'> = <£(•)•?>(•), aj'> = 0.]
This proves the affirmation (since #' ̂  0; cf. [4], p. 70).

The lemma shows that the multiplicity of the joint generalized
eigenvalues of <$/ with respect to the triplet φaHaφ' constructed
in § 3 is given by

(4.2) m u l t ((A(s))A^) = #{f e /: s e S,} (seS).

This formula illustrates the arbitrariness remaining in the selection
of the spectral decomposition. Our construction is only well adapted
to Szf with respect to the spectra.

When H is separable, we can base the construction of φ on the
"canonical" spectral decomposition described in §2. We then obtain:

THEOREM (4.3). ( i ) σP(B') = σ(Bf) = σ{B)

(ii) σP(^fr) = σ(j^).
(iii) mult {(A(s))A^) = mH(s) (s e S).

Proof, (i) and (ii) ensue from S = Slf i.e., λi2 = S, and the proofs
of (3.1) and (3.3). (iii) is a consequence of formulas (2.2) and (4.2).

If J ^ has simple spectrum (i.e., in the separable case: J ^ pos-
sesses a cyclic vector, or, equivalently, mH(s) = 1 (seS)) because of
(4.3) (iii) the following formula holds:

(4.4) mu\t((XΛ)AeJs) = l for all
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In the nonseparable case we have the following result concerning
multiplicity:

THEOREM (4.5). If j y = & is maximal Abelian, then (4.4)
holds.

Proof. Then to & corresponds the full multiplication algebra
CB{R) on L2(R, μ). As CB(R) separates the points of R = \3teISi9

we obtain that St Π S3 = 0 for i Φ j . Now the affirmation ensues
from (4.2).

The natural extension of the notion " j y possesses simple spec-
trum" to the nonseparable case is that the von Neumann algebra
generated by ^f and 1 is maximal Abelian (cf. [19]). Theorem (4.5)
says that (4.4) holds, if j ^ is a von Neumann algebra with simple
spectrum. We conclude by formulating a problem: Let j y be an
arbitrary system with simple spectrum. How "must" the triplet
φaHcφ' be constructed to obtain (4.4)?
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