THE HOMOTOPY TYPE OF THE SPACE OF MAPS OF A HOMOLOGY 3-SPHERE INTO THE 2-SPHERE

VAGN LUNDSGAARD HANSEN

It is proved that if K is a compact, connected polyhedron such that $H^2(K; \mathbb{Z}) = 0$, then all the components in the space of maps of K into the 2-sphere are homeomorphic. For K a polyhedral homology 3-sphere the common homotopy type of the components is identified and shown to be independent of K.

1. Introduction and statements of results. Let K and X be a pair of compact, connected polyhedra and let M(K, X) denote the space of (continuous) maps of K into X. All mapping spaces will be equipped with the compact-open topology. Corresponding to each homotopy class of maps of K into X there is a (path-) component in M(K, X). For each pair of spaces K and X there arises then a natural classification problem, namely that of dividing the set of components in M(K, X) into homotopy types. The present paper is one in a series of papers, where we search through classical algebraic topology for methods, which are useful in the study of such classification problems.

In [4], information on certain Whitehead products was used to tackle the classification problem for the set of components in the space of maps of the *m*-sphere S^m into the *n*-sphere S^n , $m \ge n \ge 1$, and complete solutions were obtained in the cases m = n and m =n + 1. If the domain in the mapping space is not a suspension, the problem becomes more delicate, since normally, it is then difficult to construct nontrivial maps between the various components. For a mapping space with a manifold as domain it is sometimes possible to solve the classification problem for the components using information about a corresponding mapping space with a sphere as domain. As an example, knowledge of the fundamental group of the various components in $M(S^2, S^2)$ was used in [5] to solve the classification problem for the countable number of components in the space of maps of an orientable closed surface into S^2 . In this paper, we shall investigate spaces of maps into the base space of a principal bundle. We will concentrate mainly on spaces of maps into S^2 , making use of the fact, that S^2 is the base space in a principal S^1 -bundle, namely the classical Hopf fibration $p: S^3 \rightarrow S^2$.

The main result in this paper is the following

THEOREM 1. Let K be a compact, connected polyhedron and suppose that the integral cohomology group $H^2(K; \mathbb{Z}) = 0$. Then all the components in $M(K, S^2)$ are homeomorphic.

Theorem 1 generalizes substantially that part of ([4], Theorem 5.2), which states, that the countably many componts in $M(S^3, S^2)$ all have the same homotopy type.

In case K is a polyhedral homology 3-sphere (i.e., K is 3-dimensional and has the same integral homology as S^3) we can identify the common homotopy type of the components in $M(K, S^2)$ and show, that it is independent of K. Let $M_0(K, S^2)$, respectively $M_0(S^3, S^2)$, denote that component in $M(K, S^2)$, respectively $M(S^3, S^2)$, which consists of the homotopically trivial maps. Then we shall prove

THEOREM 2. Suppose that K is a polyhedral homology 3-sphere. Then the space of maps $M(K, S^2)$ has a countable number of components all of which have the same homotopy type as the component of homotopically trivial maps $M_0(S^3, S^2)$.

In the proof of Theorem 2 we show that a based map $q: K \to S^3$, which induces an isomorphism between the 3-dimensional homology groups, will induce a homotopy equivalence between $M_0(K, S^2)$ and $M_0(S^3, S^2)$.

Motivated by the spectral sequence constructed by Federer [2], it is natural to raise the question, whether the homotopy of a mapping space is determined just by the cohomology of the domain and the homotopy of the target, at least in favorable cases. Theorem 2 answers this question in the affirmative in a particular case. A generalized version of Theorem 2 appears in Remark 3 below. It would be interesting to know more examples of this kind.

Finally, the author would like to thank the referee for some very valuable constructive [remarks, which helped to improve the presentation of the paper.

2. Spaces of maps into a principal bundle. Throughout K denotes a compact, connected polyhedron. All topological spaces shall have the homotopy type of CW-complexes. According to Milnor [7] any mapping space with K as domain will then also have the homotopy type of a CW-complex. For any space X and any map $f: K \to X$, we denote by M(K, X; f) that component in M(K, X), which contains f, i.e., the space of maps of K into X freely homotopic to f. When necessary, a space will be equipped with a base point, and for any pair of based spaces A and B, we denote by $\pi(A, B)$ the set of based

homotopy classes of based maps of A into B. For $A = S^n$, the n-sphere, we use the standard notation $\pi_n(B) = \pi(S^n, B)$.

For a topological group G, the space of maps M(K, G) is a topological group under pointwise multiplication. Similarly, for any right action of G on a space E, there is an induced right action of M(K, G) on M(K, E).

Consider now a principal G-bundle $p: E \to B$. By definition G is then a topological group acting freely and properly on E, and p is a locally trivial fibration, which identifies B with the orbit space for the action of G on E. Clearly the induced action of M(K, G) on M(K, E) is free. For any map $f: K \to E$ we denote by $\overline{f} = p \circ f: K \to B$ the composition of f and p. Composition with p induces a continuous map $p_*: M(K, E) \to M(K, B)$. It is easy to prove that p_* is a Hurewicz fibration over its image, and since M(K, B) has the homotopy type of a CW-complex, and therefore is weakly locally contractible, it follows by Fadell ([1], Proposition 4) that p_* is an open map. This is used in the proof of the following

PROPOSITION. Let $p: E \to B$ be a principal G-bundle. Suppose that there is an M(K, G)-invariant homeomorphism $\varphi: M(K, E; f_1) \to M(K, E; f_2)$ between the components in M(K, E) defined by the maps $f_1, f_2 \in M(K, E)$. Then φ induces a homeomorphism $\overline{\varphi}: M(K, B; \overline{f_1}) \to M(K, B; \overline{f_2})$.

Proof. A map $\varphi: M(K, E; f_1) \to M(K, E; f_2)$ is called M(K, G)-invariant, if for any $f \in M(K, E; f_1)$ and any $g \in M(K, G)$ such that $f \cdot g \in M(K, E; f_1)$, the map $\varphi(f) \cdot g \in M(K, E; f_2)$ and $\varphi(f \cdot g) = \varphi(f) \cdot g$. Clearly an M(K, G)-invariant map φ induces a map $\overline{\varphi}$ making the following diagram commutative

$$\begin{array}{ccc} M(K,\,E;\,f_1) & \stackrel{\varphi}{\longrightarrow} & M(K,\,E;\,f_2) \\ & p_*^{\scriptscriptstyle 1} & & & & \downarrow p_*^{\scriptscriptstyle 2} \\ M(K,\,B;\,\bar{f_1}) & \stackrel{\overline{\varphi}}{\longrightarrow} & M(K,\,B;\,\bar{f_2}) \ . \end{array}$$

In this diagram, $p_*^{!}$ and p_*^{*} are restrictions of p_* . Since the diagram is commutative and $p_*^{!}$ is open and surjective, it follows, that $\overline{\varphi}$ is continuous if φ is continuous.

A homeomorphism $\varphi: M(K, E; f_1) \to M(K, E; f_2)$ is called an M(K, G)invariant homeomorphism if both φ and the inverse map to φ are M(K, G)-invariant maps in the above sense. It is then clear, that the inverse map to an M(K, G)-invariant homeomorphisms φ induces an inverse map to $\overline{\varphi}$. This proves the proposition.

VAGN LUNDSGAARD HANSEN

3. Proof of Theorem 1. Consider S^3 as a topological group, with S^1 as a subgroup, via the natural identification with the topological group of unit quaternions. The action of S^1 on the right of S^3 by multiplication defines a principal S^1 -bundle $p: S^3 \to S^2$ equivalent to the classical Hopf fibration. As in §2 we get an induced structure as a topological group on $M(K, S^3)$. For two components in $M(K, S^3)$ corresponding to maps $f_1, f_2 \in M(K, S^3)$ we define

$$\varphi: M(K, S^3; f_1) \longrightarrow M(K, S^3; f_2)$$

by $\varphi(f) = f_2 \cdot f_1^{-1} \cdot f$. All operations are defined pointwise using the group structure on S^3 . Since $M(K, S^1)$ acts on the right of $M(K, S^3)$, it is obvious that φ is an $M(K, S^1)$ -invariant homeomorphism. By assumption $H^2(K; \mathbb{Z}) = 0$, and since the only possible obstruction for lifting a map $\overline{f} \colon K \to S^2$ to a map $f \colon K \to S^3$ lies in $H^2(K; \mathbb{Z})$, see Steenrod ([9], Theorem 34.2), it follows, that any component in $M(K, S^2)$ lifts to a component in $M(K, S^3)$. By the proposition in §2 it follows now immediately that all the components in $M(K, S^2)$ are homeomorphic. This proves Theorem 1.

REMARK 1. Theorem 1 can be generalized as follows. Let G be a Lie group and let H be a closed subgroup of G. Then $p: G \rightarrow G/H$ is a smooth principal H-bundle. Proceeding exactly as in the proof of Theorem 1 we can prove the

THEOREM. All the components in M(K, G/H), which are images under p_* of components in M(K, G), are homeomorphic.

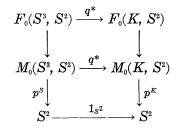
4. Spaces of maps of a polyhedral homology 3-sphere into S^2 . Throughout this section K denotes a polyhedral homology 3-sphere, i.e., K is a compact, connected 3-dimensional polyhedron with $H_1(K; \mathbb{Z}) = H_2(K; \mathbb{Z}) = 0$ and $H_3(K; \mathbb{Z}) \cong \mathbb{Z}$. By the universal coefficient theorem for cohomology we get then equivalently $H^1(K; \mathbb{Z}) = H^2(K; \mathbb{Z}) = 0$ and $H^3(K; \mathbb{Z}) \cong \mathbb{Z}$. Using elementary obstruction theory for the first isomorphism and the Hopf classification theorem, see Spanier ([8], Corollary 16, p. 431), for the second isomorphism we get

$$\pi(K,\,S^{\scriptscriptstyle 2})\cong\pi(K,\,S^{\scriptscriptstyle 3})\cong H^{\scriptscriptstyle 3}(K;\,oldsymbol{Z})\congoldsymbol{Z}$$
 .

Thus $M(K, S^2)$ has a countable number of components.

Proof of Theorem 2. Due to Theorem 1, it suffices to consider the component of homotopically trivial maps $M_0(K, S^2)$. Evaluation at the base point of K defines a Hurewicz fibration $p^{\kappa}: M_0(K, S^2) \to S^2$, the fiber of which is the space of based maps of K into S^2 homotopic to the constant based map, denoted $F_0(K, S^2)$. See Spanier ([8], Theorem 2, p. 97 and Corollary 2, p. 400). Similarly, we have the Hurewicz fibration $p^s: M_0(S^3, S^2) \to S^2$ with fiber $F_0(S^3, S^2)$.

Choose now a base point preserving map $q: K \to S^3$, which induces an isomorphism $q_*: H_s(K; \mathbb{Z}) \to H_s(S^3; \mathbb{Z})$. Composition with q induces a map between fibrations



If we take the constant based map as base point in all the mapping spaces involved, then we get for each $i \ge 1$ a commutative diagram

In this diagram \sum^{i} denotes the *i*-fold reduced suspension functor. The vertical maps are natural identifications. The horizontal maps are both induced by q.

Consider the map $\sum^{i}q: \sum^{i}K \to \sum^{i}S^{3}$. From the suspension isomorphism theorem in homology it follows that $\sum^{i}q$ induces an isomorphism between homology groups in all dimensions. Since both $\sum^{i}K$ and $\sum^{i}S^{3}$ for $i \ge 1$ are simply connected, see Spanier ([8], Corollary 3, p. 454), it follows by a theorem of J. H. C. Whitehead, see Spanier ([8], Corollary 24, p. 405 in connection with Theorem 25, p. 406), that $\sum^{i}q$ is a homotopy equivalence. Hence

$$(\sum^{i} q)^*$$
: $\pi(\sum^{i} S^3, S^2) \longrightarrow \pi(\sum^{i} K, S^2)$

is an isomorphism for all $i \ge 1$.

In the above map between fibrations, the map between fibers induces therefore an isomorphism between homotopy groups in all dimensions. Using the 5-lemma on the induced map between homotopy sequences for the two fibrations, it follows that $q^*: M_0(S^3, S^2) \rightarrow M_0(K, S^2)$ induces an isomorphism between homotopy groups in all dimensions. Hence by a theorem of J. H. C. Whitehead, see Spanier ([8], Corollary 24, p. 405), q^* is a homotopy equivalence, and therefore $M_0(K, S^2)$ and $M_0(S^3, S^2)$ have the same homotopy type. As already remarked this finishes the proof of Theorem 2.

COROLLARY. Let K be a polyhedral homology 3-sphere. For an arbitrary map $f: K \rightarrow S^2$ we have then

$$\pi_i(M(K,\,S^{\scriptscriptstyle 2}),\,f)\cong\pi_i(S^{\scriptscriptstyle 2})\oplus\pi_{i+3}(S^{\scriptscriptstyle 2})$$

for all $i \geq 1$.

Proof. By Theorem 2 it suffices to consider $M_0(S^3, S^2)$ with the constant map as base point. Observe now that the fibration $p^S: M_0(S^3, S^2) \to S^2$ with fibre $F_0(S^3, S^2)$ has a section, namely the section $s: S^2 \to M_0(S^3, S^2)$ of constant maps. Hence the homotopy sequence for p^S splits and we get

$$egin{aligned} \pi_i(M_{\scriptscriptstyle 0}(S^3,\,S^2)) &\cong \pi_i(S^2) \oplus \pi_i(F_{\scriptscriptstyle 0}(S^3,\,S^2)) \ &\cong \pi_i(S^2) \oplus \pi_{i+s}(S^2) \;. \end{aligned}$$

REMARK 2. By appealing to results from infinite dimensional topology we can substitute homotopy type by homeomorphism type in Theorem 2. This follows, since Geoghegan [3] has shown that almost all mapping spaces, and certainly the ones considered here, have the structure of infinite dimensional, separable Hilbert manifolds, and Henderson [6] has shown that two such manifolds are homotopy equivalent if and only if they are homeomorphic.

REMARK 3. As pointed out by the referee, Theorem 2 can be generalized as follows.

Let K and K' be compact, connected polyhedra and suppose that there exists a map $q: K \to K'$, which induces an isomorphism $q_*:$ $H_i(K; \mathbb{Z}) \to H_i(K'; \mathbb{Z})$ between homology groups in all dimensions $i \geq 0$. Let also X be an arbitrary connected space. Using exactly the same procedure as in the proof of Theorem 2, we can then prove, that q induces a homotopy equivalence $q^*: M_0(K', X) \to M_0(K, X)$. For $X = S^2$ and if $H^2(K; \mathbb{Z}) = H^2(K'; \mathbb{Z}) = 0$, we get then immediately a generalized version of Theorem 2.

References

- 1. E. Fadell, On fiber spaces, Trans. Amer. Math. Soc., 90 (1959), 1-14.
- 2. H. Federer, A study of function spaces by spectral sequences, Trans. Amer. Math. Soc., 82 (1956), 340-367.

- 4. V. L. Hansen, The homotopy problem for the components in the space of maps on the n-sphere, Quart. J. Math. Oxford Ser. (2), 25 (1974), 313-321.
- 5. _____, On the space of maps of a closed surface into the 2-sphere, Math. Scand.,

^{3.} R. Geoghegan, On spaces of homeomorphisms, embeddings and functions-I, Topology, 11 (1972), 159-177.

35 (1974), 149-158.

6. D. W. Henderson, Stable classification of infinite dimensional manifolds by homotopy type, Invent. Math., **12** (1971), 48-56.

7. J. Milnor, On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc., **90** (1959), 272-280.

8. E. H. Spanier, Algebraic Topology, McGraw-Hill, New York-London, 1966.

9. N. E. Steenrod, *The Topology of Fibre Bundles*, Princeton Mathematical Series, Princeton University Press, Princeton, N. J., 1951.

Received January 19, 1977 and in revised form October 14, 1977.

MATEMATISK INSTITUT Københavns Universitet København, Denmark